MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinconst Structured version   Visualization version   GIF version

Theorem iinconst 5001
Description: Indexed intersection of a constant class, i.e. where 𝐵 does not depend on 𝑥. (Contributed by Mario Carneiro, 6-Feb-2015.)
Assertion
Ref Expression
iinconst (𝐴 ≠ ∅ → 𝑥𝐴 𝐵 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem iinconst
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliin 4996 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵))
21elv 3475 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵)
3 r19.3rzv 4494 . . 3 (𝐴 ≠ ∅ → (𝑦𝐵 ↔ ∀𝑥𝐴 𝑦𝐵))
42, 3bitr4id 290 . 2 (𝐴 ≠ ∅ → (𝑦 𝑥𝐴 𝐵𝑦𝐵))
54eqrdv 2725 1 (𝐴 ≠ ∅ → 𝑥𝐴 𝐵 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  wcel 2099  wne 2935  wral 3056  Vcvv 3469  c0 4318   ciin 4992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-12 2164  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-ral 3057  df-v 3471  df-dif 3947  df-nul 4319  df-iin 4994
This theorem is referenced by:  iin0  5356  ptbasfi  23472
  Copyright terms: Public domain W3C validator