Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iuneq0 Structured version   Visualization version   GIF version

Theorem iuneq0 48691
Description: An indexed union is empty iff all indexed classes are empty. (Contributed by Zhi Wang, 1-Nov-2025.)
Assertion
Ref Expression
iuneq0 (∀𝑥𝐴 𝐵 = ∅ ↔ 𝑥𝐴 𝐵 = ∅)

Proof of Theorem iuneq0
StepHypRef Expression
1 iunss 5019 . 2 ( 𝑥𝐴 𝐵 ⊆ ∅ ↔ ∀𝑥𝐴 𝐵 ⊆ ∅)
2 ss0b 4374 . 2 ( 𝑥𝐴 𝐵 ⊆ ∅ ↔ 𝑥𝐴 𝐵 = ∅)
3 ss0b 4374 . . 3 (𝐵 ⊆ ∅ ↔ 𝐵 = ∅)
43ralbii 3081 . 2 (∀𝑥𝐴 𝐵 ⊆ ∅ ↔ ∀𝑥𝐴 𝐵 = ∅)
51, 2, 43bitr3ri 302 1 (∀𝑥𝐴 𝐵 = ∅ ↔ 𝑥𝐴 𝐵 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  wral 3050  wss 3924  c0 4306   ciun 4965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-dif 3927  df-ss 3941  df-nul 4307  df-iun 4967
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator