Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iuneq0 Structured version   Visualization version   GIF version

Theorem iuneq0 48929
Description: An indexed union is empty iff all indexed classes are empty. (Contributed by Zhi Wang, 1-Nov-2025.)
Assertion
Ref Expression
iuneq0 (∀𝑥𝐴 𝐵 = ∅ ↔ 𝑥𝐴 𝐵 = ∅)

Proof of Theorem iuneq0
StepHypRef Expression
1 iunss 4992 . 2 ( 𝑥𝐴 𝐵 ⊆ ∅ ↔ ∀𝑥𝐴 𝐵 ⊆ ∅)
2 ss0b 4348 . 2 ( 𝑥𝐴 𝐵 ⊆ ∅ ↔ 𝑥𝐴 𝐵 = ∅)
3 ss0b 4348 . . 3 (𝐵 ⊆ ∅ ↔ 𝐵 = ∅)
43ralbii 3078 . 2 (∀𝑥𝐴 𝐵 ⊆ ∅ ↔ ∀𝑥𝐴 𝐵 = ∅)
51, 2, 43bitr3ri 302 1 (∀𝑥𝐴 𝐵 = ∅ ↔ 𝑥𝐴 𝐵 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wral 3047  wss 3897  c0 4280   ciun 4939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-dif 3900  df-ss 3914  df-nul 4281  df-iun 4941
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator