MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthnloop Structured version   Visualization version   GIF version

Theorem 2pthnloop 29668
Description: A path of length at least 2 does not contain a loop. In contrast, a path of length 1 can contain/be a loop, see lppthon 30087. (Contributed by AV, 6-Feb-2021.)
Hypothesis
Ref Expression
2pthnloop.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
2pthnloop ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))
Distinct variable groups:   𝑖,𝐹   𝑖,𝐺   𝑖,𝐼   𝑃,𝑖

Proof of Theorem 2pthnloop
StepHypRef Expression
1 pthiswlk 29662 . . . . 5 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
2 wlkv 29547 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
31, 2syl 17 . . . 4 (𝐹(Paths‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
4 ispth 29658 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
5 istrl 29631 . . . . . . . . . . . 12 (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹))
6 eqid 2730 . . . . . . . . . . . . . 14 (Vtx‘𝐺) = (Vtx‘𝐺)
7 2pthnloop.i . . . . . . . . . . . . . 14 𝐼 = (iEdg‘𝐺)
86, 7iswlkg 29548 . . . . . . . . . . . . 13 (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))))
98anbi1d 631 . . . . . . . . . . . 12 (𝐺 ∈ V → ((𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹) ↔ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)))) ∧ Fun 𝐹)))
105, 9bitrid 283 . . . . . . . . . . 11 (𝐺 ∈ V → (𝐹(Trails‘𝐺)𝑃 ↔ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)))) ∧ Fun 𝐹)))
11 pthdadjvtx 29665 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (𝑃𝑖) ≠ (𝑃‘(𝑖 + 1)))
1211ad5ant245 1363 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (𝑃𝑖) ≠ (𝑃‘(𝑖 + 1)))
1312neneqd 2931 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1)))
14 ifpfal 1075 . . . . . . . . . . . . . . . . . . . . . 22 (¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1)) → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))
1514adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) ∧ ¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1))) → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))
16 fvexd 6876 . . . . . . . . . . . . . . . . . . . . . . 23 (¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1)) → (𝑃𝑖) ∈ V)
17 fvexd 6876 . . . . . . . . . . . . . . . . . . . . . . 23 (¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1)) → (𝑃‘(𝑖 + 1)) ∈ V)
18 neqne 2934 . . . . . . . . . . . . . . . . . . . . . . 23 (¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1)) → (𝑃𝑖) ≠ (𝑃‘(𝑖 + 1)))
19 fvexd 6876 . . . . . . . . . . . . . . . . . . . . . . 23 (¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1)) → (𝐼‘(𝐹𝑖)) ∈ V)
20 prsshashgt1 14382 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃𝑖) ∈ V ∧ (𝑃‘(𝑖 + 1)) ∈ V ∧ (𝑃𝑖) ≠ (𝑃‘(𝑖 + 1))) ∧ (𝐼‘(𝐹𝑖)) ∈ V) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)) → 2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))
2116, 17, 18, 19, 20syl31anc 1375 . . . . . . . . . . . . . . . . . . . . . 22 (¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1)) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)) → 2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))
2221adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) ∧ ¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1))) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)) → 2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))
2315, 22sylbid 240 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) ∧ ¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1))) → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → 2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))
2413, 23mpdan 687 . . . . . . . . . . . . . . . . . . 19 ((((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → 2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))
2524ralimdva 3146 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 < (♯‘𝐹)) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))
2625ex 412 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) → (1 < (♯‘𝐹) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))
2726com23 86 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))
2827exp31 419 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (𝐹(Paths‘𝐺)𝑃 → (((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹)))) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))))
2928com24 95 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → (((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹)))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))))
30293impia 1117 . . . . . . . . . . . . 13 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)))) → (((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹)))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))
3130exp4c 432 . . . . . . . . . . . 12 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)))) → (Fun 𝐹 → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))))
3231imp 406 . . . . . . . . . . 11 (((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)))) ∧ Fun 𝐹) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))))
3310, 32biimtrdi 253 . . . . . . . . . 10 (𝐺 ∈ V → (𝐹(Trails‘𝐺)𝑃 → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))))
3433com24 95 . . . . . . . . 9 (𝐺 ∈ V → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (𝐹(Trails‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))))
3534com14 96 . . . . . . . 8 (𝐹(Trails‘𝐺)𝑃 → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (𝐺 ∈ V → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))))
36353imp 1110 . . . . . . 7 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝐺 ∈ V → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))
3736com12 32 . . . . . 6 (𝐺 ∈ V → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))
384, 37biimtrid 242 . . . . 5 (𝐺 ∈ V → (𝐹(Paths‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))
39383ad2ant1 1133 . . . 4 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Paths‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))
403, 39mpcom 38 . . 3 (𝐹(Paths‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))
4140pm2.43i 52 . 2 (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))
4241imp 406 1 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  if-wif 1062  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  Vcvv 3450  cin 3916  wss 3917  c0 4299  {csn 4592  {cpr 4594   class class class wbr 5110  ccnv 5640  dom cdm 5641  cres 5643  cima 5644  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215  cle 11216  2c2 12248  ...cfz 13475  ..^cfzo 13622  chash 14302  Word cword 14485  Vtxcvtx 28930  iEdgciedg 28931  Walkscwlks 29531  Trailsctrls 29625  Pathscpths 29647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-wlks 29534  df-trls 29627  df-pths 29651
This theorem is referenced by:  upgr2pthnlp  29669
  Copyright terms: Public domain W3C validator