| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifpsnprss | Structured version Visualization version GIF version | ||
| Description: Lemma for wlkvtxeledg 29559: Two adjacent (not necessarily different) vertices 𝐴 and 𝐵 in a walk are incident with an edge 𝐸. (Contributed by AV, 4-Apr-2021.) (Revised by AV, 5-Nov-2021.) |
| Ref | Expression |
|---|---|
| ifpsnprss | ⊢ (if-(𝐴 = 𝐵, 𝐸 = {𝐴}, {𝐴, 𝐵} ⊆ 𝐸) → {𝐴, 𝐵} ⊆ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssidd 3973 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) → {𝐴} ⊆ {𝐴}) | |
| 2 | preq2 4701 | . . . . . 6 ⊢ (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴}) | |
| 3 | dfsn2 4605 | . . . . . 6 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 4 | 2, 3 | eqtr4di 2783 | . . . . 5 ⊢ (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴}) |
| 5 | 4 | eqcoms 2738 | . . . 4 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴}) |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) → {𝐴, 𝐵} = {𝐴}) |
| 7 | simpr 484 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) → 𝐸 = {𝐴}) | |
| 8 | 1, 6, 7 | 3sstr4d 4005 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) → {𝐴, 𝐵} ⊆ 𝐸) |
| 9 | 8 | 1fpid3 1081 | 1 ⊢ (if-(𝐴 = 𝐵, 𝐸 = {𝐴}, {𝐴, 𝐵} ⊆ 𝐸) → {𝐴, 𝐵} ⊆ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 if-wif 1062 = wceq 1540 ⊆ wss 3917 {csn 4592 {cpr 4594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-ss 3934 df-sn 4593 df-pr 4595 |
| This theorem is referenced by: wlkvtxeledg 29559 |
| Copyright terms: Public domain | W3C validator |