![]() |
Metamath
Proof Explorer Theorem List (p. 489 of 489) | < Previous Wrap > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30941) |
![]() (30942-32464) |
![]() (32465-48818) |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-alsi 48801 | Define "all some" applied to a top-level implication, which means 𝜓 is true whenever 𝜑 is true and there is at least one 𝑥 where 𝜑 is true. (Contributed by David A. Wheeler, 20-Oct-2018.) |
⊢ (∀!𝑥(𝜑 → 𝜓) ↔ (∀𝑥(𝜑 → 𝜓) ∧ ∃𝑥𝜑)) | ||
Definition | df-alsc 48802 | Define "all some" applied to a class, which means 𝜑 is true for all 𝑥 in 𝐴 and there is at least one 𝑥 in 𝐴. (Contributed by David A. Wheeler, 20-Oct-2018.) |
⊢ (∀!𝑥 ∈ 𝐴𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 𝑥 ∈ 𝐴)) | ||
Theorem | alsconv 48803 | There is an equivalence between the two "all some" forms. (Contributed by David A. Wheeler, 22-Oct-2018.) |
⊢ (∀!𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀!𝑥 ∈ 𝐴𝜑) | ||
Theorem | alsi1d 48804 | Deduction rule: Given "all some" applied to a top-level inference, you can extract the "for all" part. (Contributed by David A. Wheeler, 20-Oct-2018.) |
⊢ (𝜑 → ∀!𝑥(𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ∀𝑥(𝜓 → 𝜒)) | ||
Theorem | alsi2d 48805 | Deduction rule: Given "all some" applied to a top-level inference, you can extract the "exists" part. (Contributed by David A. Wheeler, 20-Oct-2018.) |
⊢ (𝜑 → ∀!𝑥(𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
Theorem | alsc1d 48806 | Deduction rule: Given "all some" applied to a class, you can extract the "for all" part. (Contributed by David A. Wheeler, 20-Oct-2018.) |
⊢ (𝜑 → ∀!𝑥 ∈ 𝐴𝜓) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | alsc2d 48807 | Deduction rule: Given "all some" applied to a class, you can extract the "there exists" part. (Contributed by David A. Wheeler, 20-Oct-2018.) |
⊢ (𝜑 → ∀!𝑥 ∈ 𝐴𝜓) ⇒ ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | ||
Theorem | alscn0d 48808* | Deduction rule: Given "all some" applied to a class, the class is not the empty set. (Contributed by David A. Wheeler, 23-Oct-2018.) |
⊢ (𝜑 → ∀!𝑥 ∈ 𝐴𝜓) ⇒ ⊢ (𝜑 → 𝐴 ≠ ∅) | ||
Theorem | alsi-no-surprise 48809 | Demonstrate that there is never a "surprise" when using the allsome quantifier, that is, it is never possible for the consequent to be both always true and always false. This uses the definition of df-alsi 48801; the proof itself builds on alimp-no-surprise 48794. For a contrast, see alimp-surprise 48793. (Contributed by David A. Wheeler, 27-Oct-2018.) |
⊢ ¬ (∀!𝑥(𝜑 → 𝜓) ∧ ∀!𝑥(𝜑 → ¬ 𝜓)) | ||
Miscellaneous proofs. | ||
Theorem | 5m4e1 48810 | Prove that 5 - 4 = 1. (Contributed by David A. Wheeler, 31-Jan-2017.) |
⊢ (5 − 4) = 1 | ||
Theorem | 2p2ne5 48811 | Prove that 2 + 2 ≠ 5. In George Orwell's "1984", Part One, Chapter Seven, the protagonist Winston notes that, "In the end the Party would announce that two and two made five, and you would have to believe it." http://www.sparknotes.com/lit/1984/section4.rhtml. More generally, the phrase 2 + 2 = 5 has come to represent an obviously false dogma one may be required to believe. See the Wikipedia article for more about this: https://en.wikipedia.org/wiki/2_%2B_2_%3D_5. Unsurprisingly, we can easily prove that this claim is false. (Contributed by David A. Wheeler, 31-Jan-2017.) |
⊢ (2 + 2) ≠ 5 | ||
Theorem | resolution 48812 | Resolution rule. This is the primary inference rule in some automated theorem provers such as prover9. The resolution rule can be traced back to Davis and Putnam (1960). (Contributed by David A. Wheeler, 9-Feb-2017.) |
⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒)) → (𝜓 ∨ 𝜒)) | ||
Theorem | testable 48813 | In classical logic all wffs are testable, that is, it is always true that (¬ 𝜑 ∨ ¬ ¬ 𝜑). This is not necessarily true in intuitionistic logic. In intuitionistic logic, if this statement is true for some 𝜑, then 𝜑 is testable. The proof is trivial because it's simply a special case of the law of the excluded middle, which is true in classical logic but not necessarily true in intuitionisic logic. (Contributed by David A. Wheeler, 5-Dec-2018.) |
⊢ (¬ 𝜑 ∨ ¬ ¬ 𝜑) | ||
Theorem | aacllem 48814* | Lemma for other theorems about 𝔸. (Contributed by Brendan Leahy, 3-Jan-2020.) (Revised by Alexander van der Vekens and David A. Wheeler, 25-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → 𝑋 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁)) → 𝐶 ∈ ℚ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐴↑𝑘) = Σ𝑛 ∈ (1...𝑁)(𝐶 · 𝑋)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝔸) | ||
Theorem | amgmwlem 48815 | Weighted version of amgmlem 27042. (Contributed by Kunhao Zheng, 19-Jun-2021.) |
⊢ 𝑀 = (mulGrp‘ℂfld) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ+) & ⊢ (𝜑 → 𝑊:𝐴⟶ℝ+) & ⊢ (𝜑 → (ℂfld Σg 𝑊) = 1) ⇒ ⊢ (𝜑 → (𝑀 Σg (𝐹 ∘f ↑𝑐𝑊)) ≤ (ℂfld Σg (𝐹 ∘f · 𝑊))) | ||
Theorem | amgmlemALT 48816 | Alternate proof of amgmlem 27042 using amgmwlem 48815. (Contributed by Kunhao Zheng, 20-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑀 = (mulGrp‘ℂfld) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ+) ⇒ ⊢ (𝜑 → ((𝑀 Σg 𝐹)↑𝑐(1 / (♯‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (♯‘𝐴))) | ||
Theorem | amgmw2d 48817 | Weighted arithmetic-geometric mean inequality for 𝑛 = 2 (compare amgm2d 44101). (Contributed by Kunhao Zheng, 20-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝑃 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝑄 ∈ ℝ+) & ⊢ (𝜑 → (𝑃 + 𝑄) = 1) ⇒ ⊢ (𝜑 → ((𝐴↑𝑐𝑃) · (𝐵↑𝑐𝑄)) ≤ ((𝐴 · 𝑃) + (𝐵 · 𝑄))) | ||
Theorem | young2d 48818 | Young's inequality for 𝑛 = 2, a direct application of amgmw2d 48817. (Contributed by Kunhao Zheng, 6-Jul-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝑃 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝑄 ∈ ℝ+) & ⊢ (𝜑 → ((1 / 𝑃) + (1 / 𝑄)) = 1) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ≤ (((𝐴↑𝑐𝑃) / 𝑃) + ((𝐵↑𝑐𝑄) / 𝑄))) |
< Previous Wrap > |
Copyright terms: Public domain | < Previous Wrap > |