MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iin0 Structured version   Visualization version   GIF version

Theorem iin0 5075
Description: An indexed intersection of the empty set, with a nonempty index set, is empty. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
iin0 (𝐴 ≠ ∅ ↔ 𝑥𝐴 ∅ = ∅)
Distinct variable group:   𝑥,𝐴

Proof of Theorem iin0
StepHypRef Expression
1 iinconst 4765 . 2 (𝐴 ≠ ∅ → 𝑥𝐴 ∅ = ∅)
2 0ex 5028 . . . . . 6 ∅ ∈ V
32n0ii 4151 . . . . 5 ¬ V = ∅
4 0iin 4813 . . . . . 6 𝑥 ∈ ∅ ∅ = V
54eqeq1i 2783 . . . . 5 ( 𝑥 ∈ ∅ ∅ = ∅ ↔ V = ∅)
63, 5mtbir 315 . . . 4 ¬ 𝑥 ∈ ∅ ∅ = ∅
7 iineq1 4770 . . . . 5 (𝐴 = ∅ → 𝑥𝐴 ∅ = 𝑥 ∈ ∅ ∅)
87eqeq1d 2780 . . . 4 (𝐴 = ∅ → ( 𝑥𝐴 ∅ = ∅ ↔ 𝑥 ∈ ∅ ∅ = ∅))
96, 8mtbiri 319 . . 3 (𝐴 = ∅ → ¬ 𝑥𝐴 ∅ = ∅)
109necon2ai 2998 . 2 ( 𝑥𝐴 ∅ = ∅ → 𝐴 ≠ ∅)
111, 10impbii 201 1 (𝐴 ≠ ∅ ↔ 𝑥𝐴 ∅ = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 198   = wceq 1601  wne 2969  Vcvv 3398  c0 4141   ciin 4756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-ext 2754  ax-nul 5027
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-v 3400  df-dif 3795  df-nul 4142  df-iin 4758
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator