MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifpsnprss Structured version   Visualization version   GIF version

Theorem ifpsnprss 29509
Description: Lemma for wlkvtxeledg 29510: Two adjacent (not necessarily different) vertices 𝐴 and 𝐵 in a walk are incident with an edge 𝐸. (Contributed by AV, 4-Apr-2021.) (Revised by AV, 5-Nov-2021.)
Assertion
Ref Expression
ifpsnprss (if-(𝐴 = 𝐵, 𝐸 = {𝐴}, {𝐴, 𝐵} ⊆ 𝐸) → {𝐴, 𝐵} ⊆ 𝐸)

Proof of Theorem ifpsnprss
StepHypRef Expression
1 ssidd 4000 . . 3 ((𝐴 = 𝐵𝐸 = {𝐴}) → {𝐴} ⊆ {𝐴})
2 preq2 4740 . . . . . 6 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴})
3 dfsn2 4643 . . . . . 6 {𝐴} = {𝐴, 𝐴}
42, 3eqtr4di 2783 . . . . 5 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴})
54eqcoms 2733 . . . 4 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴})
65adantr 479 . . 3 ((𝐴 = 𝐵𝐸 = {𝐴}) → {𝐴, 𝐵} = {𝐴})
7 simpr 483 . . 3 ((𝐴 = 𝐵𝐸 = {𝐴}) → 𝐸 = {𝐴})
81, 6, 73sstr4d 4024 . 2 ((𝐴 = 𝐵𝐸 = {𝐴}) → {𝐴, 𝐵} ⊆ 𝐸)
981fpid3 1079 1 (if-(𝐴 = 𝐵, 𝐸 = {𝐴}, {𝐴, 𝐵} ⊆ 𝐸) → {𝐴, 𝐵} ⊆ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  if-wif 1060   = wceq 1533  wss 3944  {csn 4630  {cpr 4632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3463  df-un 3949  df-ss 3961  df-sn 4631  df-pr 4633
This theorem is referenced by:  wlkvtxeledg  29510
  Copyright terms: Public domain W3C validator