Step | Hyp | Ref
| Expression |
1 | | smflimsuplem1.h |
. . . . 5
⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, <
))) |
2 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑗 → (𝐹‘𝑚) = (𝐹‘𝑗)) |
3 | 2 | fveq1d 6758 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑗 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑗)‘𝑥)) |
4 | 3 | cbvmptv 5183 |
. . . . . . . . . 10
⊢ (𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑗 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑗)‘𝑥)) |
5 | 4 | rneqi 5835 |
. . . . . . . . 9
⊢ ran
(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)) = ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑗)‘𝑥)) |
6 | 5 | supeq1i 9136 |
. . . . . . . 8
⊢ sup(ran
(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) = sup(ran
(𝑗 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, <
) |
7 | 6 | mpteq2i 5175 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, <
)) |
8 | 7 | a1i 11 |
. . . . . 6
⊢ (𝑛 = 𝐾 → (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, <
))) |
9 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑛 = 𝐾 → (𝐸‘𝑛) = (𝐸‘𝐾)) |
10 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑛 = 𝐾 → (ℤ≥‘𝑛) =
(ℤ≥‘𝐾)) |
11 | 10 | mpteq1d 5165 |
. . . . . . . . 9
⊢ (𝑛 = 𝐾 → (𝑗 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑗)‘𝑥)) = (𝑗 ∈ (ℤ≥‘𝐾) ↦ ((𝐹‘𝑗)‘𝑥))) |
12 | 11 | rneqd 5836 |
. . . . . . . 8
⊢ (𝑛 = 𝐾 → ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑗)‘𝑥)) = ran (𝑗 ∈ (ℤ≥‘𝐾) ↦ ((𝐹‘𝑗)‘𝑥))) |
13 | 12 | supeq1d 9135 |
. . . . . . 7
⊢ (𝑛 = 𝐾 → sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < ) = sup(ran
(𝑗 ∈
(ℤ≥‘𝐾) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, <
)) |
14 | 9, 13 | mpteq12dv 5161 |
. . . . . 6
⊢ (𝑛 = 𝐾 → (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸‘𝐾) ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝐾) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, <
))) |
15 | 8, 14 | eqtrd 2778 |
. . . . 5
⊢ (𝑛 = 𝐾 → (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸‘𝐾) ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝐾) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, <
))) |
16 | | smflimsuplem1.k |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ 𝑍) |
17 | | fvex 6769 |
. . . . . . 7
⊢ (𝐸‘𝐾) ∈ V |
18 | 17 | mptex 7081 |
. . . . . 6
⊢ (𝑥 ∈ (𝐸‘𝐾) ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝐾) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < )) ∈
V |
19 | 18 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝐸‘𝐾) ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝐾) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < )) ∈
V) |
20 | 1, 15, 16, 19 | fvmptd3 6880 |
. . . 4
⊢ (𝜑 → (𝐻‘𝐾) = (𝑥 ∈ (𝐸‘𝐾) ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝐾) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, <
))) |
21 | 20 | dmeqd 5803 |
. . 3
⊢ (𝜑 → dom (𝐻‘𝐾) = dom (𝑥 ∈ (𝐸‘𝐾) ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝐾) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, <
))) |
22 | | xrltso 12804 |
. . . . . 6
⊢ < Or
ℝ* |
23 | 22 | supex 9152 |
. . . . 5
⊢ sup(ran
(𝑗 ∈
(ℤ≥‘𝐾) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < ) ∈
V |
24 | | eqid 2738 |
. . . . 5
⊢ (𝑥 ∈ (𝐸‘𝐾) ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝐾) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸‘𝐾) ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝐾) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, <
)) |
25 | 23, 24 | dmmpti 6561 |
. . . 4
⊢ dom
(𝑥 ∈ (𝐸‘𝐾) ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝐾) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < )) = (𝐸‘𝐾) |
26 | 25 | a1i 11 |
. . 3
⊢ (𝜑 → dom (𝑥 ∈ (𝐸‘𝐾) ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝐾) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < )) = (𝐸‘𝐾)) |
27 | | smflimsuplem1.e |
. . . 4
⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
28 | 2 | dmeqd 5803 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑗 → dom (𝐹‘𝑚) = dom (𝐹‘𝑗)) |
29 | 28 | cbviinv 4967 |
. . . . . . . . 9
⊢ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) = ∩ 𝑗 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑗) |
30 | 29 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ↔ 𝑥 ∈ ∩
𝑗 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑗)) |
31 | 6 | eleq1i 2829 |
. . . . . . . 8
⊢ (sup(ran
(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ ↔ sup(ran (𝑗
∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < ) ∈
ℝ) |
32 | 30, 31 | anbi12i 626 |
. . . . . . 7
⊢ ((𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ) ↔ (𝑥 ∈
∩ 𝑗 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑗) ∧ sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < ) ∈
ℝ)) |
33 | 32 | rabbia2 3401 |
. . . . . 6
⊢ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} = {𝑥 ∈
∩ 𝑗 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑗) ∣ sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < ) ∈
ℝ} |
34 | 33 | a1i 11 |
. . . . 5
⊢ (𝑛 = 𝐾 → {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} = {𝑥 ∈
∩ 𝑗 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑗) ∣ sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
35 | 10 | iineq1d 42529 |
. . . . . . . 8
⊢ (𝑛 = 𝐾 → ∩
𝑗 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑗) = ∩ 𝑗 ∈
(ℤ≥‘𝐾)dom (𝐹‘𝑗)) |
36 | 35 | eleq2d 2824 |
. . . . . . 7
⊢ (𝑛 = 𝐾 → (𝑥 ∈ ∩
𝑗 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑗) ↔ 𝑥 ∈ ∩
𝑗 ∈
(ℤ≥‘𝐾)dom (𝐹‘𝑗))) |
37 | 13 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑛 = 𝐾 → (sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < ) ∈
ℝ ↔ sup(ran (𝑗
∈ (ℤ≥‘𝐾) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < ) ∈
ℝ)) |
38 | 36, 37 | anbi12d 630 |
. . . . . 6
⊢ (𝑛 = 𝐾 → ((𝑥 ∈ ∩
𝑗 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑗) ∧ sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < ) ∈
ℝ) ↔ (𝑥 ∈
∩ 𝑗 ∈ (ℤ≥‘𝐾)dom (𝐹‘𝑗) ∧ sup(ran (𝑗 ∈ (ℤ≥‘𝐾) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < ) ∈
ℝ))) |
39 | 38 | rabbidva2 3400 |
. . . . 5
⊢ (𝑛 = 𝐾 → {𝑥 ∈ ∩
𝑗 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑗) ∣ sup(ran (𝑗 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < ) ∈
ℝ} = {𝑥 ∈
∩ 𝑗 ∈ (ℤ≥‘𝐾)dom (𝐹‘𝑗) ∣ sup(ran (𝑗 ∈ (ℤ≥‘𝐾) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
40 | 34, 39 | eqtrd 2778 |
. . . 4
⊢ (𝑛 = 𝐾 → {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} = {𝑥 ∈
∩ 𝑗 ∈ (ℤ≥‘𝐾)dom (𝐹‘𝑗) ∣ sup(ran (𝑗 ∈ (ℤ≥‘𝐾) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
41 | | eqid 2738 |
. . . . 5
⊢ {𝑥 ∈ ∩ 𝑗 ∈ (ℤ≥‘𝐾)dom (𝐹‘𝑗) ∣ sup(ran (𝑗 ∈ (ℤ≥‘𝐾) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < ) ∈
ℝ} = {𝑥 ∈
∩ 𝑗 ∈ (ℤ≥‘𝐾)dom (𝐹‘𝑗) ∣ sup(ran (𝑗 ∈ (ℤ≥‘𝐾) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < ) ∈
ℝ} |
42 | | smflimsuplem1.z |
. . . . . . . 8
⊢ 𝑍 =
(ℤ≥‘𝑀) |
43 | 42, 16 | eluzelz2d 42843 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ ℤ) |
44 | | uzid 12526 |
. . . . . . 7
⊢ (𝐾 ∈ ℤ → 𝐾 ∈
(ℤ≥‘𝐾)) |
45 | | ne0i 4265 |
. . . . . . 7
⊢ (𝐾 ∈
(ℤ≥‘𝐾) → (ℤ≥‘𝐾) ≠ ∅) |
46 | 43, 44, 45 | 3syl 18 |
. . . . . 6
⊢ (𝜑 →
(ℤ≥‘𝐾) ≠ ∅) |
47 | | fvex 6769 |
. . . . . . . . 9
⊢ (𝐹‘𝑗) ∈ V |
48 | 47 | dmex 7732 |
. . . . . . . 8
⊢ dom
(𝐹‘𝑗) ∈ V |
49 | 48 | rgenw 3075 |
. . . . . . 7
⊢
∀𝑗 ∈
(ℤ≥‘𝐾)dom (𝐹‘𝑗) ∈ V |
50 | 49 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ∀𝑗 ∈ (ℤ≥‘𝐾)dom (𝐹‘𝑗) ∈ V) |
51 | 46, 50 | iinexd 42571 |
. . . . 5
⊢ (𝜑 → ∩ 𝑗 ∈ (ℤ≥‘𝐾)dom (𝐹‘𝑗) ∈ V) |
52 | 41, 51 | rabexd 5252 |
. . . 4
⊢ (𝜑 → {𝑥 ∈ ∩
𝑗 ∈
(ℤ≥‘𝐾)dom (𝐹‘𝑗) ∣ sup(ran (𝑗 ∈ (ℤ≥‘𝐾) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < ) ∈
ℝ} ∈ V) |
53 | 27, 40, 16, 52 | fvmptd3 6880 |
. . 3
⊢ (𝜑 → (𝐸‘𝐾) = {𝑥 ∈ ∩
𝑗 ∈
(ℤ≥‘𝐾)dom (𝐹‘𝑗) ∣ sup(ran (𝑗 ∈ (ℤ≥‘𝐾) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
54 | 21, 26, 53 | 3eqtrd 2782 |
. 2
⊢ (𝜑 → dom (𝐻‘𝐾) = {𝑥 ∈ ∩
𝑗 ∈
(ℤ≥‘𝐾)dom (𝐹‘𝑗) ∣ sup(ran (𝑗 ∈ (ℤ≥‘𝐾) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
55 | | ssrab2 4009 |
. . . 4
⊢ {𝑥 ∈ ∩ 𝑗 ∈ (ℤ≥‘𝐾)dom (𝐹‘𝑗) ∣ sup(ran (𝑗 ∈ (ℤ≥‘𝐾) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < ) ∈
ℝ} ⊆ ∩ 𝑗 ∈ (ℤ≥‘𝐾)dom (𝐹‘𝑗) |
56 | 55 | a1i 11 |
. . 3
⊢ (𝜑 → {𝑥 ∈ ∩
𝑗 ∈
(ℤ≥‘𝐾)dom (𝐹‘𝑗) ∣ sup(ran (𝑗 ∈ (ℤ≥‘𝐾) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < ) ∈
ℝ} ⊆ ∩ 𝑗 ∈ (ℤ≥‘𝐾)dom (𝐹‘𝑗)) |
57 | 43, 44 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝐾)) |
58 | | fveq2 6756 |
. . . . 5
⊢ (𝑗 = 𝐾 → (𝐹‘𝑗) = (𝐹‘𝐾)) |
59 | 58 | dmeqd 5803 |
. . . 4
⊢ (𝑗 = 𝐾 → dom (𝐹‘𝑗) = dom (𝐹‘𝐾)) |
60 | | ssid 3939 |
. . . . 5
⊢ dom
(𝐹‘𝐾) ⊆ dom (𝐹‘𝐾) |
61 | 60 | a1i 11 |
. . . 4
⊢ (𝜑 → dom (𝐹‘𝐾) ⊆ dom (𝐹‘𝐾)) |
62 | 57, 59, 61 | iinssd 42569 |
. . 3
⊢ (𝜑 → ∩ 𝑗 ∈ (ℤ≥‘𝐾)dom (𝐹‘𝑗) ⊆ dom (𝐹‘𝐾)) |
63 | 56, 62 | sstrd 3927 |
. 2
⊢ (𝜑 → {𝑥 ∈ ∩
𝑗 ∈
(ℤ≥‘𝐾)dom (𝐹‘𝑗) ∣ sup(ran (𝑗 ∈ (ℤ≥‘𝐾) ↦ ((𝐹‘𝑗)‘𝑥)), ℝ*, < ) ∈
ℝ} ⊆ dom (𝐹‘𝐾)) |
64 | 54, 63 | eqsstrd 3955 |
1
⊢ (𝜑 → dom (𝐻‘𝐾) ⊆ dom (𝐹‘𝐾)) |