MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptbasfi Structured version   Visualization version   GIF version

Theorem ptbasfi 23468
Description: The basis for the product topology can also be written as the set of finite intersections of "cylinder sets", the preimages of projections into one factor from open sets in the factor. (We have to add 𝑋 itself to the list because if 𝐴 is empty we get (fi‘∅) = ∅ while 𝐵 = {∅}.) (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypotheses
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
ptbasfi.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
Assertion
Ref Expression
ptbasfi ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
Distinct variable groups:   𝑘,𝑛,𝑢,𝐵   𝑤,𝑔,𝑥,𝑦,𝑛,𝑘,𝑢,𝑧,𝐴   𝑔,𝐹,𝑘,𝑛,𝑢,𝑤,𝑥,𝑦,𝑧   𝑔,𝑋,𝑘,𝑢,𝑤,𝑥,𝑧   𝑔,𝑉,𝑘,𝑛,𝑢,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑤,𝑔)   𝑋(𝑦,𝑛)

Proof of Theorem ptbasfi
Dummy variables 𝑠 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptbas.1 . . . . 5 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
21elpt 23459 . . . 4 (𝑠𝐵 ↔ ∃(( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑦)))
3 df-3an 1088 . . . . . . . 8 (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦)) ↔ (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦)) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦)))
4 simprr 772 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))
5 disjdif2 4443 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑚) = ∅ → (𝐴𝑚) = 𝐴)
65raleqdv 3299 . . . . . . . . . . . . . . . . 17 ((𝐴𝑚) = ∅ → (∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦) ↔ ∀𝑦𝐴 (𝑦) = (𝐹𝑦)))
76biimpac 478 . . . . . . . . . . . . . . . 16 ((∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦) ∧ (𝐴𝑚) = ∅) → ∀𝑦𝐴 (𝑦) = (𝐹𝑦))
8 ixpeq2 8884 . . . . . . . . . . . . . . . 16 (∀𝑦𝐴 (𝑦) = (𝐹𝑦) → X𝑦𝐴 (𝑦) = X𝑦𝐴 (𝐹𝑦))
97, 8syl 17 . . . . . . . . . . . . . . 15 ((∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦) ∧ (𝐴𝑚) = ∅) → X𝑦𝐴 (𝑦) = X𝑦𝐴 (𝐹𝑦))
10 ptbasfi.2 . . . . . . . . . . . . . . . 16 𝑋 = X𝑛𝐴 (𝐹𝑛)
11 fveq2 6858 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑦 → (𝐹𝑛) = (𝐹𝑦))
1211unieqd 4884 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑦 (𝐹𝑛) = (𝐹𝑦))
1312cbvixpv 8888 . . . . . . . . . . . . . . . 16 X𝑛𝐴 (𝐹𝑛) = X𝑦𝐴 (𝐹𝑦)
1410, 13eqtri 2752 . . . . . . . . . . . . . . 15 𝑋 = X𝑦𝐴 (𝐹𝑦)
159, 14eqtr4di 2782 . . . . . . . . . . . . . 14 ((∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦) ∧ (𝐴𝑚) = ∅) → X𝑦𝐴 (𝑦) = 𝑋)
164, 15sylan 580 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) = ∅) → X𝑦𝐴 (𝑦) = 𝑋)
17 ssv 3971 . . . . . . . . . . . . . . . 16 𝑋 ⊆ V
18 iineq1 4973 . . . . . . . . . . . . . . . . 17 ((𝐴𝑚) = ∅ → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = 𝑛 ∈ ∅ ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
19 0iin 5028 . . . . . . . . . . . . . . . . 17 𝑛 ∈ ∅ ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = V
2018, 19eqtrdi 2780 . . . . . . . . . . . . . . . 16 ((𝐴𝑚) = ∅ → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = V)
2117, 20sseqtrrid 3990 . . . . . . . . . . . . . . 15 ((𝐴𝑚) = ∅ → 𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
2221adantl 481 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) = ∅) → 𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
23 dfss2 3932 . . . . . . . . . . . . . 14 (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ↔ (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑋)
2422, 23sylib 218 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) = ∅) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑋)
2516, 24eqtr4d 2767 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) = ∅) → X𝑦𝐴 (𝑦) = (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))))
26 simplll 774 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝐴𝑉𝐹:𝐴⟶Top))
27 inss1 4200 . . . . . . . . . . . . . . . . 17 (𝐴𝑚) ⊆ 𝐴
28 simpr 484 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → 𝑛 ∈ (𝐴𝑚))
2927, 28sselid 3944 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → 𝑛𝐴)
30 fveq2 6858 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑛 → (𝑦) = (𝑛))
31 fveq2 6858 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑛 → (𝐹𝑦) = (𝐹𝑛))
3230, 31eleq12d 2822 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑛 → ((𝑦) ∈ (𝐹𝑦) ↔ (𝑛) ∈ (𝐹𝑛)))
33 simprr 772 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) → ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))
3433ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))
3532, 34, 29rspcdva 3589 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝑛) ∈ (𝐹𝑛))
3614ptpjpre1 23458 . . . . . . . . . . . . . . . 16 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑛𝐴 ∧ (𝑛) ∈ (𝐹𝑛))) → ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
3726, 29, 35, 36syl12anc 836 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
3837adantlr 715 . . . . . . . . . . . . . 14 ((((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) ∧ 𝑛 ∈ (𝐴𝑚)) → ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
3938iineq2dv 4981 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = 𝑛 ∈ (𝐴𝑚)X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
40 simpr 484 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → (𝐴𝑚) ≠ ∅)
41 cnvimass 6053 . . . . . . . . . . . . . . . . . . . 20 ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ dom (𝑤𝑋 ↦ (𝑤𝑛))
42 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (𝑤𝑋 ↦ (𝑤𝑛)) = (𝑤𝑋 ↦ (𝑤𝑛))
4342dmmptss 6214 . . . . . . . . . . . . . . . . . . . 20 dom (𝑤𝑋 ↦ (𝑤𝑛)) ⊆ 𝑋
4441, 43sstri 3956 . . . . . . . . . . . . . . . . . . 19 ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ 𝑋
4544, 14sseqtri 3995 . . . . . . . . . . . . . . . . . 18 ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦)
4645rgenw 3048 . . . . . . . . . . . . . . . . 17 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦)
47 r19.2z 4458 . . . . . . . . . . . . . . . . 17 (((𝐴𝑚) ≠ ∅ ∧ ∀𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦)) → ∃𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦))
4840, 46, 47sylancl 586 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → ∃𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦))
49 iinss 5020 . . . . . . . . . . . . . . . 16 (∃𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦))
5048, 49syl 17 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦))
5150, 14sseqtrrdi 3988 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ 𝑋)
52 sseqin2 4186 . . . . . . . . . . . . . 14 ( 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ 𝑋 ↔ (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
5351, 52sylib 218 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
5433ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))
55 ssralv 4015 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑚) ⊆ 𝐴 → (∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) ∈ (𝐹𝑦)))
5627, 55ax-mp 5 . . . . . . . . . . . . . . . . 17 (∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) ∈ (𝐹𝑦))
57 elssuni 4901 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦) ∈ (𝐹𝑦) → (𝑦) ⊆ (𝐹𝑦))
58 iffalse 4497 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑦 = 𝑛 → if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = (𝐹𝑦))
5958sseq2d 3979 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑦 = 𝑛 → ((𝑦) ⊆ if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ↔ (𝑦) ⊆ (𝐹𝑦)))
6057, 59syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦) ∈ (𝐹𝑦) → (¬ 𝑦 = 𝑛 → (𝑦) ⊆ if(𝑦 = 𝑛, (𝑛), (𝐹𝑦))))
61 ssid 3969 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦) ⊆ (𝑦)
62 iftrue 4494 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑛 → if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = (𝑛))
6362, 30eqtr4d 2767 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑛 → if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = (𝑦))
6461, 63sseqtrrid 3990 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑛 → (𝑦) ⊆ if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
6560, 64pm2.61d2 181 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦) ∈ (𝐹𝑦) → (𝑦) ⊆ if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
6665ralrimivw 3129 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦) ∈ (𝐹𝑦) → ∀𝑛 ∈ (𝐴𝑚)(𝑦) ⊆ if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
67 ssiin 5019 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦) ⊆ 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ↔ ∀𝑛 ∈ (𝐴𝑚)(𝑦) ⊆ if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
6866, 67sylibr 234 . . . . . . . . . . . . . . . . . . . 20 ((𝑦) ∈ (𝐹𝑦) → (𝑦) ⊆ 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
6968adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (𝐴𝑚) ∧ (𝑦) ∈ (𝐹𝑦)) → (𝑦) ⊆ 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
7062equcoms 2020 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑦 → if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = (𝑛))
71 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑦 → (𝑛) = (𝑦))
7270, 71eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑦 → if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = (𝑦))
7372sseq1d 3978 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑦 → (if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦) ↔ (𝑦) ⊆ (𝑦)))
7473rspcev 3588 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ (𝐴𝑚) ∧ (𝑦) ⊆ (𝑦)) → ∃𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦))
7561, 74mpan2 691 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝐴𝑚) → ∃𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦))
76 iinss 5020 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦) → 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦))
7775, 76syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐴𝑚) → 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦))
7877adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (𝐴𝑚) ∧ (𝑦) ∈ (𝐹𝑦)) → 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦))
7969, 78eqssd 3964 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (𝐴𝑚) ∧ (𝑦) ∈ (𝐹𝑦)) → (𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
8079ralimiaa 3065 . . . . . . . . . . . . . . . . 17 (∀𝑦 ∈ (𝐴𝑚)(𝑦) ∈ (𝐹𝑦) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
8154, 56, 803syl 18 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
82 eldifn 4095 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (𝐴𝑚) → ¬ 𝑦𝑚)
8382ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) ∧ 𝑛 ∈ (𝐴𝑚)) → ¬ 𝑦𝑚)
84 inss2 4201 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴𝑚) ⊆ 𝑚
85 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) ∧ 𝑛 ∈ (𝐴𝑚)) → 𝑛 ∈ (𝐴𝑚))
8684, 85sselid 3944 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) ∧ 𝑛 ∈ (𝐴𝑚)) → 𝑛𝑚)
87 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑛 → (𝑦𝑚𝑛𝑚))
8886, 87syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝑦 = 𝑛𝑦𝑚))
8983, 88mtod 198 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) ∧ 𝑛 ∈ (𝐴𝑚)) → ¬ 𝑦 = 𝑛)
9089, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) ∧ 𝑛 ∈ (𝐴𝑚)) → if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = (𝐹𝑦))
9190iineq2dv 4981 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) → 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = 𝑛 ∈ (𝐴𝑚) (𝐹𝑦))
92 iinconst 4966 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴𝑚) ≠ ∅ → 𝑛 ∈ (𝐴𝑚) (𝐹𝑦) = (𝐹𝑦))
9392adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) → 𝑛 ∈ (𝐴𝑚) (𝐹𝑦) = (𝐹𝑦))
9491, 93eqtr2d 2765 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) → (𝐹𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
95 eqeq1 2733 . . . . . . . . . . . . . . . . . . 19 ((𝑦) = (𝐹𝑦) → ((𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ↔ (𝐹𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦))))
9694, 95syl5ibrcom 247 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) → ((𝑦) = (𝐹𝑦) → (𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦))))
9796ralimdva 3145 . . . . . . . . . . . . . . . . 17 ((𝐴𝑚) ≠ ∅ → (∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦))))
984, 97mpan9 506 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
99 inundif 4442 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑚) ∪ (𝐴𝑚)) = 𝐴
10099raleqi 3297 . . . . . . . . . . . . . . . . 17 (∀𝑦 ∈ ((𝐴𝑚) ∪ (𝐴𝑚))(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ↔ ∀𝑦𝐴 (𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
101 ralunb 4160 . . . . . . . . . . . . . . . . 17 (∀𝑦 ∈ ((𝐴𝑚) ∪ (𝐴𝑚))(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ↔ (∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦))))
102100, 101bitr3i 277 . . . . . . . . . . . . . . . 16 (∀𝑦𝐴 (𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ↔ (∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦))))
10381, 98, 102sylanbrc 583 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → ∀𝑦𝐴 (𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
104 ixpeq2 8884 . . . . . . . . . . . . . . 15 (∀𝑦𝐴 (𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) → X𝑦𝐴 (𝑦) = X𝑦𝐴 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
105103, 104syl 17 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → X𝑦𝐴 (𝑦) = X𝑦𝐴 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
106 ixpiin 8897 . . . . . . . . . . . . . . 15 ((𝐴𝑚) ≠ ∅ → X𝑦𝐴 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = 𝑛 ∈ (𝐴𝑚)X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
107106adantl 481 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → X𝑦𝐴 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = 𝑛 ∈ (𝐴𝑚)X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
108105, 107eqtrd 2764 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → X𝑦𝐴 (𝑦) = 𝑛 ∈ (𝐴𝑚)X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
10939, 53, 1083eqtr4rd 2775 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → X𝑦𝐴 (𝑦) = (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))))
11025, 109pm2.61dane 3012 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝑦) = (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))))
111 ixpexg 8895 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑛𝐴 (𝐹𝑛) ∈ V → X𝑛𝐴 (𝐹𝑛) ∈ V)
112 fvex 6871 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹𝑛) ∈ V
113112uniex 7717 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹𝑛) ∈ V
114113a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛𝐴 (𝐹𝑛) ∈ V)
115111, 114mprg 3050 . . . . . . . . . . . . . . . . . . . . . . 23 X𝑛𝐴 (𝐹𝑛) ∈ V
11610, 115eqeltri 2824 . . . . . . . . . . . . . . . . . . . . . 22 𝑋 ∈ V
117116mptex 7197 . . . . . . . . . . . . . . . . . . . . 21 (𝑤𝑋 ↦ (𝑤𝑛)) ∈ V
118117cnvex 7901 . . . . . . . . . . . . . . . . . . . 20 (𝑤𝑋 ↦ (𝑤𝑛)) ∈ V
119118imaex 7890 . . . . . . . . . . . . . . . . . . 19 ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ V
120119dfiin2 4998 . . . . . . . . . . . . . . . . . 18 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))}
121 inteq 4913 . . . . . . . . . . . . . . . . . 18 ({𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅ → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅)
122120, 121eqtrid 2776 . . . . . . . . . . . . . . . . 17 ({𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅ → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = ∅)
123 int0 4926 . . . . . . . . . . . . . . . . 17 ∅ = V
124122, 123eqtrdi 2780 . . . . . . . . . . . . . . . 16 ({𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅ → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = V)
125124ineq2d 4183 . . . . . . . . . . . . . . 15 ({𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅ → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = (𝑋 ∩ V))
126 inv1 4361 . . . . . . . . . . . . . . 15 (𝑋 ∩ V) = 𝑋
127125, 126eqtrdi 2780 . . . . . . . . . . . . . 14 ({𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅ → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑋)
128127adantl 481 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑋)
129 snex 5391 . . . . . . . . . . . . . . . . . 18 {𝑋} ∈ V
1301ptbas 23466 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 ∈ TopBases)
1311, 10ptpjpre2 23467 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑘𝐴𝑢 ∈ (𝐹𝑘))) → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝐵)
132131ralrimivva 3180 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴𝑉𝐹:𝐴⟶Top) → ∀𝑘𝐴𝑢 ∈ (𝐹𝑘)((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝐵)
133 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
134133fmpox 8046 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑘𝐴𝑢 ∈ (𝐹𝑘)((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝐵 ↔ (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)): 𝑘𝐴 ({𝑘} × (𝐹𝑘))⟶𝐵)
135132, 134sylib 218 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐹:𝐴⟶Top) → (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)): 𝑘𝐴 ({𝑘} × (𝐹𝑘))⟶𝐵)
136135frnd 6696 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐹:𝐴⟶Top) → ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) ⊆ 𝐵)
137130, 136ssexd 5279 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐹:𝐴⟶Top) → ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) ∈ V)
138 unexg 7719 . . . . . . . . . . . . . . . . . 18 (({𝑋} ∈ V ∧ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) ∈ V) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∈ V)
139129, 137, 138sylancr 587 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∈ V)
140 ssfii 9370 . . . . . . . . . . . . . . . . 17 (({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∈ V → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
141139, 140syl 17 . . . . . . . . . . . . . . . 16 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
142141ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
143 ssun1 4141 . . . . . . . . . . . . . . . . 17 {𝑋} ⊆ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
144116snss 4749 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ↔ {𝑋} ⊆ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
145143, 144mpbir 231 . . . . . . . . . . . . . . . 16 𝑋 ∈ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
146145a1i 11 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → 𝑋 ∈ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
147142, 146sseldd 3947 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → 𝑋 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
148147adantr 480 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅) → 𝑋 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
149128, 148eqeltrd 2828 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
150139ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∈ V)
151 nfv 1914 . . . . . . . . . . . . . . . . . . . . . 22 𝑛(((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦)))
152 nfcv 2891 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑛𝐴
153 nfcv 2891 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑛(𝐹𝑘)
154 nfixp1 8891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑛X𝑛𝐴 (𝐹𝑛)
15510, 154nfcxfr 2889 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑛𝑋
156 nfcv 2891 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑛(𝑤𝑘)
157155, 156nfmpt 5205 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑛(𝑤𝑋 ↦ (𝑤𝑘))
158157nfcnv 5842 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑛(𝑤𝑋 ↦ (𝑤𝑘))
159 nfcv 2891 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑛𝑢
160158, 159nfima 6039 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑛((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)
161152, 153, 160nfmpo 7471 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑛(𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
162161nfrn 5916 . . . . . . . . . . . . . . . . . . . . . . 23 𝑛ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
163162nfcri 2883 . . . . . . . . . . . . . . . . . . . . . 22 𝑛 𝑧 ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
164 df-ov 7390 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛(𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))(𝑛)) = ((𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))‘⟨𝑛, (𝑛)⟩)
165119a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ V)
166 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 = 𝑛 → (𝑤𝑘) = (𝑤𝑛))
167166mpteq2dv 5201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = 𝑛 → (𝑤𝑋 ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑛)))
168167cnveqd 5839 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 = 𝑛(𝑤𝑋 ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑛)))
169168imaeq1d 6030 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 = 𝑛 → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤𝑋 ↦ (𝑤𝑛)) “ 𝑢))
170 imaeq2 6027 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑢 = (𝑛) → ((𝑤𝑋 ↦ (𝑤𝑛)) “ 𝑢) = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
171169, 170sylan9eq 2784 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑘 = 𝑛𝑢 = (𝑛)) → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
172 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
173171, 172, 133ovmpox 7542 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛𝐴 ∧ (𝑛) ∈ (𝐹𝑛) ∧ ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ V) → (𝑛(𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))(𝑛)) = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
17429, 35, 165, 173syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝑛(𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))(𝑛)) = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
175164, 174eqtr3id 2778 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ((𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))‘⟨𝑛, (𝑛)⟩) = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
176135ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)): 𝑘𝐴 ({𝑘} × (𝐹𝑘))⟶𝐵)
177176ffnd 6689 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) Fn 𝑘𝐴 ({𝑘} × (𝐹𝑘)))
178 opeliunxp 5705 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑛, (𝑛)⟩ ∈ 𝑛𝐴 ({𝑛} × (𝐹𝑛)) ↔ (𝑛𝐴 ∧ (𝑛) ∈ (𝐹𝑛)))
17929, 35, 178sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ⟨𝑛, (𝑛)⟩ ∈ 𝑛𝐴 ({𝑛} × (𝐹𝑛)))
180 sneq 4599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 = 𝑘 → {𝑛} = {𝑘})
181 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
182180, 181xpeq12d 5669 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = 𝑘 → ({𝑛} × (𝐹𝑛)) = ({𝑘} × (𝐹𝑘)))
183182cbviunv 5004 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑛𝐴 ({𝑛} × (𝐹𝑛)) = 𝑘𝐴 ({𝑘} × (𝐹𝑘))
184179, 183eleqtrdi 2838 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ⟨𝑛, (𝑛)⟩ ∈ 𝑘𝐴 ({𝑘} × (𝐹𝑘)))
185 fnfvelrn 7052 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) Fn 𝑘𝐴 ({𝑘} × (𝐹𝑘)) ∧ ⟨𝑛, (𝑛)⟩ ∈ 𝑘𝐴 ({𝑘} × (𝐹𝑘))) → ((𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))‘⟨𝑛, (𝑛)⟩) ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
186177, 184, 185syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ((𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))‘⟨𝑛, (𝑛)⟩) ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
187175, 186eqeltrrd 2829 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
188 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) → (𝑧 ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) ↔ ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
189187, 188syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) → 𝑧 ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
190189ex 412 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → (𝑛 ∈ (𝐴𝑚) → (𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) → 𝑧 ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
191151, 163, 190rexlimd 3244 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → (∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) → 𝑧 ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
192191abssdv 4031 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ⊆ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
193 ssun2 4142 . . . . . . . . . . . . . . . . . . . 20 ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) ⊆ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
194192, 193sstrdi 3959 . . . . . . . . . . . . . . . . . . 19 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ⊆ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
195194adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ⊆ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
196 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅)
197 simplrl 776 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → 𝑚 ∈ Fin)
198 ssfi 9137 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 ∈ Fin ∧ (𝐴𝑚) ⊆ 𝑚) → (𝐴𝑚) ∈ Fin)
199197, 84, 198sylancl 586 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → (𝐴𝑚) ∈ Fin)
200 abrexfi 9303 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑚) ∈ Fin → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ∈ Fin)
201199, 200syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ∈ Fin)
202 elfir 9366 . . . . . . . . . . . . . . . . . 18 ((({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∈ V ∧ ({𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ⊆ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅ ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ∈ Fin)) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
203150, 195, 196, 201, 202syl13anc 1374 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
204120, 203eqeltrid 2832 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
205 elssuni 4901 . . . . . . . . . . . . . . . 16 ( 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
206204, 205syl 17 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
207 fiuni 9379 . . . . . . . . . . . . . . . . . 18 (({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∈ V → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
208139, 207syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
209116pwid 4585 . . . . . . . . . . . . . . . . . . . . . 22 𝑋 ∈ 𝒫 𝑋
210209a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝑋 ∈ 𝒫 𝑋)
211210snssd 4773 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑋} ⊆ 𝒫 𝑋)
2121ptuni2 23463 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑛𝐴 (𝐹𝑛) = 𝐵)
21310, 212eqtrid 2776 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝑋 = 𝐵)
214 eqimss2 4006 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑋 = 𝐵 𝐵𝑋)
215213, 214syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵𝑋)
216 sspwuni 5064 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ⊆ 𝒫 𝑋 𝐵𝑋)
217215, 216sylibr 234 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 ⊆ 𝒫 𝑋)
218136, 217sstrd 3957 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐹:𝐴⟶Top) → ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) ⊆ 𝒫 𝑋)
219211, 218unssd 4155 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ 𝒫 𝑋)
220 sspwuni 5064 . . . . . . . . . . . . . . . . . . 19 (({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ 𝒫 𝑋 ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ 𝑋)
221219, 220sylib 218 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ 𝑋)
222 elssuni 4901 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑋 ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
223145, 222mp1i 13 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝑋 ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
224221, 223eqssd 3964 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) = 𝑋)
225208, 224eqtr3d 2766 . . . . . . . . . . . . . . . 16 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) = 𝑋)
226225ad3antrrr 730 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) = 𝑋)
227206, 226sseqtrd 3983 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ 𝑋)
228227, 52sylib 218 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
229228, 204eqeltrd 2828 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
230149, 229pm2.61dane 3012 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
231110, 230eqeltrd 2828 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
232231rexlimdvaa 3135 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) → (∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦) → X𝑦𝐴 (𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))))
233232impr 454 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦)) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
2343, 233sylan2b 594 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
235 eleq1 2816 . . . . . . 7 (𝑠 = X𝑦𝐴 (𝑦) → (𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) ↔ X𝑦𝐴 (𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))))
236234, 235syl5ibrcom 247 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → (𝑠 = X𝑦𝐴 (𝑦) → 𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))))
237236expimpd 453 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → ((( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑦)) → 𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))))
238237exlimdv 1933 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → (∃(( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑦)) → 𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))))
2392, 238biimtrid 242 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → (𝑠𝐵𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))))
240239ssrdv 3952 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 ⊆ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
2411ptbasid 23462 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑛𝐴 (𝐹𝑛) ∈ 𝐵)
24210, 241eqeltrid 2832 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝑋𝐵)
243242snssd 4773 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑋} ⊆ 𝐵)
244243, 136unssd 4155 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ 𝐵)
245 fiss 9375 . . . 4 ((𝐵 ∈ TopBases ∧ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ 𝐵) → (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) ⊆ (fi‘𝐵))
246130, 244, 245syl2anc 584 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) ⊆ (fi‘𝐵))
2471ptbasin2 23465 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵)
248246, 247sseqtrd 3983 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) ⊆ 𝐵)
249240, 248eqssd 3964 1 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  Vcvv 3447  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  ifcif 4488  𝒫 cpw 4563  {csn 4589  cop 4595   cuni 4871   cint 4910   ciun 4955   ciin 4956  cmpt 5188   × cxp 5636  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  Xcixp 8870  Fincfn 8918  ficfi 9361  Topctop 22780  TopBasesctb 22832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-1o 8434  df-2o 8435  df-ixp 8871  df-en 8919  df-dom 8920  df-fin 8922  df-fi 9362  df-top 22781  df-bases 22833
This theorem is referenced by:  ptval2  23488  xkoptsub  23541  ptcmplem1  23939  prdsxmslem2  24417
  Copyright terms: Public domain W3C validator