| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iunlub | Structured version Visualization version GIF version | ||
| Description: The indexed union is the the lowest upper bound if it exists. (Contributed by Zhi Wang, 1-Nov-2025.) |
| Ref | Expression |
|---|---|
| iunlub.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| iunlub.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝐵 = 𝐶) |
| iunlub.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| iunlub | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunlub.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) | |
| 2 | 1 | iunssd 5024 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| 3 | iunlub.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 4 | iunlub.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝐵 = 𝐶) | |
| 5 | 4 | sseq2d 3989 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝐶 ⊆ 𝐵 ↔ 𝐶 ⊆ 𝐶)) |
| 6 | ssidd 3980 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝐶) | |
| 7 | 3, 5, 6 | rspcedvd 3601 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
| 8 | ssiun 5020 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| 10 | 2, 9 | eqssd 3974 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ⊆ wss 3924 ∪ ciun 4965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-v 3459 df-ss 3941 df-iun 4967 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |