MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifpsnprss Structured version   Visualization version   GIF version

Theorem ifpsnprss 29551
Description: Lemma for wlkvtxeledg 29552: Two adjacent (not necessarily different) vertices 𝐴 and 𝐵 in a walk are incident with an edge 𝐸. (Contributed by AV, 4-Apr-2021.) (Revised by AV, 5-Nov-2021.)
Assertion
Ref Expression
ifpsnprss (if-(𝐴 = 𝐵, 𝐸 = {𝐴}, {𝐴, 𝐵} ⊆ 𝐸) → {𝐴, 𝐵} ⊆ 𝐸)

Proof of Theorem ifpsnprss
StepHypRef Expression
1 ssidd 3970 . . 3 ((𝐴 = 𝐵𝐸 = {𝐴}) → {𝐴} ⊆ {𝐴})
2 preq2 4698 . . . . . 6 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴})
3 dfsn2 4602 . . . . . 6 {𝐴} = {𝐴, 𝐴}
42, 3eqtr4di 2782 . . . . 5 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴})
54eqcoms 2737 . . . 4 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴})
65adantr 480 . . 3 ((𝐴 = 𝐵𝐸 = {𝐴}) → {𝐴, 𝐵} = {𝐴})
7 simpr 484 . . 3 ((𝐴 = 𝐵𝐸 = {𝐴}) → 𝐸 = {𝐴})
81, 6, 73sstr4d 4002 . 2 ((𝐴 = 𝐵𝐸 = {𝐴}) → {𝐴, 𝐵} ⊆ 𝐸)
981fpid3 1081 1 (if-(𝐴 = 𝐵, 𝐸 = {𝐴}, {𝐴, 𝐵} ⊆ 𝐸) → {𝐴, 𝐵} ⊆ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  if-wif 1062   = wceq 1540  wss 3914  {csn 4589  {cpr 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-un 3919  df-ss 3931  df-sn 4590  df-pr 4592
This theorem is referenced by:  wlkvtxeledg  29552
  Copyright terms: Public domain W3C validator