Proof of Theorem 2pthnloop
Step | Hyp | Ref
| Expression |
1 | | pthiswlk 27030 |
. . . . 5
⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
2 | | wlkv 26911 |
. . . . 5
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝐹(Paths‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) |
4 | | ispth 27026 |
. . . . . . 7
⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) =
∅)) |
5 | 4 | a1i 11 |
. . . . . 6
⊢ (𝐺 ∈ V → (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) =
∅))) |
6 | | istrl 26998 |
. . . . . . . . . . . 12
⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) |
7 | | eqid 2826 |
. . . . . . . . . . . . . 14
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
8 | | 2pthnloop.i |
. . . . . . . . . . . . . 14
⊢ 𝐼 = (iEdg‘𝐺) |
9 | 7, 8 | iswlkg 26912 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)))))) |
10 | 9 | anbi1d 625 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ V → ((𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹) ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)))) ∧ Fun ◡𝐹))) |
11 | 6, 10 | syl5bb 275 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ V → (𝐹(Trails‘𝐺)𝑃 ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)))) ∧ Fun ◡𝐹))) |
12 | | pthdadjvtx 27033 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (𝑃‘𝑖) ≠ (𝑃‘(𝑖 + 1))) |
13 | 12 | ad5ant245 1476 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐹 ∈ Word
dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun ◡𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 <
(♯‘𝐹)) ∧
𝑖 ∈
(0..^(♯‘𝐹)))
→ (𝑃‘𝑖) ≠ (𝑃‘(𝑖 + 1))) |
14 | 13 | neneqd 3005 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐹 ∈ Word
dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun ◡𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 <
(♯‘𝐹)) ∧
𝑖 ∈
(0..^(♯‘𝐹)))
→ ¬ (𝑃‘𝑖) = (𝑃‘(𝑖 + 1))) |
15 | | ifpfal 1103 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
(𝑃‘𝑖) = (𝑃‘(𝑖 + 1)) → (if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖))) ↔ {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)))) |
16 | 15 | adantl 475 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝐹 ∈ Word
dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun ◡𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 <
(♯‘𝐹)) ∧
𝑖 ∈
(0..^(♯‘𝐹)))
∧ ¬ (𝑃‘𝑖) = (𝑃‘(𝑖 + 1))) → (if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖))) ↔ {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)))) |
17 | | fvexd 6449 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
(𝑃‘𝑖) = (𝑃‘(𝑖 + 1)) → (𝑃‘𝑖) ∈ V) |
18 | | fvexd 6449 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
(𝑃‘𝑖) = (𝑃‘(𝑖 + 1)) → (𝑃‘(𝑖 + 1)) ∈ V) |
19 | | neqne 3008 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
(𝑃‘𝑖) = (𝑃‘(𝑖 + 1)) → (𝑃‘𝑖) ≠ (𝑃‘(𝑖 + 1))) |
20 | | fvexd 6449 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
(𝑃‘𝑖) = (𝑃‘(𝑖 + 1)) → (𝐼‘(𝐹‘𝑖)) ∈ V) |
21 | | prsshashgt1 13488 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑃‘𝑖) ∈ V ∧ (𝑃‘(𝑖 + 1)) ∈ V ∧ (𝑃‘𝑖) ≠ (𝑃‘(𝑖 + 1))) ∧ (𝐼‘(𝐹‘𝑖)) ∈ V) → ({(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)) → 2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))))) |
22 | 17, 18, 19, 20, 21 | syl31anc 1498 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
(𝑃‘𝑖) = (𝑃‘(𝑖 + 1)) → ({(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)) → 2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))))) |
23 | 22 | adantl 475 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝐹 ∈ Word
dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun ◡𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 <
(♯‘𝐹)) ∧
𝑖 ∈
(0..^(♯‘𝐹)))
∧ ¬ (𝑃‘𝑖) = (𝑃‘(𝑖 + 1))) → ({(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)) → 2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))))) |
24 | 16, 23 | sylbid 232 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝐹 ∈ Word
dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun ◡𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 <
(♯‘𝐹)) ∧
𝑖 ∈
(0..^(♯‘𝐹)))
∧ ¬ (𝑃‘𝑖) = (𝑃‘(𝑖 + 1))) → (if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖))) → 2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))))) |
25 | 14, 24 | mpdan 680 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐹 ∈ Word
dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun ◡𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 <
(♯‘𝐹)) ∧
𝑖 ∈
(0..^(♯‘𝐹)))
→ (if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖))) → 2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))))) |
26 | 25 | ralimdva 3172 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐹 ∈ Word
dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun ◡𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 <
(♯‘𝐹)) →
(∀𝑖 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖))) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))))) |
27 | 26 | ex 403 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun ◡𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))))) → (1 <
(♯‘𝐹) →
(∀𝑖 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖))) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹‘𝑖)))))) |
28 | 27 | com23 86 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun ◡𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))))) → (∀𝑖 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖))) → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖)))))) |
29 | 28 | exp31 412 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (𝐹(Paths‘𝐺)𝑃 → (((Fun ◡𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) → (∀𝑖 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖))) → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖)))))))) |
30 | 29 | com24 95 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖))) → (((Fun ◡𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖)))))))) |
31 | 30 | 3impia 1151 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)))) → (((Fun ◡𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖))))))) |
32 | 31 | exp4c 425 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)))) → (Fun ◡𝐹 → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖))))))))) |
33 | 32 | imp 397 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)))) ∧ Fun ◡𝐹) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖)))))))) |
34 | 33 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ V → (((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖)}, {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹‘𝑖)))) ∧ Fun ◡𝐹) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖))))))))) |
35 | 11, 34 | sylbid 232 |
. . . . . . . . . 10
⊢ (𝐺 ∈ V → (𝐹(Trails‘𝐺)𝑃 → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖))))))))) |
36 | 35 | com24 95 |
. . . . . . . . 9
⊢ (𝐺 ∈ V → (Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (𝐹(Trails‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖))))))))) |
37 | 36 | com14 96 |
. . . . . . . 8
⊢ (𝐹(Trails‘𝐺)𝑃 → (Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (𝐺 ∈ V → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖))))))))) |
38 | 37 | 3imp 1143 |
. . . . . . 7
⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝐺 ∈ V → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖))))))) |
39 | 38 | com12 32 |
. . . . . 6
⊢ (𝐺 ∈ V → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖))))))) |
40 | 5, 39 | sylbid 232 |
. . . . 5
⊢ (𝐺 ∈ V → (𝐹(Paths‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖))))))) |
41 | 40 | 3ad2ant1 1169 |
. . . 4
⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Paths‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖))))))) |
42 | 3, 41 | mpcom 38 |
. . 3
⊢ (𝐹(Paths‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖)))))) |
43 | 42 | pm2.43i 52 |
. 2
⊢ (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖))))) |
44 | 43 | imp 397 |
1
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈
(0..^(♯‘𝐹))2
≤ (♯‘(𝐼‘(𝐹‘𝑖)))) |