| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iineq0 | Structured version Visualization version GIF version | ||
| Description: An indexed intersection is empty if one of the intersected classes is empty. (Contributed by Zhi Wang, 30-Oct-2025.) |
| Ref | Expression |
|---|---|
| iineq0 | ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → ∩ 𝑥 ∈ 𝐴 𝐵 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nel02 4312 | . . . . 5 ⊢ (𝐵 = ∅ → ¬ 𝑦 ∈ 𝐵) | |
| 2 | 1 | reximi 3073 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → ∃𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐵) |
| 3 | rexnal 3088 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐵 ↔ ¬ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 4 | 2, 3 | sylib 218 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → ¬ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
| 5 | eliin 4970 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
| 6 | 5 | elv 3462 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
| 7 | 4, 6 | sylnibr 329 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) |
| 8 | 7 | eq0rdv 4380 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → ∩ 𝑥 ∈ 𝐴 𝐵 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 Vcvv 3457 ∅c0 4306 ∩ ciin 4966 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-v 3459 df-dif 3927 df-nul 4307 df-iin 4968 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |