Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunlub Structured version   Visualization version   GIF version

Theorem iunlub 48931
Description: The indexed union is the the lowest upper bound if it exists. (Contributed by Zhi Wang, 1-Nov-2025.)
Hypotheses
Ref Expression
iunlub.1 (𝜑𝑋𝐴)
iunlub.2 ((𝜑𝑥 = 𝑋) → 𝐵 = 𝐶)
iunlub.3 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
iunlub (𝜑 𝑥𝐴 𝐵 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunlub
StepHypRef Expression
1 iunlub.3 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
21iunssd 4997 . 2 (𝜑 𝑥𝐴 𝐵𝐶)
3 iunlub.1 . . . 4 (𝜑𝑋𝐴)
4 iunlub.2 . . . . 5 ((𝜑𝑥 = 𝑋) → 𝐵 = 𝐶)
54sseq2d 3962 . . . 4 ((𝜑𝑥 = 𝑋) → (𝐶𝐵𝐶𝐶))
6 ssidd 3953 . . . 4 (𝜑𝐶𝐶)
73, 5, 6rspcedvd 3574 . . 3 (𝜑 → ∃𝑥𝐴 𝐶𝐵)
8 ssiun 4993 . . 3 (∃𝑥𝐴 𝐶𝐵𝐶 𝑥𝐴 𝐵)
97, 8syl 17 . 2 (𝜑𝐶 𝑥𝐴 𝐵)
102, 9eqssd 3947 1 (𝜑 𝑥𝐴 𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  wss 3897   ciun 4939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-v 3438  df-ss 3914  df-iun 4941
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator