Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iuneq0 Structured version   Visualization version   GIF version

Theorem iuneq0 48800
Description: An indexed union is empty iff all indexed classes are empty. (Contributed by Zhi Wang, 1-Nov-2025.)
Assertion
Ref Expression
iuneq0 (∀𝑥𝐴 𝐵 = ∅ ↔ 𝑥𝐴 𝐵 = ∅)

Proof of Theorem iuneq0
StepHypRef Expression
1 iunss 5004 . 2 ( 𝑥𝐴 𝐵 ⊆ ∅ ↔ ∀𝑥𝐴 𝐵 ⊆ ∅)
2 ss0b 4360 . 2 ( 𝑥𝐴 𝐵 ⊆ ∅ ↔ 𝑥𝐴 𝐵 = ∅)
3 ss0b 4360 . . 3 (𝐵 ⊆ ∅ ↔ 𝐵 = ∅)
43ralbii 3075 . 2 (∀𝑥𝐴 𝐵 ⊆ ∅ ↔ ∀𝑥𝐴 𝐵 = ∅)
51, 2, 43bitr3ri 302 1 (∀𝑥𝐴 𝐵 = ∅ ↔ 𝑥𝐴 𝐵 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wral 3044  wss 3911  c0 4292   ciun 4951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-dif 3914  df-ss 3928  df-nul 4293  df-iun 4953
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator