MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iin0 Structured version   Visualization version   GIF version

Theorem iin0 5293
Description: An indexed intersection of the empty set, with a nonempty index set, is empty. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
iin0 (𝐴 ≠ ∅ ↔ 𝑥𝐴 ∅ = ∅)
Distinct variable group:   𝑥,𝐴

Proof of Theorem iin0
StepHypRef Expression
1 iinconst 4941 . 2 (𝐴 ≠ ∅ → 𝑥𝐴 ∅ = ∅)
2 0ex 5240 . . . . . 6 ∅ ∈ V
32n0ii 4276 . . . . 5 ¬ V = ∅
4 0iin 5000 . . . . . 6 𝑥 ∈ ∅ ∅ = V
54eqeq1i 2741 . . . . 5 ( 𝑥 ∈ ∅ ∅ = ∅ ↔ V = ∅)
63, 5mtbir 323 . . . 4 ¬ 𝑥 ∈ ∅ ∅ = ∅
7 iineq1 4948 . . . . 5 (𝐴 = ∅ → 𝑥𝐴 ∅ = 𝑥 ∈ ∅ ∅)
87eqeq1d 2738 . . . 4 (𝐴 = ∅ → ( 𝑥𝐴 ∅ = ∅ ↔ 𝑥 ∈ ∅ ∅ = ∅))
96, 8mtbiri 327 . . 3 (𝐴 = ∅ → ¬ 𝑥𝐴 ∅ = ∅)
109necon2ai 2971 . 2 ( 𝑥𝐴 ∅ = ∅ → 𝐴 ≠ ∅)
111, 10impbii 208 1 (𝐴 ≠ ∅ ↔ 𝑥𝐴 ∅ = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wne 2941  Vcvv 3437  c0 4262   ciin 4932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-12 2169  ax-ext 2707  ax-nul 5239
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2942  df-ral 3063  df-v 3439  df-dif 3895  df-nul 4263  df-iin 4934
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator