MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptbasfi Structured version   Visualization version   GIF version

Theorem ptbasfi 23475
Description: The basis for the product topology can also be written as the set of finite intersections of "cylinder sets", the preimages of projections into one factor from open sets in the factor. (We have to add 𝑋 itself to the list because if 𝐴 is empty we get (fi‘∅) = ∅ while 𝐵 = {∅}.) (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypotheses
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
ptbasfi.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
Assertion
Ref Expression
ptbasfi ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
Distinct variable groups:   𝑘,𝑛,𝑢,𝐵   𝑤,𝑔,𝑥,𝑦,𝑛,𝑘,𝑢,𝑧,𝐴   𝑔,𝐹,𝑘,𝑛,𝑢,𝑤,𝑥,𝑦,𝑧   𝑔,𝑋,𝑘,𝑢,𝑤,𝑥,𝑧   𝑔,𝑉,𝑘,𝑛,𝑢,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑤,𝑔)   𝑋(𝑦,𝑛)

Proof of Theorem ptbasfi
Dummy variables 𝑠 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptbas.1 . . . . 5 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
21elpt 23466 . . . 4 (𝑠𝐵 ↔ ∃(( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑦)))
3 df-3an 1088 . . . . . . . 8 (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦)) ↔ (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦)) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦)))
4 simprr 772 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))
5 disjdif2 4446 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑚) = ∅ → (𝐴𝑚) = 𝐴)
65raleqdv 3301 . . . . . . . . . . . . . . . . 17 ((𝐴𝑚) = ∅ → (∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦) ↔ ∀𝑦𝐴 (𝑦) = (𝐹𝑦)))
76biimpac 478 . . . . . . . . . . . . . . . 16 ((∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦) ∧ (𝐴𝑚) = ∅) → ∀𝑦𝐴 (𝑦) = (𝐹𝑦))
8 ixpeq2 8887 . . . . . . . . . . . . . . . 16 (∀𝑦𝐴 (𝑦) = (𝐹𝑦) → X𝑦𝐴 (𝑦) = X𝑦𝐴 (𝐹𝑦))
97, 8syl 17 . . . . . . . . . . . . . . 15 ((∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦) ∧ (𝐴𝑚) = ∅) → X𝑦𝐴 (𝑦) = X𝑦𝐴 (𝐹𝑦))
10 ptbasfi.2 . . . . . . . . . . . . . . . 16 𝑋 = X𝑛𝐴 (𝐹𝑛)
11 fveq2 6861 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑦 → (𝐹𝑛) = (𝐹𝑦))
1211unieqd 4887 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑦 (𝐹𝑛) = (𝐹𝑦))
1312cbvixpv 8891 . . . . . . . . . . . . . . . 16 X𝑛𝐴 (𝐹𝑛) = X𝑦𝐴 (𝐹𝑦)
1410, 13eqtri 2753 . . . . . . . . . . . . . . 15 𝑋 = X𝑦𝐴 (𝐹𝑦)
159, 14eqtr4di 2783 . . . . . . . . . . . . . 14 ((∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦) ∧ (𝐴𝑚) = ∅) → X𝑦𝐴 (𝑦) = 𝑋)
164, 15sylan 580 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) = ∅) → X𝑦𝐴 (𝑦) = 𝑋)
17 ssv 3974 . . . . . . . . . . . . . . . 16 𝑋 ⊆ V
18 iineq1 4976 . . . . . . . . . . . . . . . . 17 ((𝐴𝑚) = ∅ → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = 𝑛 ∈ ∅ ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
19 0iin 5031 . . . . . . . . . . . . . . . . 17 𝑛 ∈ ∅ ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = V
2018, 19eqtrdi 2781 . . . . . . . . . . . . . . . 16 ((𝐴𝑚) = ∅ → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = V)
2117, 20sseqtrrid 3993 . . . . . . . . . . . . . . 15 ((𝐴𝑚) = ∅ → 𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
2221adantl 481 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) = ∅) → 𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
23 dfss2 3935 . . . . . . . . . . . . . 14 (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ↔ (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑋)
2422, 23sylib 218 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) = ∅) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑋)
2516, 24eqtr4d 2768 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) = ∅) → X𝑦𝐴 (𝑦) = (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))))
26 simplll 774 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝐴𝑉𝐹:𝐴⟶Top))
27 inss1 4203 . . . . . . . . . . . . . . . . 17 (𝐴𝑚) ⊆ 𝐴
28 simpr 484 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → 𝑛 ∈ (𝐴𝑚))
2927, 28sselid 3947 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → 𝑛𝐴)
30 fveq2 6861 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑛 → (𝑦) = (𝑛))
31 fveq2 6861 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑛 → (𝐹𝑦) = (𝐹𝑛))
3230, 31eleq12d 2823 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑛 → ((𝑦) ∈ (𝐹𝑦) ↔ (𝑛) ∈ (𝐹𝑛)))
33 simprr 772 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) → ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))
3433ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))
3532, 34, 29rspcdva 3592 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝑛) ∈ (𝐹𝑛))
3614ptpjpre1 23465 . . . . . . . . . . . . . . . 16 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑛𝐴 ∧ (𝑛) ∈ (𝐹𝑛))) → ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
3726, 29, 35, 36syl12anc 836 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
3837adantlr 715 . . . . . . . . . . . . . 14 ((((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) ∧ 𝑛 ∈ (𝐴𝑚)) → ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
3938iineq2dv 4984 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = 𝑛 ∈ (𝐴𝑚)X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
40 simpr 484 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → (𝐴𝑚) ≠ ∅)
41 cnvimass 6056 . . . . . . . . . . . . . . . . . . . 20 ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ dom (𝑤𝑋 ↦ (𝑤𝑛))
42 eqid 2730 . . . . . . . . . . . . . . . . . . . . 21 (𝑤𝑋 ↦ (𝑤𝑛)) = (𝑤𝑋 ↦ (𝑤𝑛))
4342dmmptss 6217 . . . . . . . . . . . . . . . . . . . 20 dom (𝑤𝑋 ↦ (𝑤𝑛)) ⊆ 𝑋
4441, 43sstri 3959 . . . . . . . . . . . . . . . . . . 19 ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ 𝑋
4544, 14sseqtri 3998 . . . . . . . . . . . . . . . . . 18 ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦)
4645rgenw 3049 . . . . . . . . . . . . . . . . 17 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦)
47 r19.2z 4461 . . . . . . . . . . . . . . . . 17 (((𝐴𝑚) ≠ ∅ ∧ ∀𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦)) → ∃𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦))
4840, 46, 47sylancl 586 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → ∃𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦))
49 iinss 5023 . . . . . . . . . . . . . . . 16 (∃𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦))
5048, 49syl 17 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦))
5150, 14sseqtrrdi 3991 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ 𝑋)
52 sseqin2 4189 . . . . . . . . . . . . . 14 ( 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ 𝑋 ↔ (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
5351, 52sylib 218 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
5433ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))
55 ssralv 4018 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑚) ⊆ 𝐴 → (∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) ∈ (𝐹𝑦)))
5627, 55ax-mp 5 . . . . . . . . . . . . . . . . 17 (∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) ∈ (𝐹𝑦))
57 elssuni 4904 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦) ∈ (𝐹𝑦) → (𝑦) ⊆ (𝐹𝑦))
58 iffalse 4500 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑦 = 𝑛 → if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = (𝐹𝑦))
5958sseq2d 3982 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑦 = 𝑛 → ((𝑦) ⊆ if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ↔ (𝑦) ⊆ (𝐹𝑦)))
6057, 59syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦) ∈ (𝐹𝑦) → (¬ 𝑦 = 𝑛 → (𝑦) ⊆ if(𝑦 = 𝑛, (𝑛), (𝐹𝑦))))
61 ssid 3972 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦) ⊆ (𝑦)
62 iftrue 4497 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑛 → if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = (𝑛))
6362, 30eqtr4d 2768 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑛 → if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = (𝑦))
6461, 63sseqtrrid 3993 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑛 → (𝑦) ⊆ if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
6560, 64pm2.61d2 181 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦) ∈ (𝐹𝑦) → (𝑦) ⊆ if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
6665ralrimivw 3130 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦) ∈ (𝐹𝑦) → ∀𝑛 ∈ (𝐴𝑚)(𝑦) ⊆ if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
67 ssiin 5022 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦) ⊆ 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ↔ ∀𝑛 ∈ (𝐴𝑚)(𝑦) ⊆ if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
6866, 67sylibr 234 . . . . . . . . . . . . . . . . . . . 20 ((𝑦) ∈ (𝐹𝑦) → (𝑦) ⊆ 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
6968adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (𝐴𝑚) ∧ (𝑦) ∈ (𝐹𝑦)) → (𝑦) ⊆ 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
7062equcoms 2020 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑦 → if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = (𝑛))
71 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑦 → (𝑛) = (𝑦))
7270, 71eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑦 → if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = (𝑦))
7372sseq1d 3981 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑦 → (if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦) ↔ (𝑦) ⊆ (𝑦)))
7473rspcev 3591 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ (𝐴𝑚) ∧ (𝑦) ⊆ (𝑦)) → ∃𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦))
7561, 74mpan2 691 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝐴𝑚) → ∃𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦))
76 iinss 5023 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦) → 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦))
7775, 76syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐴𝑚) → 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦))
7877adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (𝐴𝑚) ∧ (𝑦) ∈ (𝐹𝑦)) → 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦))
7969, 78eqssd 3967 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (𝐴𝑚) ∧ (𝑦) ∈ (𝐹𝑦)) → (𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
8079ralimiaa 3066 . . . . . . . . . . . . . . . . 17 (∀𝑦 ∈ (𝐴𝑚)(𝑦) ∈ (𝐹𝑦) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
8154, 56, 803syl 18 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
82 eldifn 4098 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (𝐴𝑚) → ¬ 𝑦𝑚)
8382ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) ∧ 𝑛 ∈ (𝐴𝑚)) → ¬ 𝑦𝑚)
84 inss2 4204 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴𝑚) ⊆ 𝑚
85 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) ∧ 𝑛 ∈ (𝐴𝑚)) → 𝑛 ∈ (𝐴𝑚))
8684, 85sselid 3947 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) ∧ 𝑛 ∈ (𝐴𝑚)) → 𝑛𝑚)
87 eleq1 2817 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑛 → (𝑦𝑚𝑛𝑚))
8886, 87syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝑦 = 𝑛𝑦𝑚))
8983, 88mtod 198 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) ∧ 𝑛 ∈ (𝐴𝑚)) → ¬ 𝑦 = 𝑛)
9089, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) ∧ 𝑛 ∈ (𝐴𝑚)) → if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = (𝐹𝑦))
9190iineq2dv 4984 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) → 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = 𝑛 ∈ (𝐴𝑚) (𝐹𝑦))
92 iinconst 4969 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴𝑚) ≠ ∅ → 𝑛 ∈ (𝐴𝑚) (𝐹𝑦) = (𝐹𝑦))
9392adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) → 𝑛 ∈ (𝐴𝑚) (𝐹𝑦) = (𝐹𝑦))
9491, 93eqtr2d 2766 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) → (𝐹𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
95 eqeq1 2734 . . . . . . . . . . . . . . . . . . 19 ((𝑦) = (𝐹𝑦) → ((𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ↔ (𝐹𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦))))
9694, 95syl5ibrcom 247 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) → ((𝑦) = (𝐹𝑦) → (𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦))))
9796ralimdva 3146 . . . . . . . . . . . . . . . . 17 ((𝐴𝑚) ≠ ∅ → (∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦))))
984, 97mpan9 506 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
99 inundif 4445 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑚) ∪ (𝐴𝑚)) = 𝐴
10099raleqi 3299 . . . . . . . . . . . . . . . . 17 (∀𝑦 ∈ ((𝐴𝑚) ∪ (𝐴𝑚))(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ↔ ∀𝑦𝐴 (𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
101 ralunb 4163 . . . . . . . . . . . . . . . . 17 (∀𝑦 ∈ ((𝐴𝑚) ∪ (𝐴𝑚))(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ↔ (∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦))))
102100, 101bitr3i 277 . . . . . . . . . . . . . . . 16 (∀𝑦𝐴 (𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ↔ (∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦))))
10381, 98, 102sylanbrc 583 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → ∀𝑦𝐴 (𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
104 ixpeq2 8887 . . . . . . . . . . . . . . 15 (∀𝑦𝐴 (𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) → X𝑦𝐴 (𝑦) = X𝑦𝐴 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
105103, 104syl 17 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → X𝑦𝐴 (𝑦) = X𝑦𝐴 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
106 ixpiin 8900 . . . . . . . . . . . . . . 15 ((𝐴𝑚) ≠ ∅ → X𝑦𝐴 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = 𝑛 ∈ (𝐴𝑚)X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
107106adantl 481 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → X𝑦𝐴 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = 𝑛 ∈ (𝐴𝑚)X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
108105, 107eqtrd 2765 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → X𝑦𝐴 (𝑦) = 𝑛 ∈ (𝐴𝑚)X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
10939, 53, 1083eqtr4rd 2776 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → X𝑦𝐴 (𝑦) = (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))))
11025, 109pm2.61dane 3013 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝑦) = (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))))
111 ixpexg 8898 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑛𝐴 (𝐹𝑛) ∈ V → X𝑛𝐴 (𝐹𝑛) ∈ V)
112 fvex 6874 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹𝑛) ∈ V
113112uniex 7720 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹𝑛) ∈ V
114113a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛𝐴 (𝐹𝑛) ∈ V)
115111, 114mprg 3051 . . . . . . . . . . . . . . . . . . . . . . 23 X𝑛𝐴 (𝐹𝑛) ∈ V
11610, 115eqeltri 2825 . . . . . . . . . . . . . . . . . . . . . 22 𝑋 ∈ V
117116mptex 7200 . . . . . . . . . . . . . . . . . . . . 21 (𝑤𝑋 ↦ (𝑤𝑛)) ∈ V
118117cnvex 7904 . . . . . . . . . . . . . . . . . . . 20 (𝑤𝑋 ↦ (𝑤𝑛)) ∈ V
119118imaex 7893 . . . . . . . . . . . . . . . . . . 19 ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ V
120119dfiin2 5001 . . . . . . . . . . . . . . . . . 18 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))}
121 inteq 4916 . . . . . . . . . . . . . . . . . 18 ({𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅ → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅)
122120, 121eqtrid 2777 . . . . . . . . . . . . . . . . 17 ({𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅ → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = ∅)
123 int0 4929 . . . . . . . . . . . . . . . . 17 ∅ = V
124122, 123eqtrdi 2781 . . . . . . . . . . . . . . . 16 ({𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅ → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = V)
125124ineq2d 4186 . . . . . . . . . . . . . . 15 ({𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅ → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = (𝑋 ∩ V))
126 inv1 4364 . . . . . . . . . . . . . . 15 (𝑋 ∩ V) = 𝑋
127125, 126eqtrdi 2781 . . . . . . . . . . . . . 14 ({𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅ → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑋)
128127adantl 481 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑋)
129 snex 5394 . . . . . . . . . . . . . . . . . 18 {𝑋} ∈ V
1301ptbas 23473 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 ∈ TopBases)
1311, 10ptpjpre2 23474 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑘𝐴𝑢 ∈ (𝐹𝑘))) → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝐵)
132131ralrimivva 3181 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴𝑉𝐹:𝐴⟶Top) → ∀𝑘𝐴𝑢 ∈ (𝐹𝑘)((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝐵)
133 eqid 2730 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
134133fmpox 8049 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑘𝐴𝑢 ∈ (𝐹𝑘)((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝐵 ↔ (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)): 𝑘𝐴 ({𝑘} × (𝐹𝑘))⟶𝐵)
135132, 134sylib 218 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐹:𝐴⟶Top) → (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)): 𝑘𝐴 ({𝑘} × (𝐹𝑘))⟶𝐵)
136135frnd 6699 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐹:𝐴⟶Top) → ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) ⊆ 𝐵)
137130, 136ssexd 5282 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐹:𝐴⟶Top) → ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) ∈ V)
138 unexg 7722 . . . . . . . . . . . . . . . . . 18 (({𝑋} ∈ V ∧ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) ∈ V) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∈ V)
139129, 137, 138sylancr 587 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∈ V)
140 ssfii 9377 . . . . . . . . . . . . . . . . 17 (({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∈ V → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
141139, 140syl 17 . . . . . . . . . . . . . . . 16 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
142141ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
143 ssun1 4144 . . . . . . . . . . . . . . . . 17 {𝑋} ⊆ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
144116snss 4752 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ↔ {𝑋} ⊆ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
145143, 144mpbir 231 . . . . . . . . . . . . . . . 16 𝑋 ∈ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
146145a1i 11 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → 𝑋 ∈ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
147142, 146sseldd 3950 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → 𝑋 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
148147adantr 480 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅) → 𝑋 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
149128, 148eqeltrd 2829 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
150139ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∈ V)
151 nfv 1914 . . . . . . . . . . . . . . . . . . . . . 22 𝑛(((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦)))
152 nfcv 2892 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑛𝐴
153 nfcv 2892 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑛(𝐹𝑘)
154 nfixp1 8894 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑛X𝑛𝐴 (𝐹𝑛)
15510, 154nfcxfr 2890 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑛𝑋
156 nfcv 2892 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑛(𝑤𝑘)
157155, 156nfmpt 5208 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑛(𝑤𝑋 ↦ (𝑤𝑘))
158157nfcnv 5845 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑛(𝑤𝑋 ↦ (𝑤𝑘))
159 nfcv 2892 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑛𝑢
160158, 159nfima 6042 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑛((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)
161152, 153, 160nfmpo 7474 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑛(𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
162161nfrn 5919 . . . . . . . . . . . . . . . . . . . . . . 23 𝑛ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
163162nfcri 2884 . . . . . . . . . . . . . . . . . . . . . 22 𝑛 𝑧 ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
164 df-ov 7393 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛(𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))(𝑛)) = ((𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))‘⟨𝑛, (𝑛)⟩)
165119a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ V)
166 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 = 𝑛 → (𝑤𝑘) = (𝑤𝑛))
167166mpteq2dv 5204 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = 𝑛 → (𝑤𝑋 ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑛)))
168167cnveqd 5842 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 = 𝑛(𝑤𝑋 ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑛)))
