MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iin0 Structured version   Visualization version   GIF version

Theorem iin0 5304
Description: An indexed intersection of the empty set, with a nonempty index set, is empty. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
iin0 (𝐴 ≠ ∅ ↔ 𝑥𝐴 ∅ = ∅)
Distinct variable group:   𝑥,𝐴

Proof of Theorem iin0
StepHypRef Expression
1 iinconst 4954 . 2 (𝐴 ≠ ∅ → 𝑥𝐴 ∅ = ∅)
2 0ex 5249 . . . . . 6 ∅ ∈ V
32n0ii 4292 . . . . 5 ¬ V = ∅
4 0iin 5016 . . . . . 6 𝑥 ∈ ∅ ∅ = V
54eqeq1i 2738 . . . . 5 ( 𝑥 ∈ ∅ ∅ = ∅ ↔ V = ∅)
63, 5mtbir 323 . . . 4 ¬ 𝑥 ∈ ∅ ∅ = ∅
7 iineq1 4961 . . . . 5 (𝐴 = ∅ → 𝑥𝐴 ∅ = 𝑥 ∈ ∅ ∅)
87eqeq1d 2735 . . . 4 (𝐴 = ∅ → ( 𝑥𝐴 ∅ = ∅ ↔ 𝑥 ∈ ∅ ∅ = ∅))
96, 8mtbiri 327 . . 3 (𝐴 = ∅ → ¬ 𝑥𝐴 ∅ = ∅)
109necon2ai 2958 . 2 ( 𝑥𝐴 ∅ = ∅ → 𝐴 ≠ ∅)
111, 10impbii 209 1 (𝐴 ≠ ∅ ↔ 𝑥𝐴 ∅ = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wne 2929  Vcvv 3437  c0 4282   ciin 4944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-v 3439  df-dif 3901  df-nul 4283  df-iin 4946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator