| Metamath
Proof Explorer Theorem List (p. 489 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | brab2ddw 48801* | Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by Zhi Wang, 24-Sep-2025.) |
| ⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝜓)}) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝑦 = 𝐵 → (𝜃 ↔ 𝜒)) & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝑈) & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐷 = 𝑉) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ 𝜒))) | ||
| Theorem | brab2ddw2 48802* | Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by Zhi Wang, 24-Sep-2025.) |
| ⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝜓)}) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝑦 = 𝐵 → (𝜃 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → 𝐶 = 𝑈) & ⊢ (𝑦 = 𝐵 → 𝐷 = 𝑉) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ 𝜒))) | ||
| Theorem | iinxp 48803* | Indexed intersection of Cartesian products is the Cartesian product of indexed intersections. See also inxp 5778 and intxp 48804. (Contributed by Zhi Wang, 30-Oct-2025.) |
| ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝐵 × 𝐶) = (∩ 𝑥 ∈ 𝐴 𝐵 × ∩ 𝑥 ∈ 𝐴 𝐶)) | ||
| Theorem | intxp 48804* | Intersection of Cartesian products is the Cartesian product of intersection of domains and ranges. See also inxp 5778 and iinxp 48803. (Contributed by Zhi Wang, 30-Oct-2025.) |
| ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 = (dom 𝑥 × ran 𝑥)) & ⊢ 𝑋 = ∩ 𝑥 ∈ 𝐴 dom 𝑥 & ⊢ 𝑌 = ∩ 𝑥 ∈ 𝐴 ran 𝑥 ⇒ ⊢ (𝜑 → ∩ 𝐴 = (𝑋 × 𝑌)) | ||
| Theorem | coxp 48805 | Composition with a Cartesian product. (Contributed by Zhi Wang, 6-Oct-2025.) |
| ⊢ (𝐴 ∘ (𝐵 × 𝐶)) = (𝐵 × (𝐴 “ 𝐶)) | ||
| Theorem | cosn 48806 | Composition with an ordered pair singleton. (Contributed by Zhi Wang, 6-Oct-2025.) |
| ⊢ ((𝐵 ∈ 𝑈 ∧ 𝐶 ∈ 𝑉) → (𝐴 ∘ {〈𝐵, 𝐶〉}) = ({𝐵} × (𝐴 “ {𝐶}))) | ||
| Theorem | cosni 48807 | Composition with an ordered pair singleton. (Contributed by Zhi Wang, 6-Oct-2025.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 ∘ {〈𝐵, 𝐶〉}) = ({𝐵} × (𝐴 “ {𝐶})) | ||
| Theorem | inisegn0a 48808 | The inverse image of a singleton subset of an image is non-empty. (Contributed by Zhi Wang, 7-Nov-2025.) |
| ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → (◡𝐹 “ {𝐴}) ≠ ∅) | ||
| Theorem | dmrnxp 48809 | A Cartesian product is the Cartesian product of its domain and range. (Contributed by Zhi Wang, 30-Oct-2025.) |
| ⊢ (𝑅 = (𝐴 × 𝐵) → 𝑅 = (dom 𝑅 × ran 𝑅)) | ||
| Theorem | mof0 48810 | There is at most one function into the empty set. (Contributed by Zhi Wang, 19-Sep-2024.) |
| ⊢ ∃*𝑓 𝑓:𝐴⟶∅ | ||
| Theorem | mof02 48811* | A variant of mof0 48810. (Contributed by Zhi Wang, 20-Sep-2024.) |
| ⊢ (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴⟶𝐵) | ||
| Theorem | mof0ALT 48812* | Alternate proof of mof0 48810 with stronger requirements on distinct variables. Uses mo4 2559. (Contributed by Zhi Wang, 19-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∃*𝑓 𝑓:𝐴⟶∅ | ||
| Theorem | eufsnlem 48813* | There is exactly one function into a singleton. For a simpler hypothesis, see eufsn 48814 assuming ax-rep 5221, or eufsn2 48815 assuming ax-pow 5307 and ax-un 7675. (Contributed by Zhi Wang, 19-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → (𝐴 × {𝐵}) ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵}) | ||
| Theorem | eufsn 48814* | There is exactly one function into a singleton, assuming ax-rep 5221. See eufsn2 48815 for different axiom requirements. If existence is not needed, use mofsn 48816 or mofsn2 48817 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵}) | ||
| Theorem | eufsn2 48815* | There is exactly one function into a singleton, assuming ax-pow 5307 and ax-un 7675. Variant of eufsn 48814. If existence is not needed, use mofsn 48816 or mofsn2 48817 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵}) | ||
| Theorem | mofsn 48816* | There is at most one function into a singleton, with fewer axioms than eufsn 48814 and eufsn2 48815. See also mofsn2 48817. (Contributed by Zhi Wang, 19-Sep-2024.) |
| ⊢ (𝐵 ∈ 𝑉 → ∃*𝑓 𝑓:𝐴⟶{𝐵}) | ||
| Theorem | mofsn2 48817* | There is at most one function into a singleton. An unconditional variant of mofsn 48816, i.e., the singleton could be empty if 𝑌 is a proper class. (Contributed by Zhi Wang, 19-Sep-2024.) |
| ⊢ (𝐵 = {𝑌} → ∃*𝑓 𝑓:𝐴⟶𝐵) | ||
| Theorem | mofsssn 48818* | There is at most one function into a subclass of a singleton. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝐵 ⊆ {𝑌} → ∃*𝑓 𝑓:𝐴⟶𝐵) | ||
| Theorem | mofmo 48819* | There is at most one function into a class containing at most one element. (Contributed by Zhi Wang, 19-Sep-2024.) |
| ⊢ (∃*𝑥 𝑥 ∈ 𝐵 → ∃*𝑓 𝑓:𝐴⟶𝐵) | ||
| Theorem | mofeu 48820* | The uniqueness of a function into a set with at most one element. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ 𝐺 = (𝐴 × 𝐵) & ⊢ (𝜑 → (𝐵 = ∅ → 𝐴 = ∅)) & ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹 = 𝐺)) | ||
| Theorem | elfvne0 48821 | If a function value has a member, then the function is not an empty set (An artifact of our function value definition.) (Contributed by Zhi Wang, 16-Sep-2024.) |
| ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐹 ≠ ∅) | ||
| Theorem | fdomne0 48822 | A function with non-empty domain is non-empty and has non-empty codomain. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ ((𝐹:𝑋⟶𝑌 ∧ 𝑋 ≠ ∅) → (𝐹 ≠ ∅ ∧ 𝑌 ≠ ∅)) | ||
| Theorem | f1sn2g 48823 | A function that maps a singleton to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:{𝐴}⟶𝐵) → 𝐹:{𝐴}–1-1→𝐵) | ||
| Theorem | f102g 48824 | A function that maps the empty set to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ ((𝐴 = ∅ ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) | ||
| Theorem | f1mo 48825* | A function that maps a set with at most one element to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ ((∃*𝑥 𝑥 ∈ 𝐴 ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴–1-1→𝐵) | ||
| Theorem | f002 48826 | A function with an empty codomain must have empty domain. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐵 = ∅ → 𝐴 = ∅)) | ||
| Theorem | map0cor 48827* | A function exists iff an empty codomain is accompanied with an empty domain. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((𝐵 = ∅ → 𝐴 = ∅) ↔ ∃𝑓 𝑓:𝐴⟶𝐵)) | ||
| Theorem | ffvbr 48828 | Relation with function value. (Contributed by Zhi Wang, 25-Nov-2025.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → 𝑋𝐹(𝐹‘𝑋)) | ||
| Theorem | xpco2 48829 | Composition of a Cartesian product with a function. (Contributed by Zhi Wang, 25-Nov-2025.) |
| ⊢ (𝐹:𝐴⟶𝐵 → ((𝐵 × 𝐶) ∘ 𝐹) = (𝐴 × 𝐶)) | ||
| Theorem | ovsng 48830 | The operation value of a singleton of a nested ordered pair is the last member. (Contributed by Zhi Wang, 22-Oct-2025.) |
| ⊢ (𝐶 ∈ 𝑉 → (𝐴{〈〈𝐴, 𝐵〉, 𝐶〉}𝐵) = 𝐶) | ||
| Theorem | ovsng2 48831 | The operation value of a singleton of an ordered triple is the last member. (Contributed by Zhi Wang, 22-Oct-2025.) |
| ⊢ (𝐶 ∈ 𝑉 → (𝐴{〈𝐴, 𝐵, 𝐶〉}𝐵) = 𝐶) | ||
| Theorem | ovsn 48832 | The operation value of a singleton of a nested ordered pair is the last member. (Contributed by Zhi Wang, 22-Oct-2025.) |
| ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴{〈〈𝐴, 𝐵〉, 𝐶〉}𝐵) = 𝐶 | ||
| Theorem | ovsn2 48833 | The operation value of a singleton of an ordered triple is the last member. (Contributed by Zhi Wang, 22-Oct-2025.) |
| ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴{〈𝐴, 𝐵, 𝐶〉}𝐵) = 𝐶 | ||
| Theorem | fvconstr 48834 | Two ways of expressing 𝐴𝑅𝐵. (Contributed by Zhi Wang, 18-Sep-2024.) |
| ⊢ (𝜑 → 𝐹 = (𝑅 × {𝑌})) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ≠ ∅) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐵) = 𝑌)) | ||
| Theorem | fvconstrn0 48835 | Two ways of expressing 𝐴𝑅𝐵. (Contributed by Zhi Wang, 20-Sep-2024.) |
| ⊢ (𝜑 → 𝐹 = (𝑅 × {𝑌})) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ≠ ∅) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐵) ≠ ∅)) | ||
| Theorem | fvconstr2 48836 | Two ways of expressing 𝐴𝑅𝐵. (Contributed by Zhi Wang, 18-Sep-2024.) |
| ⊢ (𝜑 → 𝐹 = (𝑅 × {𝑌})) & ⊢ (𝜑 → 𝑋 ∈ (𝐴𝐹𝐵)) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐵) | ||
| Theorem | ovmpt4d 48837* | Deduction version of ovmpt4g 7500. (This is the operation analogue of fvmpt2d 6947.) (Contributed by Zhi Wang, 9-Oct-2025.) |
| ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝑉) ⇒ ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐹𝑦) = 𝐶) | ||
| Theorem | eqfnovd 48838* | Deduction for equality of operations. (Contributed by Zhi Wang, 19-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 Fn (𝐴 × 𝐵)) & ⊢ (𝜑 → 𝐺 Fn (𝐴 × 𝐵)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
| Theorem | fonex 48839 | The domain of a surjection is a proper class if the range is a proper class as well. Can be used to prove that if a structure component extractor restricted to a class maps onto a proper class, then the class is a proper class as well. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ 𝐵 ∉ V & ⊢ 𝐹:𝐴–onto→𝐵 ⇒ ⊢ 𝐴 ∉ V | ||
| Theorem | eloprab1st2nd 48840* | Reconstruction of a nested ordered pair in terms of its ordered pair components. (Contributed by Zhi Wang, 27-Oct-2025.) |
| ⊢ (𝐴 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → 𝐴 = 〈〈(1st ‘(1st ‘𝐴)), (2nd ‘(1st ‘𝐴))〉, (2nd ‘𝐴)〉) | ||
| Theorem | fmpodg 48841* | Domain and codomain of the mapping operation; deduction form. (Contributed by Zhi Wang, 29-Sep-2025.) |
| ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝑅 = (𝐴 × 𝐵)) ⇒ ⊢ (𝜑 → 𝐹:𝑅⟶𝑆) | ||
| Theorem | fmpod 48842* | Domain and codomain of the mapping operation; deduction form. (Contributed by Zhi Wang, 30-Sep-2025.) |
| ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝐹:(𝐴 × 𝐵)⟶𝑆) | ||
| Theorem | resinsnlem 48843 | Lemma for resinsnALT 48845. (Contributed by Zhi Wang, 6-Oct-2025.) |
| ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) & ⊢ (¬ 𝜑 → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ 𝜒) | ||
| Theorem | resinsn 48844 | Restriction to the intersection with a singleton. (Contributed by Zhi Wang, 6-Oct-2025.) |
| ⊢ ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹 ∩ 𝐴)) | ||
| Theorem | resinsnALT 48845 | Restriction to the intersection with a singleton. (Contributed by Zhi Wang, 6-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹 ∩ 𝐴)) | ||
| Theorem | dftpos5 48846* | Alternate definition of tpos. (Contributed by Zhi Wang, 6-Oct-2025.) |
| ⊢ tpos 𝐹 = (𝐹 ∘ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉})) | ||
| Theorem | dftpos6 48847* | Alternate definition of tpos. The second half of the right hand side could apply ressn 6237 and become (𝐹 ↾ {∅}) (Contributed by Zhi Wang, 6-Oct-2025.) |
| ⊢ tpos 𝐹 = ((𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) ∪ ({∅} × (𝐹 “ {∅}))) | ||
| Theorem | dmtposss 48848 | The domain of tpos 𝐹 is a subset. (Contributed by Zhi Wang, 6-Oct-2025.) |
| ⊢ dom tpos 𝐹 ⊆ ((V × V) ∪ {∅}) | ||
| Theorem | tposres0 48849 | The transposition of a set restricted to the empty set is the set restricted to the empty set. See also ressn 6237 and dftpos6 48847 for an alternate proof. (Contributed by Zhi Wang, 6-Oct-2025.) |
| ⊢ (tpos 𝐹 ↾ {∅}) = (𝐹 ↾ {∅}) | ||
| Theorem | tposresg 48850 | The transposition restricted to a set. (Contributed by Zhi Wang, 6-Oct-2025.) |
| ⊢ (tpos 𝐹 ↾ 𝑅) = ((tpos 𝐹 ↾ ◡◡𝑅) ∪ (𝐹 ↾ (𝑅 ∩ {∅}))) | ||
| Theorem | tposrescnv 48851* | The transposition restricted to a converse is the transposition of the restricted class, with the empty set removed from the domain. Note that the right hand side is a more useful form of (tpos (𝐹 ↾ 𝑅) ↾ (V ∖ {∅})) by df-tpos 8166. (Contributed by Zhi Wang, 6-Oct-2025.) |
| ⊢ (tpos 𝐹 ↾ ◡𝑅) = (𝐹 ∘ (𝑥 ∈ ◡dom (𝐹 ↾ 𝑅) ↦ ∪ ◡{𝑥})) | ||
| Theorem | tposres2 48852 | The transposition restricted to a set. (Contributed by Zhi Wang, 6-Oct-2025.) |
| ⊢ (𝜑 → ¬ ∅ ∈ (dom 𝐹 ∩ 𝑅)) ⇒ ⊢ (𝜑 → (tpos 𝐹 ↾ 𝑅) = (tpos 𝐹 ↾ ◡◡𝑅)) | ||
| Theorem | tposres3 48853 | The transposition restricted to a set. (Contributed by Zhi Wang, 6-Oct-2025.) |
| ⊢ (𝜑 → ¬ ∅ ∈ (dom 𝐹 ∩ 𝑅)) ⇒ ⊢ (𝜑 → (tpos 𝐹 ↾ 𝑅) = tpos (𝐹 ↾ ◡𝑅)) | ||
| Theorem | tposres 48854 | The transposition restricted to a relation. (Contributed by Zhi Wang, 6-Oct-2025.) |
| ⊢ (Rel 𝑅 → (tpos 𝐹 ↾ 𝑅) = tpos (𝐹 ↾ ◡𝑅)) | ||
| Theorem | tposresxp 48855 | The transposition restricted to a Cartesian product. (Contributed by Zhi Wang, 6-Oct-2025.) |
| ⊢ (tpos 𝐹 ↾ (𝐴 × 𝐵)) = tpos (𝐹 ↾ (𝐵 × 𝐴)) | ||
| Theorem | tposf1o 48856 | Condition of a bijective transposition. (Contributed by Zhi Wang, 5-Oct-2025.) |
| ⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→𝐶 → tpos 𝐹:(𝐵 × 𝐴)–1-1-onto→𝐶) | ||
| Theorem | tposid 48857 | Swap an ordered pair. (Contributed by Zhi Wang, 5-Oct-2025.) |
| ⊢ (𝑋tpos I 𝑌) = 〈𝑌, 𝑋〉 | ||
| Theorem | tposidres 48858 | Swap an ordered pair. (Contributed by Zhi Wang, 5-Oct-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑌tpos ( I ↾ (𝐴 × 𝐵))𝑋) = 〈𝑋, 𝑌〉) | ||
| Theorem | tposidf1o 48859 | The swap function, or the twisting map, is bijective. (Contributed by Zhi Wang, 5-Oct-2025.) |
| ⊢ tpos ( I ↾ (𝐴 × 𝐵)):(𝐵 × 𝐴)–1-1-onto→(𝐴 × 𝐵) | ||
| Theorem | tposideq 48860* | Two ways of expressing the swap function. (Contributed by Zhi Wang, 6-Oct-2025.) |
| ⊢ (Rel 𝑅 → (tpos I ↾ 𝑅) = (𝑥 ∈ 𝑅 ↦ ∪ ◡{𝑥})) | ||
| Theorem | tposideq2 48861* | Two ways of expressing the swap function. (Contributed by Zhi Wang, 6-Oct-2025.) |
| ⊢ 𝑅 = (𝐴 × 𝐵) ⇒ ⊢ (tpos I ↾ 𝑅) = (𝑥 ∈ 𝑅 ↦ ∪ ◡{𝑥}) | ||
| Theorem | ixpv 48862* | Infinite Cartesian product of the universal class is the set of functions with a fixed domain. (Contributed by Zhi Wang, 1-Nov-2025.) |
| ⊢ X𝑥 ∈ 𝐴 V = {𝑓 ∣ 𝑓 Fn 𝐴} | ||
| Theorem | fvconst0ci 48863 | A constant function's value is either the constant or the empty set. (An artifact of our function value definition.) (Contributed by Zhi Wang, 18-Sep-2024.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝑌 = ((𝐴 × {𝐵})‘𝑋) ⇒ ⊢ (𝑌 = ∅ ∨ 𝑌 = 𝐵) | ||
| Theorem | fvconstdomi 48864 | A constant function's value is dominated by the constant. (An artifact of our function value definition.) (Contributed by Zhi Wang, 18-Sep-2024.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐴 × {𝐵})‘𝑋) ≼ 𝐵 | ||
| Theorem | f1omo 48865* | There is at most one element in the function value of a constant function whose output is 1o. (An artifact of our function value definition.) Proof could be significantly shortened by fvconstdomi 48864 assuming ax-un 7675 (see f1omoALT 48867). (Contributed by Zhi Wang, 19-Sep-2024.) (Proof shortened by SN, 24-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) ⇒ ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) | ||
| Theorem | f1omoOLD 48866* | Obsolete version of f1omo 48865 as of 24-Nov-2025. (Contributed by Zhi Wang, 19-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) ⇒ ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) | ||
| Theorem | f1omoALT 48867* | There is at most one element in the function value of a constant function whose output is 1o. (An artifact of our function value definition.) Use f1omo 48865 without assuming ax-un 7675. (Contributed by Zhi Wang, 18-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) ⇒ ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) | ||
| Theorem | iccin 48868 | Intersection of two closed intervals of extended reals. (Contributed by Zhi Wang, 9-Sep-2024.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)[,]if(𝐵 ≤ 𝐷, 𝐵, 𝐷))) | ||
| Theorem | iccdisj2 48869 | If the upper bound of one closed interval is less than the lower bound of the other, the intervals are disjoint. (Contributed by Zhi Wang, 9-Sep-2024.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = ∅) | ||
| Theorem | iccdisj 48870 | If the upper bound of one closed interval is less than the lower bound of the other, the intervals are disjoint. (Contributed by Zhi Wang, 9-Sep-2024.) |
| ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) ∧ 𝐵 < 𝐶) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = ∅) | ||
| Theorem | slotresfo 48871* | The condition of a structure component extractor restricted to a class being a surjection. This combined with fonex 48839 can be used to prove a class being proper. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ 𝐸 Fn V & ⊢ (𝑘 ∈ 𝐴 → (𝐸‘𝑘) ∈ 𝑉) & ⊢ (𝑏 ∈ 𝑉 → 𝐾 ∈ 𝐴) & ⊢ (𝑏 ∈ 𝑉 → 𝑏 = (𝐸‘𝐾)) ⇒ ⊢ (𝐸 ↾ 𝐴):𝐴–onto→𝑉 | ||
| Theorem | mreuniss 48872 | The union of a collection of closed sets is a subset. (Contributed by Zhi Wang, 29-Sep-2024.) |
| ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ⊆ 𝐶) → ∪ 𝑆 ⊆ 𝑋) | ||
Additional contents for topology. | ||
| Theorem | clduni 48873 | The union of closed sets is the underlying set of the topology (the union of open sets). (Contributed by Zhi Wang, 6-Sep-2024.) |
| ⊢ (𝐽 ∈ Top → ∪ (Clsd‘𝐽) = ∪ 𝐽) | ||
| Theorem | opncldeqv 48874* | Conditions on open sets are equivalent to conditions on closed sets. (Contributed by Zhi Wang, 30-Aug-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐽 𝜓 ↔ ∀𝑦 ∈ (Clsd‘𝐽)𝜒)) | ||
| Theorem | opndisj 48875 | Two ways of saying that two open sets are disjoint, if 𝐽 is a topology and 𝑋 is an open set. (Contributed by Zhi Wang, 6-Sep-2024.) |
| ⊢ (𝑍 = (∪ 𝐽 ∖ 𝑋) → (𝑌 ∈ (𝐽 ∩ 𝒫 𝑍) ↔ (𝑌 ∈ 𝐽 ∧ (𝑋 ∩ 𝑌) = ∅))) | ||
| Theorem | clddisj 48876 | Two ways of saying that two closed sets are disjoint, if 𝐽 is a topology and 𝑋 is a closed set. An alternative proof is similar to that of opndisj 48875 with elssuni 4891 replaced by the combination of cldss 22932 and eqid 2729. (Contributed by Zhi Wang, 6-Sep-2024.) |
| ⊢ (𝑍 = (∪ 𝐽 ∖ 𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋 ∩ 𝑌) = ∅))) | ||
| Theorem | neircl 48877 | Reverse closure of the neighborhood operation. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by Zhi Wang, 16-Sep-2024.) |
| ⊢ (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝐽 ∈ Top) | ||
| Theorem | opnneilem 48878* | Lemma factoring out common proof steps of opnneil 48882 and opnneirv 48880. (Contributed by Zhi Wang, 31-Aug-2024.) |
| ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) | ||
| Theorem | opnneir 48879* | If something is true for an open neighborhood, it must be true for a neighborhood. (Contributed by Zhi Wang, 31-Aug-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓)) | ||
| Theorem | opnneirv 48880* | A variant of opnneir 48879 with different dummy variables. (Contributed by Zhi Wang, 31-Aug-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓) → ∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝜒)) | ||
| Theorem | opnneilv 48881* | The converse of opnneir 48879 with different dummy variables. Note that the second hypothesis could be generalized by adding 𝑦 ∈ 𝐽 to the antecedent. See the proof for details. Although 𝐽 ∈ Top might be redundant here (see neircl 48877), it is listed for explicitness. (Contributed by Zhi Wang, 31-Aug-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑦 ⊆ 𝑥) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) | ||
| Theorem | opnneil 48882* | A variant of opnneilv 48881. (Contributed by Zhi Wang, 31-Aug-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑦 ⊆ 𝑥) → (𝜓 → 𝜒)) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 → ∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓))) | ||
| Theorem | opnneieqv 48883* | The equivalence between neighborhood and open neighborhood. See opnneieqvv 48884 for different dummy variables. (Contributed by Zhi Wang, 31-Aug-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑦 ⊆ 𝑥) → (𝜓 → 𝜒)) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 ↔ ∃𝑥 ∈ 𝐽 (𝑆 ⊆ 𝑥 ∧ 𝜓))) | ||
| Theorem | opnneieqvv 48884* | The equivalence between neighborhood and open neighborhood. A variant of opnneieqv 48883 with two dummy variables. (Contributed by Zhi Wang, 31-Aug-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑦 ⊆ 𝑥) → (𝜓 → 𝜒)) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 ↔ ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) | ||
| Theorem | restcls2lem 48885 | A closed set in a subspace topology is a subset of the subspace. (Contributed by Zhi Wang, 2-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑋 = ∪ 𝐽) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) ⇒ ⊢ (𝜑 → 𝑆 ⊆ 𝑌) | ||
| Theorem | restcls2 48886 | A closed set in a subspace topology is the closure in the original topology intersecting with the subspace. (Contributed by Zhi Wang, 2-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑋 = ∪ 𝐽) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) ⇒ ⊢ (𝜑 → 𝑆 = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) | ||
| Theorem | restclsseplem 48887 | Lemma for restclssep 48888. (Contributed by Zhi Wang, 2-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑋 = ∪ 𝐽) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) & ⊢ (𝜑 → 𝑇 ⊆ 𝑌) ⇒ ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) | ||
| Theorem | restclssep 48888 | Two disjoint closed sets in a subspace topology are separated in the original topology. (Contributed by Zhi Wang, 2-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑋 = ∪ 𝐽) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) & ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐾)) ⇒ ⊢ (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) | ||
| Theorem | cnneiima 48889 | Given a continuous function, the preimage of a neighborhood is a neighborhood. To be precise, the preimage of a neighborhood of a subset 𝑇 of the codomain of a continuous function is a neighborhood of any subset of the preimage of 𝑇. (Contributed by Zhi Wang, 9-Sep-2024.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑁 ∈ ((nei‘𝐾)‘𝑇)) & ⊢ (𝜑 → 𝑆 ⊆ (◡𝐹 “ 𝑇)) ⇒ ⊢ (𝜑 → (◡𝐹 “ 𝑁) ∈ ((nei‘𝐽)‘𝑆)) | ||
| Theorem | iooii 48890 | Open intervals are open sets of II. (Contributed by Zhi Wang, 9-Sep-2024.) |
| ⊢ ((0 ≤ 𝐴 ∧ 𝐵 ≤ 1) → (𝐴(,)𝐵) ∈ II) | ||
| Theorem | icccldii 48891 | Closed intervals are closed sets of II. Note that iccss 13335, iccordt 23117, and ordtresticc 23126 are proved from ixxss12 13286, ordtcld3 23102, and ordtrest2 23107, respectively. An alternate proof uses restcldi 23076, dfii2 24791, and icccld 24670. (Contributed by Zhi Wang, 8-Sep-2024.) |
| ⊢ ((0 ≤ 𝐴 ∧ 𝐵 ≤ 1) → (𝐴[,]𝐵) ∈ (Clsd‘II)) | ||
| Theorem | i0oii 48892 | (0[,)𝐴) is open in II. (Contributed by Zhi Wang, 9-Sep-2024.) |
| ⊢ (𝐴 ≤ 1 → (0[,)𝐴) ∈ II) | ||
| Theorem | io1ii 48893 | (𝐴(,]1) is open in II. (Contributed by Zhi Wang, 9-Sep-2024.) |
| ⊢ (0 ≤ 𝐴 → (𝐴(,]1) ∈ II) | ||
| Theorem | sepnsepolem1 48894* | Lemma for sepnsepo 48896. (Contributed by Zhi Wang, 1-Sep-2024.) |
| ⊢ (∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∃𝑥 ∈ 𝐽 (𝜑 ∧ ∃𝑦 ∈ 𝐽 (𝜓 ∧ 𝜒))) | ||
| Theorem | sepnsepolem2 48895* | Open neighborhood and neighborhood is equivalent regarding disjointness. Lemma for sepnsepo 48896. Proof could be shortened by 1 step using ssdisjdr 48781. (Contributed by Zhi Wang, 1-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) ⇒ ⊢ (𝜑 → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ 𝐽 (𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) | ||
| Theorem | sepnsepo 48896* | Open neighborhood and neighborhood is equivalent regarding disjointness for both sides. Namely, separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. (Contributed by Zhi Wang, 1-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥 ∩ 𝑦) = ∅ ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) | ||
| Theorem | sepdisj 48897 | Separated sets are disjoint. Note that in general separatedness also requires 𝑇 ⊆ ∪ 𝐽 and (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ as well but they are unnecessary here. (Contributed by Zhi Wang, 7-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) & ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) ⇒ ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) | ||
| Theorem | seposep 48898* | If two sets are separated by (open) neighborhoods, then they are separated subsets of the underlying set. Note that separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. See sepnsepo 48896. The relationship between separatedness and closure is also seen in isnrm 23238, isnrm2 23261, isnrm3 23262. (Contributed by Zhi Wang, 7-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) ⇒ ⊢ (𝜑 → ((𝑆 ⊆ ∪ 𝐽 ∧ 𝑇 ⊆ ∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅))) | ||
| Theorem | sepcsepo 48899* | If two sets are separated by closed neighborhoods, then they are separated by (open) neighborhoods. See sepnsepo 48896 for the equivalence between separatedness by open neighborhoods and separatedness by neighborhoods. Although 𝐽 ∈ Top might be redundant here, it is listed for explicitness. 𝐽 ∈ Top can be obtained from neircl 48877, adantr 480, and rexlimiva 3122. (Contributed by Zhi Wang, 8-Sep-2024.) |
| ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛 ∩ 𝑚) = ∅)) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) | ||
| Theorem | sepfsepc 48900* | If two sets are separated by a continuous function, then they are separated by closed neighborhoods. (Contributed by Zhi Wang, 9-Sep-2024.) |
| ⊢ (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (◡𝑓 “ {0}) ∧ 𝑇 ⊆ (◡𝑓 “ {1}))) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛 ∩ 𝑚) = ∅)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |