MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptbasfi Structured version   Visualization version   GIF version

Theorem ptbasfi 22183
Description: The basis for the product topology can also be written as the set of finite intersections of "cylinder sets", the preimages of projections into one factor from open sets in the factor. (We have to add 𝑋 itself to the list because if 𝐴 is empty we get (fi‘∅) = ∅ while 𝐵 = {∅}.) (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypotheses
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
ptbasfi.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
Assertion
Ref Expression
ptbasfi ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
Distinct variable groups:   𝑘,𝑛,𝑢,𝐵   𝑤,𝑔,𝑥,𝑦,𝑛,𝑘,𝑢,𝑧,𝐴   𝑔,𝐹,𝑘,𝑛,𝑢,𝑤,𝑥,𝑦,𝑧   𝑔,𝑋,𝑘,𝑢,𝑤,𝑥,𝑧   𝑔,𝑉,𝑘,𝑛,𝑢,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑤,𝑔)   𝑋(𝑦,𝑛)

Proof of Theorem ptbasfi
Dummy variables 𝑠 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptbas.1 . . . . 5 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
21elpt 22174 . . . 4 (𝑠𝐵 ↔ ∃(( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑦)))
3 df-3an 1085 . . . . . . . 8 (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦)) ↔ (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦)) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦)))
4 simprr 771 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))
5 disjdif2 4428 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑚) = ∅ → (𝐴𝑚) = 𝐴)
65raleqdv 3416 . . . . . . . . . . . . . . . . 17 ((𝐴𝑚) = ∅ → (∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦) ↔ ∀𝑦𝐴 (𝑦) = (𝐹𝑦)))
76biimpac 481 . . . . . . . . . . . . . . . 16 ((∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦) ∧ (𝐴𝑚) = ∅) → ∀𝑦𝐴 (𝑦) = (𝐹𝑦))
8 ixpeq2 8469 . . . . . . . . . . . . . . . 16 (∀𝑦𝐴 (𝑦) = (𝐹𝑦) → X𝑦𝐴 (𝑦) = X𝑦𝐴 (𝐹𝑦))
97, 8syl 17 . . . . . . . . . . . . . . 15 ((∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦) ∧ (𝐴𝑚) = ∅) → X𝑦𝐴 (𝑦) = X𝑦𝐴 (𝐹𝑦))
10 ptbasfi.2 . . . . . . . . . . . . . . . 16 𝑋 = X𝑛𝐴 (𝐹𝑛)
11 fveq2 6665 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑦 → (𝐹𝑛) = (𝐹𝑦))
1211unieqd 4842 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑦 (𝐹𝑛) = (𝐹𝑦))
1312cbvixpv 8473 . . . . . . . . . . . . . . . 16 X𝑛𝐴 (𝐹𝑛) = X𝑦𝐴 (𝐹𝑦)
1410, 13eqtri 2844 . . . . . . . . . . . . . . 15 𝑋 = X𝑦𝐴 (𝐹𝑦)
159, 14syl6eqr 2874 . . . . . . . . . . . . . 14 ((∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦) ∧ (𝐴𝑚) = ∅) → X𝑦𝐴 (𝑦) = 𝑋)
164, 15sylan 582 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) = ∅) → X𝑦𝐴 (𝑦) = 𝑋)
17 ssv 3991 . . . . . . . . . . . . . . . 16 𝑋 ⊆ V
18 iineq1 4929 . . . . . . . . . . . . . . . . 17 ((𝐴𝑚) = ∅ → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = 𝑛 ∈ ∅ ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
19 0iin 4980 . . . . . . . . . . . . . . . . 17 𝑛 ∈ ∅ ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = V
2018, 19syl6eq 2872 . . . . . . . . . . . . . . . 16 ((𝐴𝑚) = ∅ → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = V)
2117, 20sseqtrrid 4020 . . . . . . . . . . . . . . 15 ((𝐴𝑚) = ∅ → 𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
2221adantl 484 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) = ∅) → 𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
23 df-ss 3952 . . . . . . . . . . . . . 14 (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ↔ (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑋)
2422, 23sylib 220 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) = ∅) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑋)
2516, 24eqtr4d 2859 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) = ∅) → X𝑦𝐴 (𝑦) = (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))))
26 simplll 773 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝐴𝑉𝐹:𝐴⟶Top))
27 inss1 4205 . . . . . . . . . . . . . . . . 17 (𝐴𝑚) ⊆ 𝐴
28 simpr 487 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → 𝑛 ∈ (𝐴𝑚))
2927, 28sseldi 3965 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → 𝑛𝐴)
30 fveq2 6665 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑛 → (𝑦) = (𝑛))
31 fveq2 6665 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑛 → (𝐹𝑦) = (𝐹𝑛))
3230, 31eleq12d 2907 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑛 → ((𝑦) ∈ (𝐹𝑦) ↔ (𝑛) ∈ (𝐹𝑛)))
33 simprr 771 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) → ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))
3433ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))
3532, 34, 29rspcdva 3625 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝑛) ∈ (𝐹𝑛))
3614ptpjpre1 22173 . . . . . . . . . . . . . . . 16 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑛𝐴 ∧ (𝑛) ∈ (𝐹𝑛))) → ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
3726, 29, 35, 36syl12anc 834 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
3837adantlr 713 . . . . . . . . . . . . . 14 ((((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) ∧ 𝑛 ∈ (𝐴𝑚)) → ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
3938iineq2dv 4937 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = 𝑛 ∈ (𝐴𝑚)X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
40 simpr 487 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → (𝐴𝑚) ≠ ∅)
41 cnvimass 5944 . . . . . . . . . . . . . . . . . . . 20 ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ dom (𝑤𝑋 ↦ (𝑤𝑛))
42 eqid 2821 . . . . . . . . . . . . . . . . . . . . 21 (𝑤𝑋 ↦ (𝑤𝑛)) = (𝑤𝑋 ↦ (𝑤𝑛))
4342dmmptss 6090 . . . . . . . . . . . . . . . . . . . 20 dom (𝑤𝑋 ↦ (𝑤𝑛)) ⊆ 𝑋
4441, 43sstri 3976 . . . . . . . . . . . . . . . . . . 19 ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ 𝑋
4544, 14sseqtri 4003 . . . . . . . . . . . . . . . . . 18 ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦)
4645rgenw 3150 . . . . . . . . . . . . . . . . 17 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦)
47 r19.2z 4440 . . . . . . . . . . . . . . . . 17 (((𝐴𝑚) ≠ ∅ ∧ ∀𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦)) → ∃𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦))
4840, 46, 47sylancl 588 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → ∃𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦))
49 iinss 4973 . . . . . . . . . . . . . . . 16 (∃𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦))
5048, 49syl 17 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ X𝑦𝐴 (𝐹𝑦))
5150, 14sseqtrrdi 4018 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ 𝑋)
52 sseqin2 4192 . . . . . . . . . . . . . 14 ( 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ 𝑋 ↔ (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
5351, 52sylib 220 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
5433ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))
55 ssralv 4033 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑚) ⊆ 𝐴 → (∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) ∈ (𝐹𝑦)))
5627, 55ax-mp 5 . . . . . . . . . . . . . . . . 17 (∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) ∈ (𝐹𝑦))
57 elssuni 4861 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦) ∈ (𝐹𝑦) → (𝑦) ⊆ (𝐹𝑦))
58 iffalse 4476 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑦 = 𝑛 → if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = (𝐹𝑦))
5958sseq2d 3999 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑦 = 𝑛 → ((𝑦) ⊆ if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ↔ (𝑦) ⊆ (𝐹𝑦)))
6057, 59syl5ibrcom 249 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦) ∈ (𝐹𝑦) → (¬ 𝑦 = 𝑛 → (𝑦) ⊆ if(𝑦 = 𝑛, (𝑛), (𝐹𝑦))))
61 ssid 3989 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦) ⊆ (𝑦)
62 iftrue 4473 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑛 → if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = (𝑛))
6362, 30eqtr4d 2859 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑛 → if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = (𝑦))
6461, 63sseqtrrid 4020 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑛 → (𝑦) ⊆ if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
6560, 64pm2.61d2 183 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦) ∈ (𝐹𝑦) → (𝑦) ⊆ if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
6665ralrimivw 3183 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦) ∈ (𝐹𝑦) → ∀𝑛 ∈ (𝐴𝑚)(𝑦) ⊆ if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
67 ssiin 4972 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦) ⊆ 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ↔ ∀𝑛 ∈ (𝐴𝑚)(𝑦) ⊆ if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
6866, 67sylibr 236 . . . . . . . . . . . . . . . . . . . 20 ((𝑦) ∈ (𝐹𝑦) → (𝑦) ⊆ 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
6968adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (𝐴𝑚) ∧ (𝑦) ∈ (𝐹𝑦)) → (𝑦) ⊆ 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
7062equcoms 2023 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑦 → if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = (𝑛))
71 fveq2 6665 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑦 → (𝑛) = (𝑦))
7270, 71eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑦 → if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = (𝑦))
7372sseq1d 3998 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑦 → (if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦) ↔ (𝑦) ⊆ (𝑦)))
7473rspcev 3623 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ (𝐴𝑚) ∧ (𝑦) ⊆ (𝑦)) → ∃𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦))
7561, 74mpan2 689 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝐴𝑚) → ∃𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦))
76 iinss 4973 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦) → 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦))
7775, 76syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐴𝑚) → 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦))
7877adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (𝐴𝑚) ∧ (𝑦) ∈ (𝐹𝑦)) → 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ⊆ (𝑦))
7969, 78eqssd 3984 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (𝐴𝑚) ∧ (𝑦) ∈ (𝐹𝑦)) → (𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
8079ralimiaa 3159 . . . . . . . . . . . . . . . . 17 (∀𝑦 ∈ (𝐴𝑚)(𝑦) ∈ (𝐹𝑦) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
8154, 56, 803syl 18 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
82 eldifn 4104 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (𝐴𝑚) → ¬ 𝑦𝑚)
8382ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) ∧ 𝑛 ∈ (𝐴𝑚)) → ¬ 𝑦𝑚)
84 inss2 4206 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴𝑚) ⊆ 𝑚
85 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) ∧ 𝑛 ∈ (𝐴𝑚)) → 𝑛 ∈ (𝐴𝑚))
8684, 85sseldi 3965 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) ∧ 𝑛 ∈ (𝐴𝑚)) → 𝑛𝑚)
87 eleq1 2900 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑛 → (𝑦𝑚𝑛𝑚))
8886, 87syl5ibrcom 249 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝑦 = 𝑛𝑦𝑚))
8983, 88mtod 200 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) ∧ 𝑛 ∈ (𝐴𝑚)) → ¬ 𝑦 = 𝑛)
9089, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) ∧ 𝑛 ∈ (𝐴𝑚)) → if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = (𝐹𝑦))
9190iineq2dv 4937 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) → 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = 𝑛 ∈ (𝐴𝑚) (𝐹𝑦))
92 iinconst 4922 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴𝑚) ≠ ∅ → 𝑛 ∈ (𝐴𝑚) (𝐹𝑦) = (𝐹𝑦))
9392adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) → 𝑛 ∈ (𝐴𝑚) (𝐹𝑦) = (𝐹𝑦))
9491, 93eqtr2d 2857 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) → (𝐹𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
95 eqeq1 2825 . . . . . . . . . . . . . . . . . . 19 ((𝑦) = (𝐹𝑦) → ((𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ↔ (𝐹𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦))))
9694, 95syl5ibrcom 249 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴𝑚)) → ((𝑦) = (𝐹𝑦) → (𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦))))
9796ralimdva 3177 . . . . . . . . . . . . . . . . 17 ((𝐴𝑚) ≠ ∅ → (∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦))))
984, 97mpan9 509 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → ∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
99 inundif 4427 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑚) ∪ (𝐴𝑚)) = 𝐴
10099raleqi 3414 . . . . . . . . . . . . . . . . 17 (∀𝑦 ∈ ((𝐴𝑚) ∪ (𝐴𝑚))(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ↔ ∀𝑦𝐴 (𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
101 ralunb 4167 . . . . . . . . . . . . . . . . 17 (∀𝑦 ∈ ((𝐴𝑚) ∪ (𝐴𝑚))(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ↔ (∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦))))
102100, 101bitr3i 279 . . . . . . . . . . . . . . . 16 (∀𝑦𝐴 (𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ↔ (∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦))))
10381, 98, 102sylanbrc 585 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → ∀𝑦𝐴 (𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
104 ixpeq2 8469 . . . . . . . . . . . . . . 15 (∀𝑦𝐴 (𝑦) = 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) → X𝑦𝐴 (𝑦) = X𝑦𝐴 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
105103, 104syl 17 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → X𝑦𝐴 (𝑦) = X𝑦𝐴 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
106 ixpiin 8482 . . . . . . . . . . . . . . 15 ((𝐴𝑚) ≠ ∅ → X𝑦𝐴 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = 𝑛 ∈ (𝐴𝑚)X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
107106adantl 484 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → X𝑦𝐴 𝑛 ∈ (𝐴𝑚)if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)) = 𝑛 ∈ (𝐴𝑚)X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
108105, 107eqtrd 2856 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → X𝑦𝐴 (𝑦) = 𝑛 ∈ (𝐴𝑚)X𝑦𝐴 if(𝑦 = 𝑛, (𝑛), (𝐹𝑦)))
10939, 53, 1083eqtr4rd 2867 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ (𝐴𝑚) ≠ ∅) → X𝑦𝐴 (𝑦) = (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))))
11025, 109pm2.61dane 3104 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝑦) = (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))))
111 ixpexg 8480 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑛𝐴 (𝐹𝑛) ∈ V → X𝑛𝐴 (𝐹𝑛) ∈ V)
112 fvex 6678 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹𝑛) ∈ V
113112uniex 7461 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹𝑛) ∈ V
114113a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛𝐴 (𝐹𝑛) ∈ V)
115111, 114mprg 3152 . . . . . . . . . . . . . . . . . . . . . . 23 X𝑛𝐴 (𝐹𝑛) ∈ V
11610, 115eqeltri 2909 . . . . . . . . . . . . . . . . . . . . . 22 𝑋 ∈ V
117116mptex 6980 . . . . . . . . . . . . . . . . . . . . 21 (𝑤𝑋 ↦ (𝑤𝑛)) ∈ V
118117cnvex 7624 . . . . . . . . . . . . . . . . . . . 20 (𝑤𝑋 ↦ (𝑤𝑛)) ∈ V
119118imaex 7615 . . . . . . . . . . . . . . . . . . 19 ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ V
120119dfiin2 4952 . . . . . . . . . . . . . . . . . 18 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))}
121 inteq 4872 . . . . . . . . . . . . . . . . . 18 ({𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅ → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅)
122120, 121syl5eq 2868 . . . . . . . . . . . . . . . . 17 ({𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅ → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = ∅)
123 int0 4883 . . . . . . . . . . . . . . . . 17 ∅ = V
124122, 123syl6eq 2872 . . . . . . . . . . . . . . . 16 ({𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅ → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) = V)
125124ineq2d 4189 . . . . . . . . . . . . . . 15 ({𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅ → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = (𝑋 ∩ V))
126 inv1 4348 . . . . . . . . . . . . . . 15 (𝑋 ∩ V) = 𝑋
127125, 126syl6eq 2872 . . . . . . . . . . . . . 14 ({𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅ → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑋)
128127adantl 484 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑋)
129 snex 5324 . . . . . . . . . . . . . . . . . 18 {𝑋} ∈ V
1301ptbas 22181 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 ∈ TopBases)
1311, 10ptpjpre2 22182 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑘𝐴𝑢 ∈ (𝐹𝑘))) → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝐵)
132131ralrimivva 3191 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴𝑉𝐹:𝐴⟶Top) → ∀𝑘𝐴𝑢 ∈ (𝐹𝑘)((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝐵)
133 eqid 2821 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
134133fmpox 7759 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑘𝐴𝑢 ∈ (𝐹𝑘)((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝐵 ↔ (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)): 𝑘𝐴 ({𝑘} × (𝐹𝑘))⟶𝐵)
135132, 134sylib 220 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐹:𝐴⟶Top) → (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)): 𝑘𝐴 ({𝑘} × (𝐹𝑘))⟶𝐵)
136135frnd 6516 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐹:𝐴⟶Top) → ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) ⊆ 𝐵)
137130, 136ssexd 5221 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐹:𝐴⟶Top) → ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) ∈ V)
138 unexg 7466 . . . . . . . . . . . . . . . . . 18 (({𝑋} ∈ V ∧ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) ∈ V) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∈ V)
139129, 137, 138sylancr 589 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∈ V)
140 ssfii 8877 . . . . . . . . . . . . . . . . 17 (({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∈ V → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
141139, 140syl 17 . . . . . . . . . . . . . . . 16 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
142141ad2antrr 724 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
143 ssun1 4148 . . . . . . . . . . . . . . . . 17 {𝑋} ⊆ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
144116snss 4712 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ↔ {𝑋} ⊆ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
145143, 144mpbir 233 . . . . . . . . . . . . . . . 16 𝑋 ∈ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
146145a1i 11 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → 𝑋 ∈ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
147142, 146sseldd 3968 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → 𝑋 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
148147adantr 483 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅) → 𝑋 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
149128, 148eqeltrd 2913 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} = ∅) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
150139ad3antrrr 728 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∈ V)
151 nfv 1911 . . . . . . . . . . . . . . . . . . . . . 22 𝑛(((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦)))
152 nfcv 2977 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑛𝐴
153 nfcv 2977 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑛(𝐹𝑘)
154 nfixp1 8476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑛X𝑛𝐴 (𝐹𝑛)
15510, 154nfcxfr 2975 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑛𝑋
156 nfcv 2977 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑛(𝑤𝑘)
157155, 156nfmpt 5156 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑛(𝑤𝑋 ↦ (𝑤𝑘))
158157nfcnv 5744 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑛(𝑤𝑋 ↦ (𝑤𝑘))
159 nfcv 2977 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑛𝑢
160158, 159nfima 5932 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑛((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)
161152, 153, 160nfmpo 7230 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑛(𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
162161nfrn 5819 . . . . . . . . . . . . . . . . . . . . . . 23 𝑛ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
163162nfcri 2971 . . . . . . . . . . . . . . . . . . . . . 22 𝑛 𝑧 ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
164 df-ov 7153 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛(𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))(𝑛)) = ((𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))‘⟨𝑛, (𝑛)⟩)
165119a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ V)
166 fveq2 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 = 𝑛 → (𝑤𝑘) = (𝑤𝑛))
167166mpteq2dv 5155 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = 𝑛 → (𝑤𝑋 ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑛)))
168167cnveqd 5741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 = 𝑛(𝑤𝑋 ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑛)))
169168imaeq1d 5923 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 = 𝑛 → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤𝑋 ↦ (𝑤𝑛)) “ 𝑢))
170 imaeq2 5920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑢 = (𝑛) → ((𝑤𝑋 ↦ (𝑤𝑛)) “ 𝑢) = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
171169, 170sylan9eq 2876 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑘 = 𝑛𝑢 = (𝑛)) → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
172 fveq2 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
173171, 172, 133ovmpox 7297 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛𝐴 ∧ (𝑛) ∈ (𝐹𝑛) ∧ ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ V) → (𝑛(𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))(𝑛)) = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
17429, 35, 165, 173syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝑛(𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))(𝑛)) = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
175164, 174syl5eqr 2870 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ((𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))‘⟨𝑛, (𝑛)⟩) = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
176135ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)): 𝑘𝐴 ({𝑘} × (𝐹𝑘))⟶𝐵)
177176ffnd 6510 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) Fn 𝑘𝐴 ({𝑘} × (𝐹𝑘)))
178 opeliunxp 5614 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑛, (𝑛)⟩ ∈ 𝑛𝐴 ({𝑛} × (𝐹𝑛)) ↔ (𝑛𝐴 ∧ (𝑛) ∈ (𝐹𝑛)))
17929, 35, 178sylanbrc 585 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ⟨𝑛, (𝑛)⟩ ∈ 𝑛𝐴 ({𝑛} × (𝐹𝑛)))
180 sneq 4571 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 = 𝑘 → {𝑛} = {𝑘})
181 fveq2 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
182180, 181xpeq12d 5581 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = 𝑘 → ({𝑛} × (𝐹𝑛)) = ({𝑘} × (𝐹𝑘)))
183182cbviunv 4958 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑛𝐴 ({𝑛} × (𝐹𝑛)) = 𝑘𝐴 ({𝑘} × (𝐹𝑘))
184179, 183eleqtrdi 2923 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ⟨𝑛, (𝑛)⟩ ∈ 𝑘𝐴 ({𝑘} × (𝐹𝑘)))
185 fnfvelrn 6843 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) Fn 𝑘𝐴 ({𝑘} × (𝐹𝑘)) ∧ ⟨𝑛, (𝑛)⟩ ∈ 𝑘𝐴 ({𝑘} × (𝐹𝑘))) → ((𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))‘⟨𝑛, (𝑛)⟩) ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
186177, 184, 185syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ((𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))‘⟨𝑛, (𝑛)⟩) ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
187175, 186eqeltrrd 2914 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
188 eleq1 2900 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) → (𝑧 ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) ↔ ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
189187, 188syl5ibrcom 249 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ 𝑛 ∈ (𝐴𝑚)) → (𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) → 𝑧 ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
190189ex 415 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → (𝑛 ∈ (𝐴𝑚) → (𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) → 𝑧 ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
191151, 163, 190rexlimd 3317 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → (∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) → 𝑧 ∈ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
192191abssdv 4045 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ⊆ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
193 ssun2 4149 . . . . . . . . . . . . . . . . . . . 20 ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) ⊆ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))
194192, 193sstrdi 3979 . . . . . . . . . . . . . . . . . . 19 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ⊆ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
195194adantr 483 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ⊆ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
196 simpr 487 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅)
197 simplrl 775 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → 𝑚 ∈ Fin)
198 ssfi 8732 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 ∈ Fin ∧ (𝐴𝑚) ⊆ 𝑚) → (𝐴𝑚) ∈ Fin)
199197, 84, 198sylancl 588 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → (𝐴𝑚) ∈ Fin)
200 abrexfi 8818 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑚) ∈ Fin → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ∈ Fin)
201199, 200syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ∈ Fin)
202 elfir 8873 . . . . . . . . . . . . . . . . . 18 ((({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∈ V ∧ ({𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ⊆ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅ ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ∈ Fin)) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
203150, 195, 196, 201, 202syl13anc 1368 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
204120, 203eqeltrid 2917 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
205 elssuni 4861 . . . . . . . . . . . . . . . 16 ( 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
206204, 205syl 17 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
207 fiuni 8886 . . . . . . . . . . . . . . . . . 18 (({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ∈ V → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
208139, 207syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
209116pwid 4558 . . . . . . . . . . . . . . . . . . . . . 22 𝑋 ∈ 𝒫 𝑋
210209a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝑋 ∈ 𝒫 𝑋)
211210snssd 4736 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑋} ⊆ 𝒫 𝑋)
2121ptuni2 22178 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑛𝐴 (𝐹𝑛) = 𝐵)
21310, 212syl5eq 2868 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝑋 = 𝐵)
214 eqimss2 4024 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑋 = 𝐵 𝐵𝑋)
215213, 214syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵𝑋)
216 sspwuni 5015 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ⊆ 𝒫 𝑋 𝐵𝑋)
217215, 216sylibr 236 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 ⊆ 𝒫 𝑋)
218136, 217sstrd 3977 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐹:𝐴⟶Top) → ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)) ⊆ 𝒫 𝑋)
219211, 218unssd 4162 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ 𝒫 𝑋)
220 sspwuni 5015 . . . . . . . . . . . . . . . . . . 19 (({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ 𝒫 𝑋 ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ 𝑋)
221219, 220sylib 220 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ 𝑋)
222 elssuni 4861 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) → 𝑋 ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
223145, 222mp1i 13 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝑋 ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))
224221, 223eqssd 3984 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) = 𝑋)
225208, 224eqtr3d 2858 . . . . . . . . . . . . . . . 16 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) = 𝑋)
226225ad3antrrr 728 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) = 𝑋)
227206, 226sseqtrd 4007 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)) ⊆ 𝑋)
228227, 52sylib 220 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) = 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛)))
229228, 204eqeltrd 2913 . . . . . . . . . . . 12 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴𝑚)𝑧 = ((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))} ≠ ∅) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
230149, 229pm2.61dane 3104 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → (𝑋 𝑛 ∈ (𝐴𝑚)((𝑤𝑋 ↦ (𝑤𝑛)) “ (𝑛))) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
231110, 230eqeltrd 2913 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
232231rexlimdvaa 3285 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦))) → (∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦) → X𝑦𝐴 (𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))))
233232impr 457 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦)) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
2343, 233sylan2b 595 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
235 eleq1 2900 . . . . . . 7 (𝑠 = X𝑦𝐴 (𝑦) → (𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) ↔ X𝑦𝐴 (𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))))
236234, 235syl5ibrcom 249 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦))) → (𝑠 = X𝑦𝐴 (𝑦) → 𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))))
237236expimpd 456 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → ((( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑦)) → 𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))))
238237exlimdv 1930 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → (∃(( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴𝑚)(𝑦) = (𝐹𝑦)) ∧ 𝑠 = X𝑦𝐴 (𝑦)) → 𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))))
2392, 238syl5bi 244 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → (𝑠𝐵𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))))))
240239ssrdv 3973 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 ⊆ (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
2411ptbasid 22177 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑛𝐴 (𝐹𝑛) ∈ 𝐵)
24210, 241eqeltrid 2917 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝑋𝐵)
243242snssd 4736 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑋} ⊆ 𝐵)
244243, 136unssd 4162 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ 𝐵)
245 fiss 8882 . . . 4 ((𝐵 ∈ TopBases ∧ ({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))) ⊆ 𝐵) → (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) ⊆ (fi‘𝐵))
246130, 244, 245syl2anc 586 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) ⊆ (fi‘𝐵))
2471ptbasin2 22180 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵)
248246, 247sseqtrd 4007 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))) ⊆ 𝐵)
249240, 248eqssd 3984 1 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 = (fi‘({𝑋} ∪ ran (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  {cab 2799  wne 3016  wral 3138  wrex 3139  Vcvv 3495  cdif 3933  cun 3934  cin 3935  wss 3936  c0 4291  ifcif 4467  𝒫 cpw 4539  {csn 4561  cop 4567   cuni 4832   cint 4869   ciun 4912   ciin 4913  cmpt 5139   × cxp 5548  ccnv 5549  dom cdm 5550  ran crn 5551  cima 5553   Fn wfn 6345  wf 6346  cfv 6350  (class class class)co 7150  cmpo 7152  Xcixp 8455  Fincfn 8503  ficfi 8868  Topctop 21495  TopBasesctb 21547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-ixp 8456  df-en 8504  df-dom 8505  df-fin 8507  df-fi 8869  df-top 21496  df-bases 21548
This theorem is referenced by:  ptval2  22203  xkoptsub  22256  ptcmplem1  22654  prdsxmslem2  23133
  Copyright terms: Public domain W3C validator