| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iinss | Structured version Visualization version GIF version | ||
| Description: Subset implication for an indexed intersection. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| iinss | ⊢ (∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliin 4956 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
| 2 | 1 | elv 3449 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
| 3 | ssel 3937 | . . . . 5 ⊢ (𝐵 ⊆ 𝐶 → (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) | |
| 4 | 3 | reximi 3067 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) |
| 5 | r19.36v 3161 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) |
| 7 | 2, 6 | biimtrid 242 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ∈ 𝐶)) |
| 8 | 7 | ssrdv 3949 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3444 ⊆ wss 3911 ∩ ciin 4952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3446 df-ss 3928 df-iin 4954 |
| This theorem is referenced by: riinn0 5042 reliin 5771 cnviin 6247 iiner 8739 scott0 9815 cfslb 10195 ptbasfi 23444 iscmet3 25169 fnemeet1 36327 pmapglb2N 39738 pmapglb2xN 39739 iinssd 45098 iooiinicc 45513 iooiinioc 45527 meaiininclem 46457 iinhoiicclem 46644 smflim 46748 smflimsuplem7 46797 iinglb 48783 iineqconst2 48785 iinfssc 49019 |
| Copyright terms: Public domain | W3C validator |