MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunconst Structured version   Visualization version   GIF version

Theorem iunconst 4977
Description: Indexed union of a constant class, i.e. where 𝐵 does not depend on 𝑥. (Contributed by NM, 5-Sep-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iunconst (𝐴 ≠ ∅ → 𝑥𝐴 𝐵 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem iunconst
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliun 4971 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
2 r19.9rzv 4475 . . 3 (𝐴 ≠ ∅ → (𝑦𝐵 ↔ ∃𝑥𝐴 𝑦𝐵))
31, 2bitr4id 290 . 2 (𝐴 ≠ ∅ → (𝑦 𝑥𝐴 𝐵𝑦𝐵))
43eqrdv 2733 1 (𝐴 ≠ ∅ → 𝑥𝐴 𝐵 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wne 2932  wrex 3060  c0 4308   ciun 4967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-v 3461  df-dif 3929  df-nul 4309  df-iun 4969
This theorem is referenced by:  iununi  5075  oe1m  8557  oarec  8574  oelim2  8607  bnj1143  34821  poimirlem32  37676  mblfinlem2  37682  scottrankd  44272  hoicvr  46577  ovnlecvr2  46639  iunhoiioo  46705
  Copyright terms: Public domain W3C validator