|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > iin0 | Structured version Visualization version GIF version | ||
| Description: An indexed intersection of the empty set, with a nonempty index set, is empty. (Contributed by NM, 20-Oct-2005.) | 
| Ref | Expression | 
|---|---|
| iin0 | ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝑥 ∈ 𝐴 ∅ = ∅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iinconst 5001 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 ∅ = ∅) | |
| 2 | 0ex 5306 | . . . . . 6 ⊢ ∅ ∈ V | |
| 3 | 2 | n0ii 4342 | . . . . 5 ⊢ ¬ V = ∅ | 
| 4 | 0iin 5063 | . . . . . 6 ⊢ ∩ 𝑥 ∈ ∅ ∅ = V | |
| 5 | 4 | eqeq1i 2741 | . . . . 5 ⊢ (∩ 𝑥 ∈ ∅ ∅ = ∅ ↔ V = ∅) | 
| 6 | 3, 5 | mtbir 323 | . . . 4 ⊢ ¬ ∩ 𝑥 ∈ ∅ ∅ = ∅ | 
| 7 | iineq1 5008 | . . . . 5 ⊢ (𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 ∅ = ∩ 𝑥 ∈ ∅ ∅) | |
| 8 | 7 | eqeq1d 2738 | . . . 4 ⊢ (𝐴 = ∅ → (∩ 𝑥 ∈ 𝐴 ∅ = ∅ ↔ ∩ 𝑥 ∈ ∅ ∅ = ∅)) | 
| 9 | 6, 8 | mtbiri 327 | . . 3 ⊢ (𝐴 = ∅ → ¬ ∩ 𝑥 ∈ 𝐴 ∅ = ∅) | 
| 10 | 9 | necon2ai 2969 | . 2 ⊢ (∩ 𝑥 ∈ 𝐴 ∅ = ∅ → 𝐴 ≠ ∅) | 
| 11 | 1, 10 | impbii 209 | 1 ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝑥 ∈ 𝐴 ∅ = ∅) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 = wceq 1539 ≠ wne 2939 Vcvv 3479 ∅c0 4332 ∩ ciin 4991 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2707 ax-nul 5305 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-v 3481 df-dif 3953 df-nul 4333 df-iin 4993 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |