MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinss Structured version   Visualization version   GIF version

Theorem iinss 5037
Description: Subset implication for an indexed intersection. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iinss (∃𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem iinss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliin 4977 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵))
21elv 3469 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵)
3 ssel 3957 . . . . 5 (𝐵𝐶 → (𝑦𝐵𝑦𝐶))
43reximi 3075 . . . 4 (∃𝑥𝐴 𝐵𝐶 → ∃𝑥𝐴 (𝑦𝐵𝑦𝐶))
5 r19.36v 3170 . . . 4 (∃𝑥𝐴 (𝑦𝐵𝑦𝐶) → (∀𝑥𝐴 𝑦𝐵𝑦𝐶))
64, 5syl 17 . . 3 (∃𝑥𝐴 𝐵𝐶 → (∀𝑥𝐴 𝑦𝐵𝑦𝐶))
72, 6biimtrid 242 . 2 (∃𝑥𝐴 𝐵𝐶 → (𝑦 𝑥𝐴 𝐵𝑦𝐶))
87ssrdv 3969 1 (∃𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wral 3052  wrex 3061  Vcvv 3464  wss 3931   ciin 4973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-v 3466  df-ss 3948  df-iin 4975
This theorem is referenced by:  riinn0  5064  reliin  5801  cnviin  6280  iiner  8808  scott0  9905  cfslb  10285  ptbasfi  23524  iscmet3  25250  fnemeet1  36389  pmapglb2N  39795  pmapglb2xN  39796  iinssd  45122  iooiinicc  45538  iooiinioc  45552  meaiininclem  46482  iinhoiicclem  46669  smflim  46773  smflimsuplem7  46822  iinglb  48767  iineqconst2  48769  iinfssc  48991
  Copyright terms: Public domain W3C validator