Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iinconst | Structured version Visualization version GIF version |
Description: Indexed intersection of a constant class, i.e. where 𝐵 does not depend on 𝑥. (Contributed by Mario Carneiro, 6-Feb-2015.) |
Ref | Expression |
---|---|
iinconst | ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 𝐵 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliin 4936 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
2 | 1 | elv 3443 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
3 | r19.3rzv 4435 | . . 3 ⊢ (𝐴 ≠ ∅ → (𝑦 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
4 | 2, 3 | bitr4id 290 | . 2 ⊢ (𝐴 ≠ ∅ → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑦 ∈ 𝐵)) |
5 | 4 | eqrdv 2734 | 1 ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 𝐵 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2104 ≠ wne 2940 ∀wral 3061 Vcvv 3437 ∅c0 4262 ∩ ciin 4932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-v 3439 df-dif 3895 df-nul 4263 df-iin 4934 |
This theorem is referenced by: iin0 5293 ptbasfi 22781 |
Copyright terms: Public domain | W3C validator |