Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem1 Structured version   Visualization version   GIF version

Theorem smflimsuplem1 45834
Description: If 𝐻 converges, the lim sup of 𝐹 is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem1.z 𝑍 = (ℤ𝑀)
smflimsuplem1.e 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem1.h 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
smflimsuplem1.k (𝜑𝐾𝑍)
Assertion
Ref Expression
smflimsuplem1 (𝜑 → dom (𝐻𝐾) ⊆ dom (𝐹𝐾))
Distinct variable groups:   𝑛,𝐸,𝑥   𝑚,𝐹,𝑛,𝑥   𝑛,𝐾,𝑥   𝑛,𝑍
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐸(𝑚)   𝐻(𝑥,𝑚,𝑛)   𝐾(𝑚)   𝑀(𝑥,𝑚,𝑛)   𝑍(𝑥,𝑚)

Proof of Theorem smflimsuplem1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 smflimsuplem1.h . . . . 5 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
2 fveq2 6890 . . . . . . . . . . . 12 (𝑚 = 𝑗 → (𝐹𝑚) = (𝐹𝑗))
32fveq1d 6892 . . . . . . . . . . 11 (𝑚 = 𝑗 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑗)‘𝑥))
43cbvmptv 5260 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥))
54rneqi 5935 . . . . . . . . 9 ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥))
65supeq1i 9444 . . . . . . . 8 sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )
76mpteq2i 5252 . . . . . . 7 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ))
87a1i 11 . . . . . 6 (𝑛 = 𝐾 → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )))
9 fveq2 6890 . . . . . . 7 (𝑛 = 𝐾 → (𝐸𝑛) = (𝐸𝐾))
10 fveq2 6890 . . . . . . . . . 10 (𝑛 = 𝐾 → (ℤ𝑛) = (ℤ𝐾))
1110mpteq1d 5242 . . . . . . . . 9 (𝑛 = 𝐾 → (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)) = (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)))
1211rneqd 5936 . . . . . . . 8 (𝑛 = 𝐾 → ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)) = ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)))
1312supeq1d 9443 . . . . . . 7 (𝑛 = 𝐾 → sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) = sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ))
149, 13mpteq12dv 5238 . . . . . 6 (𝑛 = 𝐾 → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )))
158, 14eqtrd 2770 . . . . 5 (𝑛 = 𝐾 → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )))
16 smflimsuplem1.k . . . . 5 (𝜑𝐾𝑍)
17 fvex 6903 . . . . . . 7 (𝐸𝐾) ∈ V
1817mptex 7226 . . . . . 6 (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )) ∈ V
1918a1i 11 . . . . 5 (𝜑 → (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )) ∈ V)
201, 15, 16, 19fvmptd3 7020 . . . 4 (𝜑 → (𝐻𝐾) = (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )))
2120dmeqd 5904 . . 3 (𝜑 → dom (𝐻𝐾) = dom (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )))
22 xrltso 13124 . . . . . 6 < Or ℝ*
2322supex 9460 . . . . 5 sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ V
24 eqid 2730 . . . . 5 (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ))
2523, 24dmmpti 6693 . . . 4 dom (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )) = (𝐸𝐾)
2625a1i 11 . . 3 (𝜑 → dom (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )) = (𝐸𝐾))
27 smflimsuplem1.e . . . 4 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
282dmeqd 5904 . . . . . . . . . 10 (𝑚 = 𝑗 → dom (𝐹𝑚) = dom (𝐹𝑗))
2928cbviinv 5043 . . . . . . . . 9 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗)
3029eleq2i 2823 . . . . . . . 8 (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑥 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗))
316eleq1i 2822 . . . . . . . 8 (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ)
3230, 31anbi12i 625 . . . . . . 7 ((𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ) ↔ (𝑥 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗) ∧ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ))
3332rabbia2 3433 . . . . . 6 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ}
3433a1i 11 . . . . 5 (𝑛 = 𝐾 → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ})
3510iineq1d 44080 . . . . . . . 8 (𝑛 = 𝐾 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗) = 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗))
3635eleq2d 2817 . . . . . . 7 (𝑛 = 𝐾 → (𝑥 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗) ↔ 𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗)))
3713eleq1d 2816 . . . . . . 7 (𝑛 = 𝐾 → (sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ))
3836, 37anbi12d 629 . . . . . 6 (𝑛 = 𝐾 → ((𝑥 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗) ∧ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ) ↔ (𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∧ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ)))
3938rabbidva2 3432 . . . . 5 (𝑛 = 𝐾 → {𝑥 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ})
4034, 39eqtrd 2770 . . . 4 (𝑛 = 𝐾 → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ})
41 eqid 2730 . . . . 5 {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ}
42 smflimsuplem1.z . . . . . . . 8 𝑍 = (ℤ𝑀)
4342, 16eluzelz2d 44421 . . . . . . 7 (𝜑𝐾 ∈ ℤ)
44 uzid 12841 . . . . . . 7 (𝐾 ∈ ℤ → 𝐾 ∈ (ℤ𝐾))
45 ne0i 4333 . . . . . . 7 (𝐾 ∈ (ℤ𝐾) → (ℤ𝐾) ≠ ∅)
4643, 44, 453syl 18 . . . . . 6 (𝜑 → (ℤ𝐾) ≠ ∅)
47 fvex 6903 . . . . . . . . 9 (𝐹𝑗) ∈ V
4847dmex 7904 . . . . . . . 8 dom (𝐹𝑗) ∈ V
4948rgenw 3063 . . . . . . 7 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∈ V
5049a1i 11 . . . . . 6 (𝜑 → ∀𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∈ V)
5146, 50iinexd 44123 . . . . 5 (𝜑 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∈ V)
5241, 51rabexd 5332 . . . 4 (𝜑 → {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
5327, 40, 16, 52fvmptd3 7020 . . 3 (𝜑 → (𝐸𝐾) = {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ})
5421, 26, 533eqtrd 2774 . 2 (𝜑 → dom (𝐻𝐾) = {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ})
55 ssrab2 4076 . . . 4 {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ} ⊆ 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗)
5655a1i 11 . . 3 (𝜑 → {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ} ⊆ 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗))
5743, 44syl 17 . . . 4 (𝜑𝐾 ∈ (ℤ𝐾))
58 fveq2 6890 . . . . 5 (𝑗 = 𝐾 → (𝐹𝑗) = (𝐹𝐾))
5958dmeqd 5904 . . . 4 (𝑗 = 𝐾 → dom (𝐹𝑗) = dom (𝐹𝐾))
60 ssid 4003 . . . . 5 dom (𝐹𝐾) ⊆ dom (𝐹𝐾)
6160a1i 11 . . . 4 (𝜑 → dom (𝐹𝐾) ⊆ dom (𝐹𝐾))
6257, 59, 61iinssd 44121 . . 3 (𝜑 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ⊆ dom (𝐹𝐾))
6356, 62sstrd 3991 . 2 (𝜑 → {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ} ⊆ dom (𝐹𝐾))
6454, 63eqsstrd 4019 1 (𝜑 → dom (𝐻𝐾) ⊆ dom (𝐹𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  wne 2938  wral 3059  {crab 3430  Vcvv 3472  wss 3947  c0 4321   ciin 4997  cmpt 5230  dom cdm 5675  ran crn 5676  cfv 6542  supcsup 9437  cr 11111  *cxr 11251   < clt 11252  cz 12562  cuz 12826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-pre-lttri 11186  ax-pre-lttrn 11187
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-neg 11451  df-z 12563  df-uz 12827
This theorem is referenced by:  smflimsuplem4  45837
  Copyright terms: Public domain W3C validator