![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifpsnprss | Structured version Visualization version GIF version |
Description: Lemma for wlkvtxeledg 29510: Two adjacent (not necessarily different) vertices 𝐴 and 𝐵 in a walk are incident with an edge 𝐸. (Contributed by AV, 4-Apr-2021.) (Revised by AV, 5-Nov-2021.) |
Ref | Expression |
---|---|
ifpsnprss | ⊢ (if-(𝐴 = 𝐵, 𝐸 = {𝐴}, {𝐴, 𝐵} ⊆ 𝐸) → {𝐴, 𝐵} ⊆ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssidd 4000 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) → {𝐴} ⊆ {𝐴}) | |
2 | preq2 4740 | . . . . . 6 ⊢ (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴}) | |
3 | dfsn2 4643 | . . . . . 6 ⊢ {𝐴} = {𝐴, 𝐴} | |
4 | 2, 3 | eqtr4di 2783 | . . . . 5 ⊢ (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴}) |
5 | 4 | eqcoms 2733 | . . . 4 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴}) |
6 | 5 | adantr 479 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) → {𝐴, 𝐵} = {𝐴}) |
7 | simpr 483 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) → 𝐸 = {𝐴}) | |
8 | 1, 6, 7 | 3sstr4d 4024 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) → {𝐴, 𝐵} ⊆ 𝐸) |
9 | 8 | 1fpid3 1079 | 1 ⊢ (if-(𝐴 = 𝐵, 𝐸 = {𝐴}, {𝐴, 𝐵} ⊆ 𝐸) → {𝐴, 𝐵} ⊆ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 if-wif 1060 = wceq 1533 ⊆ wss 3944 {csn 4630 {cpr 4632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3463 df-un 3949 df-ss 3961 df-sn 4631 df-pr 4633 |
This theorem is referenced by: wlkvtxeledg 29510 |
Copyright terms: Public domain | W3C validator |