| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iuneq0 | Structured version Visualization version GIF version | ||
| Description: An indexed union is empty iff all indexed classes are empty. (Contributed by Zhi Wang, 1-Nov-2025.) |
| Ref | Expression |
|---|---|
| iuneq0 | ⊢ (∀𝑥 ∈ 𝐴 𝐵 = ∅ ↔ ∪ 𝑥 ∈ 𝐴 𝐵 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunss 4992 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∅ ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ ∅) | |
| 2 | ss0b 4348 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∅ ↔ ∪ 𝑥 ∈ 𝐴 𝐵 = ∅) | |
| 3 | ss0b 4348 | . . 3 ⊢ (𝐵 ⊆ ∅ ↔ 𝐵 = ∅) | |
| 4 | 3 | ralbii 3078 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ ∅ ↔ ∀𝑥 ∈ 𝐴 𝐵 = ∅) |
| 5 | 1, 2, 4 | 3bitr3ri 302 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = ∅ ↔ ∪ 𝑥 ∈ 𝐴 𝐵 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∀wral 3047 ⊆ wss 3897 ∅c0 4280 ∪ ciun 4939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-dif 3900 df-ss 3914 df-nul 4281 df-iun 4941 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |