Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem1 Structured version   Visualization version   GIF version

Theorem smflimsuplem1 46775
Description: If 𝐻 converges, the lim sup of 𝐹 is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem1.z 𝑍 = (ℤ𝑀)
smflimsuplem1.e 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem1.h 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
smflimsuplem1.k (𝜑𝐾𝑍)
Assertion
Ref Expression
smflimsuplem1 (𝜑 → dom (𝐻𝐾) ⊆ dom (𝐹𝐾))
Distinct variable groups:   𝑛,𝐸,𝑥   𝑚,𝐹,𝑛,𝑥   𝑛,𝐾,𝑥   𝑛,𝑍
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐸(𝑚)   𝐻(𝑥,𝑚,𝑛)   𝐾(𝑚)   𝑀(𝑥,𝑚,𝑛)   𝑍(𝑥,𝑚)

Proof of Theorem smflimsuplem1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 smflimsuplem1.h . . . . 5 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
2 fveq2 6906 . . . . . . . . . . . 12 (𝑚 = 𝑗 → (𝐹𝑚) = (𝐹𝑗))
32fveq1d 6908 . . . . . . . . . . 11 (𝑚 = 𝑗 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑗)‘𝑥))
43cbvmptv 5260 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥))
54rneqi 5950 . . . . . . . . 9 ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥))
65supeq1i 9484 . . . . . . . 8 sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )
76mpteq2i 5252 . . . . . . 7 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ))
87a1i 11 . . . . . 6 (𝑛 = 𝐾 → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )))
9 fveq2 6906 . . . . . . 7 (𝑛 = 𝐾 → (𝐸𝑛) = (𝐸𝐾))
10 fveq2 6906 . . . . . . . . . 10 (𝑛 = 𝐾 → (ℤ𝑛) = (ℤ𝐾))
1110mpteq1d 5242 . . . . . . . . 9 (𝑛 = 𝐾 → (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)) = (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)))
1211rneqd 5951 . . . . . . . 8 (𝑛 = 𝐾 → ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)) = ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)))
1312supeq1d 9483 . . . . . . 7 (𝑛 = 𝐾 → sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) = sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ))
149, 13mpteq12dv 5238 . . . . . 6 (𝑛 = 𝐾 → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )))
158, 14eqtrd 2774 . . . . 5 (𝑛 = 𝐾 → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )))
16 smflimsuplem1.k . . . . 5 (𝜑𝐾𝑍)
17 fvex 6919 . . . . . . 7 (𝐸𝐾) ∈ V
1817mptex 7242 . . . . . 6 (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )) ∈ V
1918a1i 11 . . . . 5 (𝜑 → (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )) ∈ V)
201, 15, 16, 19fvmptd3 7038 . . . 4 (𝜑 → (𝐻𝐾) = (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )))
2120dmeqd 5918 . . 3 (𝜑 → dom (𝐻𝐾) = dom (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )))
22 xrltso 13179 . . . . . 6 < Or ℝ*
2322supex 9500 . . . . 5 sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ V
24 eqid 2734 . . . . 5 (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ))
2523, 24dmmpti 6712 . . . 4 dom (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )) = (𝐸𝐾)
2625a1i 11 . . 3 (𝜑 → dom (𝑥 ∈ (𝐸𝐾) ↦ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < )) = (𝐸𝐾))
27 smflimsuplem1.e . . . 4 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
282dmeqd 5918 . . . . . . . . . 10 (𝑚 = 𝑗 → dom (𝐹𝑚) = dom (𝐹𝑗))
2928cbviinv 5045 . . . . . . . . 9 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗)
3029eleq2i 2830 . . . . . . . 8 (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑥 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗))
316eleq1i 2829 . . . . . . . 8 (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ)
3230, 31anbi12i 628 . . . . . . 7 ((𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ) ↔ (𝑥 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗) ∧ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ))
3332rabbia2 3435 . . . . . 6 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ}
3433a1i 11 . . . . 5 (𝑛 = 𝐾 → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ})
3510iineq1d 45029 . . . . . . . 8 (𝑛 = 𝐾 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗) = 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗))
3635eleq2d 2824 . . . . . . 7 (𝑛 = 𝐾 → (𝑥 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗) ↔ 𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗)))
3713eleq1d 2823 . . . . . . 7 (𝑛 = 𝐾 → (sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ))
3836, 37anbi12d 632 . . . . . 6 (𝑛 = 𝐾 → ((𝑥 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗) ∧ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ) ↔ (𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∧ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ)))
3938rabbidva2 3434 . . . . 5 (𝑛 = 𝐾 → {𝑥 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝑛) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ})
4034, 39eqtrd 2774 . . . 4 (𝑛 = 𝐾 → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ})
41 eqid 2734 . . . . 5 {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ}
42 smflimsuplem1.z . . . . . . . 8 𝑍 = (ℤ𝑀)
4342, 16eluzelz2d 45362 . . . . . . 7 (𝜑𝐾 ∈ ℤ)
44 uzid 12890 . . . . . . 7 (𝐾 ∈ ℤ → 𝐾 ∈ (ℤ𝐾))
45 ne0i 4346 . . . . . . 7 (𝐾 ∈ (ℤ𝐾) → (ℤ𝐾) ≠ ∅)
4643, 44, 453syl 18 . . . . . 6 (𝜑 → (ℤ𝐾) ≠ ∅)
47 fvex 6919 . . . . . . . . 9 (𝐹𝑗) ∈ V
4847dmex 7931 . . . . . . . 8 dom (𝐹𝑗) ∈ V
4948rgenw 3062 . . . . . . 7 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∈ V
5049a1i 11 . . . . . 6 (𝜑 → ∀𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∈ V)
5146, 50iinexd 45072 . . . . 5 (𝜑 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∈ V)
5241, 51rabexd 5345 . . . 4 (𝜑 → {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
5327, 40, 16, 52fvmptd3 7038 . . 3 (𝜑 → (𝐸𝐾) = {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ})
5421, 26, 533eqtrd 2778 . 2 (𝜑 → dom (𝐻𝐾) = {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ})
55 ssrab2 4089 . . . 4 {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ} ⊆ 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗)
5655a1i 11 . . 3 (𝜑 → {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ} ⊆ 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗))
5743, 44syl 17 . . . 4 (𝜑𝐾 ∈ (ℤ𝐾))
58 fveq2 6906 . . . . 5 (𝑗 = 𝐾 → (𝐹𝑗) = (𝐹𝐾))
5958dmeqd 5918 . . . 4 (𝑗 = 𝐾 → dom (𝐹𝑗) = dom (𝐹𝐾))
60 ssid 4017 . . . . 5 dom (𝐹𝐾) ⊆ dom (𝐹𝐾)
6160a1i 11 . . . 4 (𝜑 → dom (𝐹𝐾) ⊆ dom (𝐹𝐾))
6257, 59, 61iinssd 45070 . . 3 (𝜑 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ⊆ dom (𝐹𝐾))
6356, 62sstrd 4005 . 2 (𝜑 → {𝑥 𝑗 ∈ (ℤ𝐾)dom (𝐹𝑗) ∣ sup(ran (𝑗 ∈ (ℤ𝐾) ↦ ((𝐹𝑗)‘𝑥)), ℝ*, < ) ∈ ℝ} ⊆ dom (𝐹𝐾))
6454, 63eqsstrd 4033 1 (𝜑 → dom (𝐻𝐾) ⊆ dom (𝐹𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2105  wne 2937  wral 3058  {crab 3432  Vcvv 3477  wss 3962  c0 4338   ciin 4996  cmpt 5230  dom cdm 5688  ran crn 5689  cfv 6562  supcsup 9477  cr 11151  *cxr 11291   < clt 11292  cz 12610  cuz 12875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-pre-lttri 11226  ax-pre-lttrn 11227
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-neg 11492  df-z 12611  df-uz 12876
This theorem is referenced by:  smflimsuplem4  46778
  Copyright terms: Public domain W3C validator