![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinconst | Structured version Visualization version GIF version |
Description: Indexed intersection of a constant class, i.e. where 𝐵 does not depend on 𝑥. (Contributed by Mario Carneiro, 6-Feb-2015.) |
Ref | Expression |
---|---|
iinconst | ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 𝐵 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliin 5001 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
2 | 1 | elv 3469 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
3 | r19.3rzv 4499 | . . 3 ⊢ (𝐴 ≠ ∅ → (𝑦 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
4 | 2, 3 | bitr4id 289 | . 2 ⊢ (𝐴 ≠ ∅ → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑦 ∈ 𝐵)) |
5 | 4 | eqrdv 2723 | 1 ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 𝐵 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 ∀wral 3051 Vcvv 3463 ∅c0 4323 ∩ ciin 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-12 2166 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2931 df-ral 3052 df-v 3465 df-dif 3948 df-nul 4324 df-iin 4999 |
This theorem is referenced by: iin0 5361 ptbasfi 23515 |
Copyright terms: Public domain | W3C validator |