169168imaeq1d 6033 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 = 𝑛 → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤𝑋 ↦ (𝑤𝑛)) “ 𝑢))
170 imaeq2 6030 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑢 = (𝑛) → ((𝑤𝑋 ↦ (𝑤𝑛)) “ 𝑢) = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
171169, 170sylan9eq 2785 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑘 = 𝑛𝑢 = (𝑛)) → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
172 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
173171, 172, 133ovmpox 7545 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛𝐴 ∧ (𝑛) ∈ (𝐹𝑛) ∧ ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ V) → (𝑛(𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))(𝑛)) = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
17429, 35, 165, 173syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝑛(𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))(𝑛)) = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
175164, 174eqtr3id 2779 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ((𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))‘⟨𝑛, (𝑛)⟩) = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
176135ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)): 𝑘𝐴 ({𝑘} × (𝐹𝑘))⟶𝐵)
177176ffnd 6692 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) Fn 𝑘𝐴 ({𝑘} × (𝐹𝑘)))
178 opeliunxp 5708 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑛, (𝑛)⟩ ∈ 𝑛𝐴 ({𝑛} × (𝐹𝑛)) ↔ (𝑛𝐴 ∧ (𝑛) ∈ (𝐹𝑛)))
17929, 35, 178sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ⟨𝑛, (𝑛)⟩ ∈ 𝑛𝐴 ({𝑛} × (𝐹𝑛)))
180 sneq 4602 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 = 𝑘 → {𝑛} = {𝑘})
181 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
182180, 181xpeq12d 5672 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = 𝑘 → ({𝑛} × (𝐹𝑛)) = ({𝑘} × (𝐹𝑘)))
183182cbviunv 5007 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑛𝐴 ({𝑛} × (𝐹𝑛)) = 𝑘𝐴 ({𝑘} × (𝐹𝑘))
184179, 183eleqtrdi 2839 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ⟨𝑛, (𝑛)⟩ ∈ 𝑘𝐴 ({𝑘} × (𝐹𝑘)))
185 fnfvelrn 7055 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) Fn 𝑘𝐴 ({𝑘} × (𝐹𝑘)) ∧ ⟨𝑛, (𝑛)⟩ ∈ 𝑘𝐴 ({𝑘} × (𝐹𝑘))) → ((𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))‘⟨𝑛, (𝑛)⟩) ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
186177, 184, 185syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ((𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))‘⟨𝑛, (𝑛)⟩) ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
187175, 186eqeltrrd 2830 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
188 eleq1 2817 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) → (𝑧 ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) ↔ ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
189187, 188syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) → 𝑧 ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
190189ex 412 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → (𝑛 ∈ (𝐴𝑚) → (𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) → 𝑧 ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
191151, 163, 190rexlimd 3245 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → (∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) → 𝑧 ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
192191abssdv 4034 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ⊆ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
193 ssun2 4145 . . . . . . . . . . . . . . . . . . . 20 ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) ⊆ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
194192, 193sstrdi 3962 . . . . . . . . . . . . . . . . . . 19 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ⊆ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
195194adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ⊆ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
196 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅)
197 simplrl 776 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → 𝑚 ∈ Fin)
198 ssfi 9143 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 ∈ Fin ∧ (𝐴𝑚) ⊆ 𝑚) → (𝐴𝑚) ∈ Fin)
199197, 84, 198sylancl 586 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → (𝐴𝑚) ∈ Fin)
200 abrexfi 9310 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑚) ∈ Fin → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ∈ Fin)
201199, 200syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ∈ Fin)
202 elfir 9373 . . . . . . . . . . . . . . . . . 18 ((({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∈ V ∧ ({𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ⊆ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅ ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ∈ Fin)) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
203150, 195, 196, 201, 202syl13anc 1374 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
204120, 203eqeltrid 2833 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
205 elssuni 4904 . . . . . . . . . . . . . . . 16 ( 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
206204, 205syl 17 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
