MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifpsnprss Structured version   Visualization version   GIF version

Theorem ifpsnprss 27970
Description: Lemma for wlkvtxeledg 27971: Two adjacent (not necessarily different) vertices 𝐴 and 𝐵 in a walk are incident with an edge 𝐸. (Contributed by AV, 4-Apr-2021.) (Revised by AV, 5-Nov-2021.)
Assertion
Ref Expression
ifpsnprss (if-(𝐴 = 𝐵, 𝐸 = {𝐴}, {𝐴, 𝐵} ⊆ 𝐸) → {𝐴, 𝐵} ⊆ 𝐸)

Proof of Theorem ifpsnprss
StepHypRef Expression
1 ssidd 3948 . . 3 ((𝐴 = 𝐵𝐸 = {𝐴}) → {𝐴} ⊆ {𝐴})
2 preq2 4675 . . . . . 6 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴})
3 dfsn2 4579 . . . . . 6 {𝐴} = {𝐴, 𝐴}
42, 3eqtr4di 2797 . . . . 5 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴})
54eqcoms 2747 . . . 4 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴})
65adantr 480 . . 3 ((𝐴 = 𝐵𝐸 = {𝐴}) → {𝐴, 𝐵} = {𝐴})
7 simpr 484 . . 3 ((𝐴 = 𝐵𝐸 = {𝐴}) → 𝐸 = {𝐴})
81, 6, 73sstr4d 3972 . 2 ((𝐴 = 𝐵𝐸 = {𝐴}) → {𝐴, 𝐵} ⊆ 𝐸)
981fpid3 1080 1 (if-(𝐴 = 𝐵, 𝐸 = {𝐴}, {𝐴, 𝐵} ⊆ 𝐸) → {𝐴, 𝐵} ⊆ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  if-wif 1059   = wceq 1541  wss 3891  {csn 4566  {cpr 4568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-un 3896  df-in 3898  df-ss 3908  df-sn 4567  df-pr 4569
This theorem is referenced by:  wlkvtxeledg  27971
  Copyright terms: Public domain W3C validator