Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iineq0 Structured version   Visualization version   GIF version

Theorem iineq0 48930
Description: An indexed intersection is empty if one of the intersected classes is empty. (Contributed by Zhi Wang, 30-Oct-2025.)
Assertion
Ref Expression
iineq0 (∃𝑥𝐴 𝐵 = ∅ → 𝑥𝐴 𝐵 = ∅)

Proof of Theorem iineq0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nel02 4286 . . . . 5 (𝐵 = ∅ → ¬ 𝑦𝐵)
21reximi 3070 . . . 4 (∃𝑥𝐴 𝐵 = ∅ → ∃𝑥𝐴 ¬ 𝑦𝐵)
3 rexnal 3084 . . . 4 (∃𝑥𝐴 ¬ 𝑦𝐵 ↔ ¬ ∀𝑥𝐴 𝑦𝐵)
42, 3sylib 218 . . 3 (∃𝑥𝐴 𝐵 = ∅ → ¬ ∀𝑥𝐴 𝑦𝐵)
5 eliin 4944 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵))
65elv 3441 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵)
74, 6sylnibr 329 . 2 (∃𝑥𝐴 𝐵 = ∅ → ¬ 𝑦 𝑥𝐴 𝐵)
87eq0rdv 4354 1 (∃𝑥𝐴 𝐵 = ∅ → 𝑥𝐴 𝐵 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  c0 4280   ciin 4940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-v 3438  df-dif 3900  df-nul 4281  df-iin 4942
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator