Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem1 Structured version   Visualization version   GIF version

Theorem smflimsuplem1 46857
Description: If 𝐻 converges, the lim sup of 𝐹 is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem1.z 𝑍 = (ℤ𝑀)
smflimsuplem1.e 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem1.h 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
smflimsuplem1.k (𝜑𝐾𝑍)
Assertion
Ref Expression
smflimsuplem1 (𝜑 → dom (𝐻𝐾) ⊆ dom (𝐹𝐾))
Distinct variable groups:   𝑛,𝐸,𝑥   𝑚,𝐹,𝑛,𝑥   𝑛,𝐾,𝑥   𝑛,𝑍
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐸(𝑚)   𝐻(𝑥,𝑚,𝑛)   𝐾(𝑚)   𝑀(𝑥,𝑚,𝑛)   𝑍(𝑥,𝑚)

Proof of Theorem smflimsuplem1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 smflimsuplem1.h . . . . 5 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
2 fveq2 6822 . . . . . . . . . . . 12 (𝑚 = 𝑗 → (𝐹𝑚) = (𝐹𝑗))
32fveq1d 6824 . . . . . . . . . . 11 (𝑚 = 𝑗 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑗)‘𝑥))
43cbvmptv 5195 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥))
54rneqi 5877 . . . . . . . . 9 ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥))
65supeq1i 9331 . . . . . . . 8 sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )
76mpteq2i 5187 . . . . . . 7 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ))
87a1i 11 . . . . . 6 (𝑛 = 𝐾 → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )))
9 fveq2 6822 . . . . . . 7 (𝑛 = 𝐾 → (𝐸𝑛) = (𝐸𝐾))
10 fveq2 6822 . . . . . . . . . 10 (𝑛 = 𝐾 → (ℤ𝑛) = (ℤ𝐾))
1110mpteq1d 5181 . . . . . . . . 9 (𝑛 = 𝐾 → (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)) = (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)))
1211rneqd 5878 . . . . . . . 8 (𝑛 = 𝐾 → ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)) = ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)))
1312supeq1d 9330 . . . . . . 7 (𝑛 = 𝐾 → sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) = sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ))
149, 13mpteq12dv 5178 . . . . . 6 (𝑛 = 𝐾 → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )))
158, 14eqtrd 2766 . . . . 5 (𝑛 = 𝐾 → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )))
16 smflimsuplem1.k . . . . 5 (𝜑𝐾𝑍)
17 fvex 6835 . . . . . . 7 (𝐸𝐾) ∈ V
1817mptex 7157 . . . . . 6 (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )) ∈ V
1918a1i 11 . . . . 5 (𝜑 → (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )) ∈ V)
201, 15, 16, 19fvmptd3 6952 . . . 4 (𝜑 → (𝐻𝐾) = (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )))
2120dmeqd 5845 . . 3 (𝜑 → dom (𝐻𝐾) = dom (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )))
22 xrltso 13037 . . . . . 6 < Or ℝ*
2322supex 9348 . . . . 5 sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ V
24 eqid 2731 . . . . 5 (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ))
2523, 24dmmpti 6625 . . . 4 dom (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )) = (𝐸𝐾)
2625a1i 11 . . 3 (𝜑 → dom (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )) = (𝐸𝐾))
27 smflimsuplem1.e . . . 4 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
282dmeqd 5845 . . . . . . . . . 10 (𝑚 = 𝑗 → dom (𝐹𝑚) = dom (𝐹𝑗))
2928cbviinv 4990 . . . . . . . . 9 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗)
3029eleq2i 2823 . . . . . . . 8 (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑥 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗))
316eleq1i 2822 . . . . . . . 8 (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ)
3230, 31anbi12i 628 . . . . . . 7 ((𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ) ↔ (𝑥 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗) ∧ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ))
3332rabbia2 3398 . . . . . 6 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ}
3433a1i 11 . . . . 5 (𝑛 = 𝐾 → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ})
3510iineq1d 45126 . . . . . . . 8 (𝑛 = 𝐾 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗) = 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗))
3635eleq2d 2817 . . . . . . 7 (𝑛 = 𝐾 → (𝑥 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗) ↔ 𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗)))
3713eleq1d 2816 . . . . . . 7 (𝑛 = 𝐾 → (sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ))
3836, 37anbi12d 632 . . . . . 6 (𝑛 = 𝐾 → ((𝑥 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗) ∧ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ) ↔ (𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∧ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ)))
3938rabbidva2 3397 . . . . 5 (𝑛 = 𝐾 → {𝑥 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ})
4034, 39eqtrd 2766 . . . 4 (𝑛 = 𝐾 → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ})
41 eqid 2731 . . . . 5 {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ}
42 smflimsuplem1.z . . . . . . . 8 𝑍 = (ℤ𝑀)
4342, 16eluzelz2d 45450 . . . . . . 7 (𝜑𝐾 ∈ ℤ)
44 uzid 12744 . . . . . . 7 (𝐾 ∈ ℤ → 𝐾 ∈ (ℤ𝐾))
45 ne0i 4291 . . . . . . 7 (𝐾 ∈ (ℤ𝐾) → (ℤ𝐾) ≠ ∅)
4643, 44, 453syl 18 . . . . . 6 (𝜑 → (ℤ𝐾) ≠ ∅)
47 fvex 6835 . . . . . . . . 9 (𝐹𝑗) ∈ V
4847dmex 7839 . . . . . . . 8 dom (𝐹𝑗) ∈ V
4948rgenw 3051 . . . . . . 7 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∈ V
5049a1i 11 . . . . . 6 (𝜑 → ∀𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∈ V)
5146, 50iinexd 45169 . . . . 5 (𝜑 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∈ V)
5241, 51rabexd 5278 . . . 4 (𝜑 → {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
5327, 40, 16, 52fvmptd3 6952 . . 3 (𝜑 → (𝐸𝐾) = {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ})
5421, 26, 533eqtrd 2770 . 2 (𝜑 → dom (𝐻𝐾) = {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ})
55 ssrab2 4030 . . . 4 {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ} ⊆ 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗)
5655a1i 11 . . 3 (𝜑 → {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ} ⊆ 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗))
5743, 44syl 17 . . . 4 (𝜑𝐾 ∈ (ℤ𝐾))
58 fveq2 6822 . . . . 5 (𝑗 = 𝐾 → (𝐹𝑗) = (𝐹𝐾))
5958dmeqd 5845 . . . 4 (𝑗 = 𝐾 → dom (𝐹𝑗) = dom (𝐹𝐾))
60 ssid 3957 . . . . 5 dom (𝐹𝐾) ⊆ dom (𝐹𝐾)
6160a1i 11 . . . 4 (𝜑 → dom (𝐹𝐾) ⊆ dom (𝐹𝐾))
6257, 59, 61iinssd 45167 . . 3 (𝜑 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ⊆ dom (𝐹𝐾))
6356, 62sstrd 3945 . 2 (𝜑 → {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ} ⊆ dom (𝐹𝐾))
6454, 63eqsstrd 3969 1 (𝜑 → dom (𝐻𝐾) ⊆ dom (𝐹𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  Vcvv 3436  wss 3902  c0 4283   ciin 4942  cmpt 5172  dom cdm 5616  ran crn 5617  cfv 6481  supcsup 9324  cr 11002  *cxr 11142   < clt 11143  cz 12465  cuz 12729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-pre-lttri 11077  ax-pre-lttrn 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-neg 11344  df-z 12466  df-uz 12730
This theorem is referenced by:  smflimsuplem4  46860
  Copyright terms: Public domain W3C validator