MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinss Structured version   Visualization version   GIF version

Theorem iinss 5079
Description: Subset implication for an indexed intersection. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iinss (∃𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem iinss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliin 5020 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵))
21elv 3493 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵)
3 ssel 4002 . . . . 5 (𝐵𝐶 → (𝑦𝐵𝑦𝐶))
43reximi 3090 . . . 4 (∃𝑥𝐴 𝐵𝐶 → ∃𝑥𝐴 (𝑦𝐵𝑦𝐶))
5 r19.36v 3190 . . . 4 (∃𝑥𝐴 (𝑦𝐵𝑦𝐶) → (∀𝑥𝐴 𝑦𝐵𝑦𝐶))
64, 5syl 17 . . 3 (∃𝑥𝐴 𝐵𝐶 → (∀𝑥𝐴 𝑦𝐵𝑦𝐶))
72, 6biimtrid 242 . 2 (∃𝑥𝐴 𝐵𝐶 → (𝑦 𝑥𝐴 𝐵𝑦𝐶))
87ssrdv 4014 1 (∃𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  wss 3976   ciin 5016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-v 3490  df-ss 3993  df-iin 5018
This theorem is referenced by:  riinn0  5106  reliin  5841  cnviin  6317  iiner  8847  scott0  9955  cfslb  10335  ptbasfi  23610  iscmet3  25346  fnemeet1  36332  pmapglb2N  39728  pmapglb2xN  39729  iinssd  45033  iooiinicc  45460  iooiinioc  45474  meaiininclem  46407  iinhoiicclem  46594  smflim  46698  smflimsuplem7  46747
  Copyright terms: Public domain W3C validator