Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iin0 | Structured version Visualization version GIF version |
Description: An indexed intersection of the empty set, with a nonempty index set, is empty. (Contributed by NM, 20-Oct-2005.) |
Ref | Expression |
---|---|
iin0 | ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝑥 ∈ 𝐴 ∅ = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinconst 4939 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 ∅ = ∅) | |
2 | 0ex 5234 | . . . . . 6 ⊢ ∅ ∈ V | |
3 | 2 | n0ii 4275 | . . . . 5 ⊢ ¬ V = ∅ |
4 | 0iin 4997 | . . . . . 6 ⊢ ∩ 𝑥 ∈ ∅ ∅ = V | |
5 | 4 | eqeq1i 2744 | . . . . 5 ⊢ (∩ 𝑥 ∈ ∅ ∅ = ∅ ↔ V = ∅) |
6 | 3, 5 | mtbir 322 | . . . 4 ⊢ ¬ ∩ 𝑥 ∈ ∅ ∅ = ∅ |
7 | iineq1 4946 | . . . . 5 ⊢ (𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 ∅ = ∩ 𝑥 ∈ ∅ ∅) | |
8 | 7 | eqeq1d 2741 | . . . 4 ⊢ (𝐴 = ∅ → (∩ 𝑥 ∈ 𝐴 ∅ = ∅ ↔ ∩ 𝑥 ∈ ∅ ∅ = ∅)) |
9 | 6, 8 | mtbiri 326 | . . 3 ⊢ (𝐴 = ∅ → ¬ ∩ 𝑥 ∈ 𝐴 ∅ = ∅) |
10 | 9 | necon2ai 2974 | . 2 ⊢ (∩ 𝑥 ∈ 𝐴 ∅ = ∅ → 𝐴 ≠ ∅) |
11 | 1, 10 | impbii 208 | 1 ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝑥 ∈ 𝐴 ∅ = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ≠ wne 2944 Vcvv 3430 ∅c0 4261 ∩ ciin 4930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-12 2174 ax-ext 2710 ax-nul 5233 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-v 3432 df-dif 3894 df-nul 4262 df-iin 4932 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |