Proof of Theorem 2pthnloop
Step | Hyp | Ref
| Expression |
1 | | pthiswlk 27996 |
. . . . 5
⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
2 | | wlkv 27882 |
. . . . 5
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝐹(Paths‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) |
4 | | ispth 27992 |
. . . . . 6
⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) =
∅)) |
5 | | istrl 27966 |
. . . . . . . . . . . 12
⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) |
6 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
7 | | 2pthnloop.i |
. . . . . . . . . . . . . 14
⊢ 𝐼 = (iEdg‘𝐺) |
8 | 6, 7 | iswlkg 27883 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)))))) |
9 | 8 | anbi1d 629 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ V → ((𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹) ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)))) ∧ Fun ◡𝐹))) |
10 | 5, 9 | syl5bb 282 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ V → (𝐹(Trails‘𝐺)𝑃 ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)))) ∧ Fun ◡𝐹))) |
11 | | pthdadjvtx 27999 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (𝑃‘𝑖) ≠ (𝑃‘(𝑖 + 1))) |
12 | 11 | ad5ant245 1359 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐹 ∈ Word
dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun ◡𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 <
(♯‘𝐹)) ∧
𝑖 ∈
(0..^(♯‘𝐹)))
→ (𝑃‘𝑖) ≠ (𝑃‘(𝑖 + 1))) |
13 | 12 | neneqd 2947 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐹 ∈ Word
dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun ◡𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 <
(♯‘𝐹)) ∧
𝑖 ∈
(0..^(♯‘𝐹)))
→ ¬ (𝑃‘𝑖) = (𝑃‘(𝑖 + 1))) |
14 | | ifpfal 1073 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
(𝑃‘𝑖) = (𝑃‘(𝑖 + 1)) → (if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖))) ↔ {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)))) |
15 | 14 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝐹 ∈ Word
dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun ◡𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 <
(♯‘𝐹)) ∧
𝑖 ∈
(0..^(♯‘𝐹)))
∧ ¬ (𝑃‘𝑖) = (𝑃‘(𝑖 + 1))) → (if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖))) ↔ {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)))) |
16 | | fvexd 6771 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
(𝑃‘𝑖) = (𝑃‘(𝑖 + 1)) → (𝑃‘𝑖) ∈ V) |
17 | | fvexd 6771 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
(𝑃‘𝑖) = (𝑃‘(𝑖 + 1)) → (𝑃‘(𝑖 + 1)) ∈ V) |
18 | | neqne 2950 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
(𝑃‘𝑖) = (𝑃‘(𝑖 + 1)) → (𝑃‘𝑖) ≠ (𝑃‘(𝑖 + 1))) |
19 | | fvexd 6771 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
(𝑃‘𝑖) = (𝑃‘(𝑖 + 1)) → (𝐼‘(𝐹‘𝑖)) ∈ V) |
20 | | prsshashgt1 14053 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑃‘𝑖) ∈ V ∧ (𝑃‘(𝑖 + 1)) ∈ V ∧ (𝑃‘𝑖) ≠ (𝑃‘(𝑖 + 1))) ∧ (𝐼‘(𝐹‘𝑖)) ∈ V) → ({(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)) → 2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))))) |
21 | 16, 17, 18, 19, 20 | syl31anc 1371 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
(𝑃‘𝑖) = (𝑃‘(𝑖 + 1)) → ({(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)) → 2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))))) |
22 | 21 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝐹 ∈ Word
dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun ◡𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 <
(♯‘𝐹)) ∧
𝑖 ∈
(0..^(♯‘𝐹)))
∧ ¬ (𝑃‘𝑖) = (𝑃‘(𝑖 + 1))) → ({(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)) → 2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))))) |
23 | 15, 22 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝐹 ∈ Word
dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun ◡𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 <
(♯‘𝐹)) ∧
𝑖 ∈
(0..^(♯‘𝐹)))
∧ ¬ (𝑃‘𝑖) = (𝑃‘(𝑖 + 1))) → (if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖))) → 2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))))) |
24 | 13, 23 | mpdan 683 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐹 ∈ Word
dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun ◡𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 <
(♯‘𝐹)) ∧
𝑖 ∈
(0..^(♯‘𝐹)))
→ (if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖))) → 2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))))) |
25 | 24 | ralimdva 3102 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐹 ∈ Word
dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun ◡𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 <
(♯‘𝐹)) →
(∀𝑖 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖))) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))))) |
26 | 25 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun ◡𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))))) → (1 <
(♯‘𝐹) →
(∀𝑖 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖))) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹‘𝑖)))))) |
27 | 26 | com23 86 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun ◡𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))))) → (∀𝑖 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖))) → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖)))))) |
28 | 27 | exp31 419 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (𝐹(Paths‘𝐺)𝑃 → (((Fun ◡𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) → (∀𝑖 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖))) → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖)))))))) |
29 | 28 | com24 95 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖))) → (((Fun ◡𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖)))))))) |
30 | 29 | 3impia 1115 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)))) → (((Fun ◡𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖))))))) |
31 | 30 | exp4c 432 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)))) → (Fun ◡𝐹 → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖))))))))) |
32 | 31 | imp 406 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)))) ∧ Fun ◡𝐹) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖)))))))) |
33 | 10, 32 | syl6bi 252 |
. . . . . . . . . 10
⊢ (𝐺 ∈ V → (𝐹(Trails‘𝐺)𝑃 → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖))))))))) |
34 | 33 | com24 95 |
. . . . . . . . 9
⊢ (𝐺 ∈ V → (Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (𝐹(Trails‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖))))))))) |
35 | 34 | com14 96 |
. . . . . . . 8
⊢ (𝐹(Trails‘𝐺)𝑃 → (Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (𝐺 ∈ V → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖))))))))) |
36 | 35 | 3imp 1109 |
. . . . . . 7
⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝐺 ∈ V → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖))))))) |
37 | 36 | com12 32 |
. . . . . 6
⊢ (𝐺 ∈ V → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖))))))) |
38 | 4, 37 | syl5bi 241 |
. . . . 5
⊢ (𝐺 ∈ V → (𝐹(Paths‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖))))))) |
39 | 38 | 3ad2ant1 1131 |
. . . 4
⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Paths‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖))))))) |
40 | 3, 39 | mpcom 38 |
. . 3
⊢ (𝐹(Paths‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖)))))) |
41 | 40 | pm2.43i 52 |
. 2
⊢ (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖))))) |
42 | 41 | imp 406 |
1
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖)))) |