MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinss Structured version   Visualization version   GIF version

Theorem iinss 5008
Description: Subset implication for an indexed intersection. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iinss (∃𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem iinss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliin 4949 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵))
21elv 3443 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵)
3 ssel 3931 . . . . 5 (𝐵𝐶 → (𝑦𝐵𝑦𝐶))
43reximi 3067 . . . 4 (∃𝑥𝐴 𝐵𝐶 → ∃𝑥𝐴 (𝑦𝐵𝑦𝐶))
5 r19.36v 3157 . . . 4 (∃𝑥𝐴 (𝑦𝐵𝑦𝐶) → (∀𝑥𝐴 𝑦𝐵𝑦𝐶))
64, 5syl 17 . . 3 (∃𝑥𝐴 𝐵𝐶 → (∀𝑥𝐴 𝑦𝐵𝑦𝐶))
72, 6biimtrid 242 . 2 (∃𝑥𝐴 𝐵𝐶 → (𝑦 𝑥𝐴 𝐵𝑦𝐶))
87ssrdv 3943 1 (∃𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wral 3044  wrex 3053  Vcvv 3438  wss 3905   ciin 4945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-v 3440  df-ss 3922  df-iin 4947
This theorem is referenced by:  riinn0  5035  reliin  5764  cnviin  6238  iiner  8723  scott0  9801  cfslb  10179  ptbasfi  23485  iscmet3  25210  fnemeet1  36359  pmapglb2N  39770  pmapglb2xN  39771  iinssd  45129  iooiinicc  45543  iooiinioc  45557  meaiininclem  46487  iinhoiicclem  46674  smflim  46778  smflimsuplem7  46827  iinglb  48826  iineqconst2  48828  iinfssc  49062
  Copyright terms: Public domain W3C validator