![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinconst | Structured version Visualization version GIF version |
Description: Indexed intersection of a constant class, i.e. where 𝐵 does not depend on 𝑥. (Contributed by Mario Carneiro, 6-Feb-2015.) |
Ref | Expression |
---|---|
iinconst | ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 𝐵 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliin 5020 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
2 | 1 | elv 3493 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
3 | r19.3rzv 4522 | . . 3 ⊢ (𝐴 ≠ ∅ → (𝑦 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
4 | 2, 3 | bitr4id 290 | . 2 ⊢ (𝐴 ≠ ∅ → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑦 ∈ 𝐵)) |
5 | 4 | eqrdv 2738 | 1 ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 𝐵 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 Vcvv 3488 ∅c0 4352 ∩ ciin 5016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-v 3490 df-dif 3979 df-nul 4353 df-iin 5018 |
This theorem is referenced by: iin0 5380 ptbasfi 23610 |
Copyright terms: Public domain | W3C validator |