MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuneqconst Structured version   Visualization version   GIF version

Theorem iuneqconst 4923
Description: Indexed union of identical classes. (Contributed by AV, 5-Mar-2024.)
Hypothesis
Ref Expression
iuneqconst.p (𝑥 = 𝑋𝐵 = 𝐶)
Assertion
Ref Expression
iuneqconst ((𝑋𝐴 ∧ ∀𝑥𝐴 𝐵 = 𝐶) → 𝑥𝐴 𝐵 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝑋
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iuneqconst
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iuneqconst.p . . . . . . . 8 (𝑥 = 𝑋𝐵 = 𝐶)
21eleq2d 2897 . . . . . . 7 (𝑥 = 𝑋 → (𝑦𝐵𝑦𝐶))
32rspcev 3620 . . . . . 6 ((𝑋𝐴𝑦𝐶) → ∃𝑥𝐴 𝑦𝐵)
43adantlr 713 . . . . 5 (((𝑋𝐴 ∧ ∀𝑥𝐴 𝐵 = 𝐶) ∧ 𝑦𝐶) → ∃𝑥𝐴 𝑦𝐵)
54ex 415 . . . 4 ((𝑋𝐴 ∧ ∀𝑥𝐴 𝐵 = 𝐶) → (𝑦𝐶 → ∃𝑥𝐴 𝑦𝐵))
6 nfv 1914 . . . . . 6 𝑥 𝑋𝐴
7 nfra1 3218 . . . . . 6 𝑥𝑥𝐴 𝐵 = 𝐶
86, 7nfan 1899 . . . . 5 𝑥(𝑋𝐴 ∧ ∀𝑥𝐴 𝐵 = 𝐶)
9 nfv 1914 . . . . 5 𝑥 𝑦𝐶
10 rsp 3204 . . . . . . 7 (∀𝑥𝐴 𝐵 = 𝐶 → (𝑥𝐴𝐵 = 𝐶))
11 eleq2 2900 . . . . . . . 8 (𝐵 = 𝐶 → (𝑦𝐵𝑦𝐶))
1211biimpd 231 . . . . . . 7 (𝐵 = 𝐶 → (𝑦𝐵𝑦𝐶))
1310, 12syl6 35 . . . . . 6 (∀𝑥𝐴 𝐵 = 𝐶 → (𝑥𝐴 → (𝑦𝐵𝑦𝐶)))
1413adantl 484 . . . . 5 ((𝑋𝐴 ∧ ∀𝑥𝐴 𝐵 = 𝐶) → (𝑥𝐴 → (𝑦𝐵𝑦𝐶)))
158, 9, 14rexlimd 3316 . . . 4 ((𝑋𝐴 ∧ ∀𝑥𝐴 𝐵 = 𝐶) → (∃𝑥𝐴 𝑦𝐵𝑦𝐶))
165, 15impbid 214 . . 3 ((𝑋𝐴 ∧ ∀𝑥𝐴 𝐵 = 𝐶) → (𝑦𝐶 ↔ ∃𝑥𝐴 𝑦𝐵))
17 eliun 4916 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
1816, 17syl6rbbr 292 . 2 ((𝑋𝐴 ∧ ∀𝑥𝐴 𝐵 = 𝐶) → (𝑦 𝑥𝐴 𝐵𝑦𝐶))
1918eqrdv 2818 1 ((𝑋𝐴 ∧ ∀𝑥𝐴 𝐵 = 𝐶) → 𝑥𝐴 𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wral 3137  wrex 3138   ciun 4912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ral 3142  df-rex 3143  df-v 3493  df-iun 4914
This theorem is referenced by:  uniimafveqt  43615  imasetpreimafvbijlemfv  43636
  Copyright terms: Public domain W3C validator