MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthnloop Structured version   Visualization version   GIF version

Theorem 2pthnloop 27514
Description: A path of length at least 2 does not contain a loop. In contrast, a path of length 1 can contain/be a loop, see lppthon 27932. (Contributed by AV, 6-Feb-2021.)
Hypothesis
Ref Expression
2pthnloop.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
2pthnloop ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))
Distinct variable groups:   𝑖,𝐹   𝑖,𝐺   𝑖,𝐼   𝑃,𝑖

Proof of Theorem 2pthnloop
StepHypRef Expression
1 pthiswlk 27510 . . . . 5 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
2 wlkv 27396 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
31, 2syl 17 . . . 4 (𝐹(Paths‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
4 ispth 27506 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
5 istrl 27480 . . . . . . . . . . . 12 (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹))
6 eqid 2823 . . . . . . . . . . . . . 14 (Vtx‘𝐺) = (Vtx‘𝐺)
7 2pthnloop.i . . . . . . . . . . . . . 14 𝐼 = (iEdg‘𝐺)
86, 7iswlkg 27397 . . . . . . . . . . . . 13 (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))))
98anbi1d 631 . . . . . . . . . . . 12 (𝐺 ∈ V → ((𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹) ↔ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)))) ∧ Fun 𝐹)))
105, 9syl5bb 285 . . . . . . . . . . 11 (𝐺 ∈ V → (𝐹(Trails‘𝐺)𝑃 ↔ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)))) ∧ Fun 𝐹)))
11 pthdadjvtx 27513 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (𝑃𝑖) ≠ (𝑃‘(𝑖 + 1)))
1211ad5ant245 1357 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (𝑃𝑖) ≠ (𝑃‘(𝑖 + 1)))
1312neneqd 3023 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1)))
14 ifpfal 1069 . . . . . . . . . . . . . . . . . . . . . 22 (¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1)) → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))
1514adantl 484 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) ∧ ¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1))) → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))
16 fvexd 6687 . . . . . . . . . . . . . . . . . . . . . . 23 (¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1)) → (𝑃𝑖) ∈ V)
17 fvexd 6687 . . . . . . . . . . . . . . . . . . . . . . 23 (¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1)) → (𝑃‘(𝑖 + 1)) ∈ V)
18 neqne 3026 . . . . . . . . . . . . . . . . . . . . . . 23 (¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1)) → (𝑃𝑖) ≠ (𝑃‘(𝑖 + 1)))
19 fvexd 6687 . . . . . . . . . . . . . . . . . . . . . . 23 (¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1)) → (𝐼‘(𝐹𝑖)) ∈ V)
20 prsshashgt1 13774 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃𝑖) ∈ V ∧ (𝑃‘(𝑖 + 1)) ∈ V ∧ (𝑃𝑖) ≠ (𝑃‘(𝑖 + 1))) ∧ (𝐼‘(𝐹𝑖)) ∈ V) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)) → 2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))
2116, 17, 18, 19, 20syl31anc 1369 . . . . . . . . . . . . . . . . . . . . . 22 (¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1)) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)) → 2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))
2221adantl 484 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) ∧ ¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1))) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)) → 2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))
2315, 22sylbid 242 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) ∧ ¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1))) → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → 2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))
2413, 23mpdan 685 . . . . . . . . . . . . . . . . . . 19 ((((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → 2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))
2524ralimdva 3179 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 < (♯‘𝐹)) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))
2625ex 415 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) → (1 < (♯‘𝐹) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))
2726com23 86 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))
2827exp31 422 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (𝐹(Paths‘𝐺)𝑃 → (((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹)))) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))))
2928com24 95 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → (((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹)))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))))
30293impia 1113 . . . . . . . . . . . . 13 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)))) → (((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹)))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))
3130exp4c 435 . . . . . . . . . . . 12 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)))) → (Fun 𝐹 → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))))
3231imp 409 . . . . . . . . . . 11 (((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)))) ∧ Fun 𝐹) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))))
3310, 32syl6bi 255 . . . . . . . . . 10 (𝐺 ∈ V → (𝐹(Trails‘𝐺)𝑃 → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))))
3433com24 95 . . . . . . . . 9 (𝐺 ∈ V → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (𝐹(Trails‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))))
3534com14 96 . . . . . . . 8 (𝐹(Trails‘𝐺)𝑃 → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (𝐺 ∈ V → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))))
36353imp 1107 . . . . . . 7 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝐺 ∈ V → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))
3736com12 32 . . . . . 6 (𝐺 ∈ V → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))
384, 37syl5bi 244 . . . . 5 (𝐺 ∈ V → (𝐹(Paths‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))
39383ad2ant1 1129 . . . 4 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Paths‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))
403, 39mpcom 38 . . 3 (𝐹(Paths‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))
4140pm2.43i 52 . 2 (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))
4241imp 409 1 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  if-wif 1057  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  Vcvv 3496  cin 3937  wss 3938  c0 4293  {csn 4569  {cpr 4571   class class class wbr 5068  ccnv 5556  dom cdm 5557  cres 5559  cima 5560  Fun wfun 6351  wf 6353  cfv 6357  (class class class)co 7158  0cc0 10539  1c1 10540   + caddc 10542   < clt 10677  cle 10678  2c2 11695  ...cfz 12895  ..^cfzo 13036  chash 13693  Word cword 13864  Vtxcvtx 26783  iEdgciedg 26784  Walkscwlks 27380  Trailsctrls 27474  Pathscpths 27495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-wlks 27383  df-trls 27476  df-pths 27499
This theorem is referenced by:  upgr2pthnlp  27515
  Copyright terms: Public domain W3C validator