Step | Hyp | Ref
| Expression |
1 | | ptbas.1 |
. . . . 5
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} |
2 | 1 | elpt 22631 |
. . . 4
⊢ (𝑠 ∈ 𝐵 ↔ ∃ℎ((ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (ℎ‘𝑦))) |
3 | | df-3an 1087 |
. . . . . . . 8
⊢ ((ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦)) ↔ ((ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦)) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) |
4 | | simprr 769 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦)) |
5 | | disjdif2 4410 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∩ 𝑚) = ∅ → (𝐴 ∖ 𝑚) = 𝐴) |
6 | 5 | raleqdv 3339 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∩ 𝑚) = ∅ → (∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦) ↔ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) = ∪ (𝐹‘𝑦))) |
7 | 6 | biimpac 478 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑦 ∈
(𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦) ∧ (𝐴 ∩ 𝑚) = ∅) → ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) = ∪ (𝐹‘𝑦)) |
8 | | ixpeq2 8657 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑦 ∈
𝐴 (ℎ‘𝑦) = ∪ (𝐹‘𝑦) → X𝑦 ∈ 𝐴 (ℎ‘𝑦) = X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦)) |
9 | 7, 8 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
((∀𝑦 ∈
(𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦) ∧ (𝐴 ∩ 𝑚) = ∅) → X𝑦 ∈
𝐴 (ℎ‘𝑦) = X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦)) |
10 | | ptbasfi.2 |
. . . . . . . . . . . . . . . 16
⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) |
11 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑦 → (𝐹‘𝑛) = (𝐹‘𝑦)) |
12 | 11 | unieqd 4850 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑦 → ∪ (𝐹‘𝑛) = ∪ (𝐹‘𝑦)) |
13 | 12 | cbvixpv 8661 |
. . . . . . . . . . . . . . . 16
⊢ X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) = X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦) |
14 | 10, 13 | eqtri 2766 |
. . . . . . . . . . . . . . 15
⊢ 𝑋 = X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦) |
15 | 9, 14 | eqtr4di 2797 |
. . . . . . . . . . . . . 14
⊢
((∀𝑦 ∈
(𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦) ∧ (𝐴 ∩ 𝑚) = ∅) → X𝑦 ∈
𝐴 (ℎ‘𝑦) = 𝑋) |
16 | 4, 15 | sylan 579 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) = ∅) → X𝑦 ∈
𝐴 (ℎ‘𝑦) = 𝑋) |
17 | | ssv 3941 |
. . . . . . . . . . . . . . . 16
⊢ 𝑋 ⊆ V |
18 | | iineq1 4938 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∩ 𝑚) = ∅ → ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) = ∩
𝑛 ∈ ∅ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) |
19 | | 0iin 4989 |
. . . . . . . . . . . . . . . . 17
⊢ ∩ 𝑛 ∈ ∅ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) = V |
20 | 18, 19 | eqtrdi 2795 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∩ 𝑚) = ∅ → ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) = V) |
21 | 17, 20 | sseqtrrid 3970 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∩ 𝑚) = ∅ → 𝑋 ⊆ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) |
22 | 21 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) = ∅) → 𝑋 ⊆ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) |
23 | | df-ss 3900 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ⊆ ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ↔ (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) = 𝑋) |
24 | 22, 23 | sylib 217 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) = ∅) → (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) = 𝑋) |
25 | 16, 24 | eqtr4d 2781 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) = ∅) → X𝑦 ∈
𝐴 (ℎ‘𝑦) = (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)))) |
26 | | simplll 771 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → (𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top)) |
27 | | inss1 4159 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∩ 𝑚) ⊆ 𝐴 |
28 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → 𝑛 ∈ (𝐴 ∩ 𝑚)) |
29 | 27, 28 | sselid 3915 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → 𝑛 ∈ 𝐴) |
30 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑛 → (ℎ‘𝑦) = (ℎ‘𝑛)) |
31 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑛 → (𝐹‘𝑦) = (𝐹‘𝑛)) |
32 | 30, 31 | eleq12d 2833 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑛 → ((ℎ‘𝑦) ∈ (𝐹‘𝑦) ↔ (ℎ‘𝑛) ∈ (𝐹‘𝑛))) |
33 | | simprr 769 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) → ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦)) |
34 | 33 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦)) |
35 | 32, 34, 29 | rspcdva 3554 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → (ℎ‘𝑛) ∈ (𝐹‘𝑛)) |
36 | 14 | ptpjpre1 22630 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝑛 ∈ 𝐴 ∧ (ℎ‘𝑛) ∈ (𝐹‘𝑛))) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) = X𝑦 ∈ 𝐴 if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
37 | 26, 29, 35, 36 | syl12anc 833 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) = X𝑦 ∈ 𝐴 if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
38 | 37 | adantlr 711 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) = X𝑦 ∈ 𝐴 if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
39 | 38 | iineq2dv 4946 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) = ∩
𝑛 ∈ (𝐴 ∩ 𝑚)X𝑦 ∈ 𝐴 if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
40 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → (𝐴 ∩ 𝑚) ≠ ∅) |
41 | | cnvimass 5978 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ dom (𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) |
42 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) = (𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) |
43 | 42 | dmmptss 6133 |
. . . . . . . . . . . . . . . . . . . 20
⊢ dom
(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) ⊆ 𝑋 |
44 | 41, 43 | sstri 3926 |
. . . . . . . . . . . . . . . . . . 19
⊢ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ 𝑋 |
45 | 44, 14 | sseqtri 3953 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦) |
46 | 45 | rgenw 3075 |
. . . . . . . . . . . . . . . . 17
⊢
∀𝑛 ∈
(𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦) |
47 | | r19.2z 4422 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∩ 𝑚) ≠ ∅ ∧ ∀𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦)) → ∃𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦)) |
48 | 40, 46, 47 | sylancl 585 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → ∃𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦)) |
49 | | iinss 4982 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑛 ∈
(𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦) → ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦)) |
50 | 48, 49 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦)) |
51 | 50, 14 | sseqtrrdi 3968 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ 𝑋) |
52 | | sseqin2 4146 |
. . . . . . . . . . . . . 14
⊢ (∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ 𝑋 ↔ (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) = ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) |
53 | 51, 52 | sylib 217 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) = ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) |
54 | 33 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦)) |
55 | | ssralv 3983 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∩ 𝑚) ⊆ 𝐴 → (∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) → ∀𝑦 ∈ (𝐴 ∩ 𝑚)(ℎ‘𝑦) ∈ (𝐹‘𝑦))) |
56 | 27, 55 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑦 ∈
𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) → ∀𝑦 ∈ (𝐴 ∩ 𝑚)(ℎ‘𝑦) ∈ (𝐹‘𝑦)) |
57 | | elssuni 4868 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((ℎ‘𝑦) ∈ (𝐹‘𝑦) → (ℎ‘𝑦) ⊆ ∪ (𝐹‘𝑦)) |
58 | | iffalse 4465 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (¬
𝑦 = 𝑛 → if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) = ∪ (𝐹‘𝑦)) |
59 | 58 | sseq2d 3949 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
𝑦 = 𝑛 → ((ℎ‘𝑦) ⊆ if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ↔ (ℎ‘𝑦) ⊆ ∪ (𝐹‘𝑦))) |
60 | 57, 59 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((ℎ‘𝑦) ∈ (𝐹‘𝑦) → (¬ 𝑦 = 𝑛 → (ℎ‘𝑦) ⊆ if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)))) |
61 | | ssid 3939 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (ℎ‘𝑦) ⊆ (ℎ‘𝑦) |
62 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑛 → if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) = (ℎ‘𝑛)) |
63 | 62, 30 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑛 → if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) = (ℎ‘𝑦)) |
64 | 61, 63 | sseqtrrid 3970 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = 𝑛 → (ℎ‘𝑦) ⊆ if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
65 | 60, 64 | pm2.61d2 181 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((ℎ‘𝑦) ∈ (𝐹‘𝑦) → (ℎ‘𝑦) ⊆ if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
66 | 65 | ralrimivw 3108 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((ℎ‘𝑦) ∈ (𝐹‘𝑦) → ∀𝑛 ∈ (𝐴 ∩ 𝑚)(ℎ‘𝑦) ⊆ if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
67 | | ssiin 4981 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((ℎ‘𝑦) ⊆ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ↔ ∀𝑛 ∈ (𝐴 ∩ 𝑚)(ℎ‘𝑦) ⊆ if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
68 | 66, 67 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((ℎ‘𝑦) ∈ (𝐹‘𝑦) → (ℎ‘𝑦) ⊆ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
69 | 68 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ (𝐴 ∩ 𝑚) ∧ (ℎ‘𝑦) ∈ (𝐹‘𝑦)) → (ℎ‘𝑦) ⊆ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
70 | 62 | equcoms 2024 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 = 𝑦 → if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) = (ℎ‘𝑛)) |
71 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 = 𝑦 → (ℎ‘𝑛) = (ℎ‘𝑦)) |
72 | 70, 71 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = 𝑦 → if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) = (ℎ‘𝑦)) |
73 | 72 | sseq1d 3948 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑦 → (if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ⊆ (ℎ‘𝑦) ↔ (ℎ‘𝑦) ⊆ (ℎ‘𝑦))) |
74 | 73 | rspcev 3552 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ∈ (𝐴 ∩ 𝑚) ∧ (ℎ‘𝑦) ⊆ (ℎ‘𝑦)) → ∃𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ⊆ (ℎ‘𝑦)) |
75 | 61, 74 | mpan2 687 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (𝐴 ∩ 𝑚) → ∃𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ⊆ (ℎ‘𝑦)) |
76 | | iinss 4982 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑛 ∈
(𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ⊆ (ℎ‘𝑦) → ∩
𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ⊆ (ℎ‘𝑦)) |
77 | 75, 76 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (𝐴 ∩ 𝑚) → ∩
𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ⊆ (ℎ‘𝑦)) |
78 | 77 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ (𝐴 ∩ 𝑚) ∧ (ℎ‘𝑦) ∈ (𝐹‘𝑦)) → ∩
𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ⊆ (ℎ‘𝑦)) |
79 | 69, 78 | eqssd 3934 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ (𝐴 ∩ 𝑚) ∧ (ℎ‘𝑦) ∈ (𝐹‘𝑦)) → (ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
80 | 79 | ralimiaa 3085 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑦 ∈
(𝐴 ∩ 𝑚)(ℎ‘𝑦) ∈ (𝐹‘𝑦) → ∀𝑦 ∈ (𝐴 ∩ 𝑚)(ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
81 | 54, 56, 80 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → ∀𝑦 ∈ (𝐴 ∩ 𝑚)(ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
82 | | eldifn 4058 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ (𝐴 ∖ 𝑚) → ¬ 𝑦 ∈ 𝑚) |
83 | 82 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐴 ∩ 𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴 ∖ 𝑚)) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → ¬ 𝑦 ∈ 𝑚) |
84 | | inss2 4160 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐴 ∩ 𝑚) ⊆ 𝑚 |
85 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ∩ 𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴 ∖ 𝑚)) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → 𝑛 ∈ (𝐴 ∩ 𝑚)) |
86 | 84, 85 | sselid 3915 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ∩ 𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴 ∖ 𝑚)) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → 𝑛 ∈ 𝑚) |
87 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑛 → (𝑦 ∈ 𝑚 ↔ 𝑛 ∈ 𝑚)) |
88 | 86, 87 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐴 ∩ 𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴 ∖ 𝑚)) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → (𝑦 = 𝑛 → 𝑦 ∈ 𝑚)) |
89 | 83, 88 | mtod 197 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ∩ 𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴 ∖ 𝑚)) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → ¬ 𝑦 = 𝑛) |
90 | 89, 58 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∩ 𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴 ∖ 𝑚)) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) = ∪ (𝐹‘𝑦)) |
91 | 90 | iineq2dv 4946 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∩ 𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴 ∖ 𝑚)) → ∩
𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) = ∩
𝑛 ∈ (𝐴 ∩ 𝑚)∪ (𝐹‘𝑦)) |
92 | | iinconst 4931 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∩ 𝑚) ≠ ∅ → ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)∪ (𝐹‘𝑦) = ∪ (𝐹‘𝑦)) |
93 | 92 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∩ 𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴 ∖ 𝑚)) → ∩
𝑛 ∈ (𝐴 ∩ 𝑚)∪ (𝐹‘𝑦) = ∪ (𝐹‘𝑦)) |
94 | 91, 93 | eqtr2d 2779 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∩ 𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴 ∖ 𝑚)) → ∪ (𝐹‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
95 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((ℎ‘𝑦) = ∪ (𝐹‘𝑦) → ((ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ↔ ∪ (𝐹‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)))) |
96 | 94, 95 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∩ 𝑚) ≠ ∅ ∧ 𝑦 ∈ (𝐴 ∖ 𝑚)) → ((ℎ‘𝑦) = ∪ (𝐹‘𝑦) → (ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)))) |
97 | 96 | ralimdva 3102 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∩ 𝑚) ≠ ∅ → (∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦) → ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)))) |
98 | 4, 97 | mpan9 506 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
99 | | inundif 4409 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∩ 𝑚) ∪ (𝐴 ∖ 𝑚)) = 𝐴 |
100 | 99 | raleqi 3337 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑦 ∈
((𝐴 ∩ 𝑚) ∪ (𝐴 ∖ 𝑚))(ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ↔ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
101 | | ralunb 4121 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑦 ∈
((𝐴 ∩ 𝑚) ∪ (𝐴 ∖ 𝑚))(ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ↔ (∀𝑦 ∈ (𝐴 ∩ 𝑚)(ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)))) |
102 | 100, 101 | bitr3i 276 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑦 ∈
𝐴 (ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ↔ (∀𝑦 ∈ (𝐴 ∩ 𝑚)(ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)))) |
103 | 81, 98, 102 | sylanbrc 582 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
104 | | ixpeq2 8657 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑦 ∈
𝐴 (ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) → X𝑦 ∈ 𝐴 (ℎ‘𝑦) = X𝑦 ∈ 𝐴 ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
105 | 103, 104 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → X𝑦 ∈
𝐴 (ℎ‘𝑦) = X𝑦 ∈ 𝐴 ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
106 | | ixpiin 8670 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∩ 𝑚) ≠ ∅ → X𝑦 ∈
𝐴 ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) = ∩
𝑛 ∈ (𝐴 ∩ 𝑚)X𝑦 ∈ 𝐴 if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
107 | 106 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → X𝑦 ∈
𝐴 ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦)) = ∩
𝑛 ∈ (𝐴 ∩ 𝑚)X𝑦 ∈ 𝐴 if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
108 | 105, 107 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → X𝑦 ∈
𝐴 (ℎ‘𝑦) = ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)X𝑦 ∈ 𝐴 if(𝑦 = 𝑛, (ℎ‘𝑛), ∪ (𝐹‘𝑦))) |
109 | 39, 53, 108 | 3eqtr4rd 2789 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ (𝐴 ∩ 𝑚) ≠ ∅) → X𝑦 ∈
𝐴 (ℎ‘𝑦) = (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)))) |
110 | 25, 109 | pm2.61dane 3031 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → X𝑦 ∈ 𝐴 (ℎ‘𝑦) = (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)))) |
111 | | ixpexg 8668 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) ∈ V → X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) ∈ V) |
112 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐹‘𝑛) ∈ V |
113 | 112 | uniex 7572 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ∪ (𝐹‘𝑛) ∈ V |
114 | 113 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ 𝐴 → ∪ (𝐹‘𝑛) ∈ V) |
115 | 111, 114 | mprg 3077 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) ∈ V |
116 | 10, 115 | eqeltri 2835 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑋 ∈ V |
117 | 116 | mptex 7081 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) ∈ V |
118 | 117 | cnvex 7746 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) ∈ V |
119 | 118 | imaex 7737 |
. . . . . . . . . . . . . . . . . . 19
⊢ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ∈ V |
120 | 119 | dfiin2 4960 |
. . . . . . . . . . . . . . . . . 18
⊢ ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) = ∩ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} |
121 | | inteq 4879 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} = ∅ → ∩ {𝑧
∣ ∃𝑛 ∈
(𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} = ∩
∅) |
122 | 120, 121 | eqtrid 2790 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} = ∅ → ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) = ∩
∅) |
123 | | int0 4890 |
. . . . . . . . . . . . . . . . 17
⊢ ∩ ∅ = V |
124 | 122, 123 | eqtrdi 2795 |
. . . . . . . . . . . . . . . 16
⊢ ({𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} = ∅ → ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) = V) |
125 | 124 | ineq2d 4143 |
. . . . . . . . . . . . . . 15
⊢ ({𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} = ∅ → (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) = (𝑋 ∩ V)) |
126 | | inv1 4325 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 ∩ V) = 𝑋 |
127 | 125, 126 | eqtrdi 2795 |
. . . . . . . . . . . . . 14
⊢ ({𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} = ∅ → (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) = 𝑋) |
128 | 127 | adantl 481 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} = ∅) → (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) = 𝑋) |
129 | | snex 5349 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑋} ∈ V |
130 | 1 | ptbas 22638 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐵 ∈ TopBases) |
131 | 1, 10 | ptpjpre2 22639 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝑘 ∈ 𝐴 ∧ 𝑢 ∈ (𝐹‘𝑘))) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) ∈ 𝐵) |
132 | 131 | ralrimivva 3114 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∀𝑘 ∈ 𝐴 ∀𝑢 ∈ (𝐹‘𝑘)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) ∈ 𝐵) |
133 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) = (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) |
134 | 133 | fmpox 7880 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑘 ∈
𝐴 ∀𝑢 ∈ (𝐹‘𝑘)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) ∈ 𝐵 ↔ (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)):∪ 𝑘 ∈ 𝐴 ({𝑘} × (𝐹‘𝑘))⟶𝐵) |
135 | 132, 134 | sylib 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)):∪ 𝑘 ∈ 𝐴 ({𝑘} × (𝐹‘𝑘))⟶𝐵) |
136 | 135 | frnd 6592 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) ⊆ 𝐵) |
137 | 130, 136 | ssexd 5243 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) ∈ V) |
138 | | unexg 7577 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝑋} ∈ V ∧ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) ∈ V) → ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ∈ V) |
139 | 129, 137,
138 | sylancr 586 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ∈ V) |
140 | | ssfii 9108 |
. . . . . . . . . . . . . . . . 17
⊢ (({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ∈ V → ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ⊆ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
141 | 139, 140 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ⊆ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
142 | 141 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ⊆ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
143 | | ssun1 4102 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑋} ⊆ ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) |
144 | 116 | snss 4716 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 ∈ ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ↔ {𝑋} ⊆ ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) |
145 | 143, 144 | mpbir 230 |
. . . . . . . . . . . . . . . 16
⊢ 𝑋 ∈ ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) |
146 | 145 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → 𝑋 ∈ ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) |
147 | 142, 146 | sseldd 3918 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → 𝑋 ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
148 | 147 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} = ∅) → 𝑋 ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
149 | 128, 148 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} = ∅) → (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
150 | 139 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) → ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ∈ V) |
151 | | nfv 1918 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑛(((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) |
152 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑛𝐴 |
153 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑛(𝐹‘𝑘) |
154 | | nfixp1 8664 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
Ⅎ𝑛X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) |
155 | 10, 154 | nfcxfr 2904 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
Ⅎ𝑛𝑋 |
156 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
Ⅎ𝑛(𝑤‘𝑘) |
157 | 155, 156 | nfmpt 5177 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
Ⅎ𝑛(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) |
158 | 157 | nfcnv 5776 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑛◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) |
159 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑛𝑢 |
160 | 158, 159 | nfima 5966 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑛(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) |
161 | 152, 153,
160 | nfmpo 7335 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑛(𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) |
162 | 161 | nfrn 5850 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑛ran
(𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) |
163 | 162 | nfcri 2893 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑛 𝑧 ∈ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) |
164 | | df-ov 7258 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛(𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))(ℎ‘𝑛)) = ((𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))‘〈𝑛, (ℎ‘𝑛)〉) |
165 | 119 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ∈ V) |
166 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑘 = 𝑛 → (𝑤‘𝑘) = (𝑤‘𝑛)) |
167 | 166 | mpteq2dv 5172 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑘 = 𝑛 → (𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) = (𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛))) |
168 | 167 | cnveqd 5773 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑘 = 𝑛 → ◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) = ◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛))) |
169 | 168 | imaeq1d 5957 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 = 𝑛 → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ 𝑢)) |
170 | | imaeq2 5954 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑢 = (ℎ‘𝑛) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ 𝑢) = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) |
171 | 169, 170 | sylan9eq 2799 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑘 = 𝑛 ∧ 𝑢 = (ℎ‘𝑛)) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢) = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) |
172 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) |
173 | 171, 172,
133 | ovmpox 7404 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑛 ∈ 𝐴 ∧ (ℎ‘𝑛) ∈ (𝐹‘𝑛) ∧ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ∈ V) → (𝑛(𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))(ℎ‘𝑛)) = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) |
174 | 29, 35, 165, 173 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → (𝑛(𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))(ℎ‘𝑛)) = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) |
175 | 164, 174 | eqtr3id 2793 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → ((𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))‘〈𝑛, (ℎ‘𝑛)〉) = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) |
176 | 135 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)):∪ 𝑘 ∈ 𝐴 ({𝑘} × (𝐹‘𝑘))⟶𝐵) |
177 | 176 | ffnd 6585 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) Fn ∪
𝑘 ∈ 𝐴 ({𝑘} × (𝐹‘𝑘))) |
178 | | opeliunxp 5645 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(〈𝑛, (ℎ‘𝑛)〉 ∈ ∪ 𝑛 ∈ 𝐴 ({𝑛} × (𝐹‘𝑛)) ↔ (𝑛 ∈ 𝐴 ∧ (ℎ‘𝑛) ∈ (𝐹‘𝑛))) |
179 | 29, 35, 178 | sylanbrc 582 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → 〈𝑛, (ℎ‘𝑛)〉 ∈ ∪ 𝑛 ∈ 𝐴 ({𝑛} × (𝐹‘𝑛))) |
180 | | sneq 4568 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑛 = 𝑘 → {𝑛} = {𝑘}) |
181 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) |
182 | 180, 181 | xpeq12d 5611 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 = 𝑘 → ({𝑛} × (𝐹‘𝑛)) = ({𝑘} × (𝐹‘𝑘))) |
183 | 182 | cbviunv 4966 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ∪ 𝑛 ∈ 𝐴 ({𝑛} × (𝐹‘𝑛)) = ∪
𝑘 ∈ 𝐴 ({𝑘} × (𝐹‘𝑘)) |
184 | 179, 183 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → 〈𝑛, (ℎ‘𝑛)〉 ∈ ∪ 𝑘 ∈ 𝐴 ({𝑘} × (𝐹‘𝑘))) |
185 | | fnfvelrn 6940 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) Fn ∪
𝑘 ∈ 𝐴 ({𝑘} × (𝐹‘𝑘)) ∧ 〈𝑛, (ℎ‘𝑛)〉 ∈ ∪ 𝑘 ∈ 𝐴 ({𝑘} × (𝐹‘𝑘))) → ((𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))‘〈𝑛, (ℎ‘𝑛)〉) ∈ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) |
186 | 177, 184,
185 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → ((𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))‘〈𝑛, (ℎ‘𝑛)〉) ∈ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) |
187 | 175, 186 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ∈ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) |
188 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) → (𝑧 ∈ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) ↔ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ∈ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) |
189 | 187, 188 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ 𝑛 ∈ (𝐴 ∩ 𝑚)) → (𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) → 𝑧 ∈ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) |
190 | 189 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → (𝑛 ∈ (𝐴 ∩ 𝑚) → (𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) → 𝑧 ∈ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
191 | 151, 163,
190 | rexlimd 3245 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → (∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) → 𝑧 ∈ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) |
192 | 191 | abssdv 3998 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ⊆ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) |
193 | | ssun2 4103 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ran
(𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) ⊆ ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) |
194 | 192, 193 | sstrdi 3929 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ⊆ ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) |
195 | 194 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) → {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ⊆ ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) |
196 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) → {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) |
197 | | simplrl 773 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) → 𝑚 ∈ Fin) |
198 | | ssfi 8918 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 ∈ Fin ∧ (𝐴 ∩ 𝑚) ⊆ 𝑚) → (𝐴 ∩ 𝑚) ∈ Fin) |
199 | 197, 84, 198 | sylancl 585 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) → (𝐴 ∩ 𝑚) ∈ Fin) |
200 | | abrexfi 9049 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∩ 𝑚) ∈ Fin → {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ∈ Fin) |
201 | 199, 200 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) → {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ∈ Fin) |
202 | | elfir 9104 |
. . . . . . . . . . . . . . . . . 18
⊢ ((({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ∈ V ∧ ({𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ⊆ ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅ ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ∈ Fin)) → ∩ {𝑧
∣ ∃𝑛 ∈
(𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
203 | 150, 195,
196, 201, 202 | syl13anc 1370 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) → ∩ {𝑧
∣ ∃𝑛 ∈
(𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
204 | 120, 203 | eqeltrid 2843 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) → ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
205 | | elssuni 4868 |
. . . . . . . . . . . . . . . 16
⊢ (∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) → ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ ∪
(fi‘({𝑋} ∪ ran
(𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
206 | 204, 205 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) → ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ ∪
(fi‘({𝑋} ∪ ran
(𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
207 | | fiuni 9117 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ∈ V → ∪ ({𝑋}
∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) = ∪
(fi‘({𝑋} ∪ ran
(𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
208 | 139, 207 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∪ ({𝑋}
∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) = ∪
(fi‘({𝑋} ∪ ran
(𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
209 | 116 | pwid 4554 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑋 ∈ 𝒫 𝑋 |
210 | 209 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝑋 ∈ 𝒫 𝑋) |
211 | 210 | snssd 4739 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → {𝑋} ⊆ 𝒫 𝑋) |
212 | 1 | ptuni2 22635 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) = ∪ 𝐵) |
213 | 10, 212 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝑋 = ∪ 𝐵) |
214 | | eqimss2 3974 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑋 = ∪
𝐵 → ∪ 𝐵
⊆ 𝑋) |
215 | 213, 214 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∪ 𝐵
⊆ 𝑋) |
216 | | sspwuni 5025 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐵 ⊆ 𝒫 𝑋 ↔ ∪ 𝐵
⊆ 𝑋) |
217 | 215, 216 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐵 ⊆ 𝒫 𝑋) |
218 | 136, 217 | sstrd 3927 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) ⊆ 𝒫 𝑋) |
219 | 211, 218 | unssd 4116 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ⊆ 𝒫 𝑋) |
220 | | sspwuni 5025 |
. . . . . . . . . . . . . . . . . . 19
⊢ (({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ⊆ 𝒫 𝑋 ↔ ∪ ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ⊆ 𝑋) |
221 | 219, 220 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∪ ({𝑋}
∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ⊆ 𝑋) |
222 | | elssuni 4868 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑋 ∈ ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) → 𝑋 ⊆ ∪
({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) |
223 | 145, 222 | mp1i 13 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝑋 ⊆ ∪
({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) |
224 | 221, 223 | eqssd 3934 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∪ ({𝑋}
∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) = 𝑋) |
225 | 208, 224 | eqtr3d 2780 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∪ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) = 𝑋) |
226 | 225 | ad3antrrr 726 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) → ∪ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) = 𝑋) |
227 | 206, 226 | sseqtrd 3957 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) → ∩ 𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛)) ⊆ 𝑋) |
228 | 227, 52 | sylib 217 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) → (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) = ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) |
229 | 228, 204 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) ∧ {𝑧 ∣ ∃𝑛 ∈ (𝐴 ∩ 𝑚)𝑧 = (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))} ≠ ∅) → (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
230 | 149, 229 | pm2.61dane 3031 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → (𝑋 ∩ ∩
𝑛 ∈ (𝐴 ∩ 𝑚)(◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑛)) “ (ℎ‘𝑛))) ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
231 | 110, 230 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) ∧ (𝑚 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → X𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
232 | 231 | rexlimdvaa 3213 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) → (∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦) → X𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))))) |
233 | 232 | impr 454 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ ((ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦)) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → X𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
234 | 3, 233 | sylan2b 593 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → X𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
235 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑠 = X𝑦 ∈ 𝐴 (ℎ‘𝑦) → (𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) ↔ X𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))))) |
236 | 234, 235 | syl5ibrcom 246 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) → (𝑠 = X𝑦 ∈ 𝐴 (ℎ‘𝑦) → 𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))))) |
237 | 236 | expimpd 453 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (((ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (ℎ‘𝑦)) → 𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))))) |
238 | 237 | exlimdv 1937 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (∃ℎ((ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑚 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑚)(ℎ‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑠 = X𝑦 ∈ 𝐴 (ℎ‘𝑦)) → 𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))))) |
239 | 2, 238 | syl5bi 241 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (𝑠 ∈ 𝐵 → 𝑠 ∈ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))))) |
240 | 239 | ssrdv 3923 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐵 ⊆ (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |
241 | 1 | ptbasid 22634 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) ∈ 𝐵) |
242 | 10, 241 | eqeltrid 2843 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝑋 ∈ 𝐵) |
243 | 242 | snssd 4739 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → {𝑋} ⊆ 𝐵) |
244 | 243, 136 | unssd 4116 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ⊆ 𝐵) |
245 | | fiss 9113 |
. . . 4
⊢ ((𝐵 ∈ TopBases ∧ ({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))) ⊆ 𝐵) → (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) ⊆ (fi‘𝐵)) |
246 | 130, 244,
245 | syl2anc 583 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) ⊆ (fi‘𝐵)) |
247 | 1 | ptbasin2 22637 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵) |
248 | 246, 247 | sseqtrd 3957 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)))) ⊆ 𝐵) |
249 | 240, 248 | eqssd 3934 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐵 = (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) |