| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunconst | Structured version Visualization version GIF version | ||
| Description: Indexed union of a constant class, i.e. where 𝐵 does not depend on 𝑥. (Contributed by NM, 5-Sep-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| iunconst | ⊢ (𝐴 ≠ ∅ → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliun 4971 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 2 | r19.9rzv 4475 | . . 3 ⊢ (𝐴 ≠ ∅ → (𝑦 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
| 3 | 1, 2 | bitr4id 290 | . 2 ⊢ (𝐴 ≠ ∅ → (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑦 ∈ 𝐵)) |
| 4 | 3 | eqrdv 2733 | 1 ⊢ (𝐴 ≠ ∅ → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 ∅c0 4308 ∪ ciun 4967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-v 3461 df-dif 3929 df-nul 4309 df-iun 4969 |
| This theorem is referenced by: iununi 5075 oe1m 8557 oarec 8574 oelim2 8607 bnj1143 34821 poimirlem32 37676 mblfinlem2 37682 scottrankd 44272 hoicvr 46577 ovnlecvr2 46639 iunhoiioo 46705 |
| Copyright terms: Public domain | W3C validator |