207 fiuni 9386 . . . . . . . . . . . . . . . . . 18 (({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∈ V → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
208139, 207syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
209116pwid 4588 . . . . . . . . . . . . . . . . . . . . . 22 𝑋 ∈ 𝒫 𝑋
210209a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝑋 ∈ 𝒫 𝑋)
211210snssd 4776 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑋} ⊆ 𝒫 𝑋)
2121ptuni2 23470 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑛𝐴 (𝐹𝑛) = 𝐵)
21310, 212eqtrid 2777 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝑋 = 𝐵)
214 eqimss2 4009 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑋 = 𝐵 𝐵𝑋)
215213, 214syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵𝑋)
216 sspwuni 5067 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ⊆ 𝒫 𝑋 𝐵𝑋)
217215, 216sylibr 234 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 ⊆ 𝒫 𝑋)
218136, 217sstrd 3960 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐹:𝐴⟶Top) → ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) ⊆ 𝒫 𝑋)
219211, 218unssd 4158 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ 𝒫 𝑋)
220 sspwuni 5067 . . . . . . . . . . . . . . . . . . 19 (({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ 𝒫 𝑋 ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ 𝑋)
221219, 220sylib 218 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ 𝑋)
222 elssuni 4904 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑋 ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
223145, 222mp1i 13 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝑋 ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
224221, 223eqssd 3967 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) = 𝑋)
225208, 224eqtr3d 2767 . . . . . . . . . . . . . . . 16 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) = 𝑋)
226225ad3antrrr 730 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) = 𝑋)
227206, 226sseqtrd 3986 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ 𝑋)
228227, 52sylib 218 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
229228, 204eqeltrd 2829 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
230149, 229pm2.61dane 3013 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
231110, 230eqeltrd 2829 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
232231rexlimdvaa 3136 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) → (∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦) → X𝑦𝐴 (𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))))
233232impr 454 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦)) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
2343, 233sylan2b 594 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
235 eleq1 2817 . . . . . . 7 (𝑠 = X𝑦𝐴 (𝑦) → (𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) ↔ X𝑦𝐴 (𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))))
236234, 235syl5ibrcom 247 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → (𝑠 = X𝑦𝐴 (𝑦) → 𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))))
237236expimpd 453 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → ((( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑦)) → 𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))))
238237exlimdv 1933 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → (∃(( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑦)) → 𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))))
2392, 238biimtrid 242 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → (𝑠𝐵𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))))
240239ssrdv 3955 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 ⊆ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
2411ptbasid 23469 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑛𝐴 (𝐹𝑛) ∈ 𝐵)
24210, 241eqeltrid 2833 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝑋𝐵)
243242snssd 4776 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑋} ⊆ 𝐵)
244243, 136unssd 4158 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ 𝐵)
245 fiss 9382 . . . 4 ((𝐵 ∈ TopBases ∧ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ 𝐵) → (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) ⊆ (fi‘𝐵))
246130, 244, 245syl2anc 584 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) ⊆ (fi‘𝐵))
2471ptbasin2 23472 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵)
248246, 247sseqtrd 3986 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) ⊆ 𝐵)
249240, 248eqssd 3967 1 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wne 2926  wral 3045  wrex 3054  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  ifcif 4491  𝒫 cpw 4566  {csn 4592  cop 4598   cuni 4874   cint 4913   ciun 4958   ciin 4959  cmpt 5191   × cxp 5639  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  Xcixp 8873  Fincfn 8921  ficfi 9368  Topctop 22787  TopBasesctb 22839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-1o 8437  df-2o 8438  df-ixp 8874  df-en 8922  df-dom 8923  df-fin 8925  df-fi 9369  df-top 22788  df-bases 22840
This theorem is referenced by:  ptval2  23495  xkoptsub  23548  ptcmplem1  23946  prdsxmslem2  24424
  Copyright terms: Public domain W3C validator