MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iin0 Structured version   Visualization version   GIF version

Theorem iin0 5380
Description: An indexed intersection of the empty set, with a nonempty index set, is empty. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
iin0 (𝐴 ≠ ∅ ↔ 𝑥𝐴 ∅ = ∅)
Distinct variable group:   𝑥,𝐴

Proof of Theorem iin0
StepHypRef Expression
1 iinconst 5025 . 2 (𝐴 ≠ ∅ → 𝑥𝐴 ∅ = ∅)
2 0ex 5325 . . . . . 6 ∅ ∈ V
32n0ii 4366 . . . . 5 ¬ V = ∅
4 0iin 5087 . . . . . 6 𝑥 ∈ ∅ ∅ = V
54eqeq1i 2745 . . . . 5 ( 𝑥 ∈ ∅ ∅ = ∅ ↔ V = ∅)
63, 5mtbir 323 . . . 4 ¬ 𝑥 ∈ ∅ ∅ = ∅
7 iineq1 5032 . . . . 5 (𝐴 = ∅ → 𝑥𝐴 ∅ = 𝑥 ∈ ∅ ∅)
87eqeq1d 2742 . . . 4 (𝐴 = ∅ → ( 𝑥𝐴 ∅ = ∅ ↔ 𝑥 ∈ ∅ ∅ = ∅))
96, 8mtbiri 327 . . 3 (𝐴 = ∅ → ¬ 𝑥𝐴 ∅ = ∅)
109necon2ai 2976 . 2 ( 𝑥𝐴 ∅ = ∅ → 𝐴 ≠ ∅)
111, 10impbii 209 1 (𝐴 ≠ ∅ ↔ 𝑥𝐴 ∅ = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wne 2946  Vcvv 3488  c0 4352   ciin 5016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-v 3490  df-dif 3979  df-nul 4353  df-iin 5018
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator