Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsuplem3 Structured version   Visualization version   GIF version

Theorem smfsuplem3 43231
 Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsuplem3.m (𝜑𝑀 ∈ ℤ)
smfsuplem3.z 𝑍 = (ℤ𝑀)
smfsuplem3.s (𝜑𝑆 ∈ SAlg)
smfsuplem3.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfsuplem3.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
smfsuplem3.g 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
Assertion
Ref Expression
smfsuplem3 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐷,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥,𝑦   𝑛,𝑀   𝑆,𝑛,𝑦   𝑛,𝑍,𝑥,𝑦   𝜑,𝑛,𝑦,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦)

Proof of Theorem smfsuplem3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . 2 𝑎𝜑
2 smfsuplem3.s . 2 (𝜑𝑆 ∈ SAlg)
3 smfsuplem3.d . . . . 5 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
4 ssrab2 4031 . . . . 5 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ⊆ 𝑛𝑍 dom (𝐹𝑛)
53, 4eqsstri 3976 . . . 4 𝐷 𝑛𝑍 dom (𝐹𝑛)
65a1i 11 . . 3 (𝜑𝐷 𝑛𝑍 dom (𝐹𝑛))
7 smfsuplem3.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
8 uzid 12233 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
97, 8syl 17 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
10 smfsuplem3.z . . . . 5 𝑍 = (ℤ𝑀)
119, 10eleqtrrdi 2922 . . . 4 (𝜑𝑀𝑍)
12 fveq2 6642 . . . . 5 (𝑛 = 𝑀 → (𝐹𝑛) = (𝐹𝑀))
1312dmeqd 5746 . . . 4 (𝑛 = 𝑀 → dom (𝐹𝑛) = dom (𝐹𝑀))
14 smfsuplem3.f . . . . . 6 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1514, 11ffvelrnd 6824 . . . . 5 (𝜑 → (𝐹𝑀) ∈ (SMblFn‘𝑆))
16 eqid 2820 . . . . 5 dom (𝐹𝑀) = dom (𝐹𝑀)
172, 15, 16smfdmss 43154 . . . 4 (𝜑 → dom (𝐹𝑀) ⊆ 𝑆)
1811, 13, 17iinssd 41547 . . 3 (𝜑 𝑛𝑍 dom (𝐹𝑛) ⊆ 𝑆)
196, 18sstrd 3952 . 2 (𝜑𝐷 𝑆)
20 nfv 1915 . . . 4 𝑛(𝜑𝑥𝐷)
2111ne0d 4273 . . . . 5 (𝜑𝑍 ≠ ∅)
2221adantr 483 . . . 4 ((𝜑𝑥𝐷) → 𝑍 ≠ ∅)
232adantr 483 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
2414ffvelrnda 6823 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
25 eqid 2820 . . . . . . 7 dom (𝐹𝑛) = dom (𝐹𝑛)
2623, 24, 25smff 43153 . . . . . 6 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
2726adantlr 713 . . . . 5 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
28 iinss2 4953 . . . . . . . 8 (𝑛𝑍 𝑛𝑍 dom (𝐹𝑛) ⊆ dom (𝐹𝑛))
2928adantl 484 . . . . . . 7 ((𝑥𝐷𝑛𝑍) → 𝑛𝑍 dom (𝐹𝑛) ⊆ dom (𝐹𝑛))
305sseli 3938 . . . . . . . 8 (𝑥𝐷𝑥 𝑛𝑍 dom (𝐹𝑛))
3130adantr 483 . . . . . . 7 ((𝑥𝐷𝑛𝑍) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
3229, 31sseldd 3943 . . . . . 6 ((𝑥𝐷𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
3332adantll 712 . . . . 5 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
3427, 33ffvelrnd 6824 . . . 4 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
353rabeq2i 3463 . . . . . 6 (𝑥𝐷 ↔ (𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦))
3635simprbi 499 . . . . 5 (𝑥𝐷 → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
3736adantl 484 . . . 4 ((𝜑𝑥𝐷) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
3820, 22, 34, 37suprclrnmpt 41673 . . 3 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ ℝ)
39 smfsuplem3.g . . 3 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
4038, 39fmptd 6850 . 2 (𝜑𝐺:𝐷⟶ℝ)
417adantr 483 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑀 ∈ ℤ)
422adantr 483 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
4314adantr 483 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝐹:𝑍⟶(SMblFn‘𝑆))
44 simpr 487 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
4541, 10, 42, 43, 3, 39, 44smfsuplem2 43230 . 2 ((𝜑𝑎 ∈ ℝ) → (𝐺 “ (-∞(,]𝑎)) ∈ (𝑆t 𝐷))
461, 2, 19, 40, 45issmfle2d 43227 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   = wceq 1537   ∈ wcel 2114   ≠ wne 3006  ∀wral 3125  ∃wrex 3126  {crab 3129   ⊆ wss 3909  ∅c0 4265  ∪ cuni 4810  ∩ ciin 4892   class class class wbr 5038   ↦ cmpt 5118  dom cdm 5527  ran crn 5528  ⟶wf 6323  ‘cfv 6327  supcsup 8878  ℝcr 10510   < clt 10649   ≤ cle 10650  ℤcz 11956  ℤ≥cuz 12218  SAlgcsalg 42737  SMblFncsmblfn 43121 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5162  ax-sep 5175  ax-nul 5182  ax-pow 5238  ax-pr 5302  ax-un 7435  ax-inf2 9078  ax-cc 9831  ax-ac2 9859  ax-cnex 10567  ax-resscn 10568  ax-1cn 10569  ax-icn 10570  ax-addcl 10571  ax-addrcl 10572  ax-mulcl 10573  ax-mulrcl 10574  ax-mulcom 10575  ax-addass 10576  ax-mulass 10577  ax-distr 10578  ax-i2m1 10579  ax-1ne0 10580  ax-1rid 10581  ax-rnegex 10582  ax-rrecex 10583  ax-cnre 10584  ax-pre-lttri 10585  ax-pre-lttrn 10586  ax-pre-ltadd 10587  ax-pre-mulgt0 10588  ax-pre-sup 10589 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3472  df-sbc 3749  df-csb 3857  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4811  df-int 4849  df-iun 4893  df-iin 4894  df-br 5039  df-opab 5101  df-mpt 5119  df-tr 5145  df-id 5432  df-eprel 5437  df-po 5446  df-so 5447  df-fr 5486  df-se 5487  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-isom 6336  df-riota 7087  df-ov 7132  df-oprab 7133  df-mpo 7134  df-om 7555  df-1st 7663  df-2nd 7664  df-wrecs 7921  df-recs 7982  df-rdg 8020  df-1o 8076  df-oadd 8080  df-omul 8081  df-er 8263  df-map 8382  df-pm 8383  df-en 8484  df-dom 8485  df-sdom 8486  df-fin 8487  df-sup 8880  df-inf 8881  df-oi 8948  df-card 9342  df-acn 9345  df-ac 9516  df-pnf 10651  df-mnf 10652  df-xr 10653  df-ltxr 10654  df-le 10655  df-sub 10846  df-neg 10847  df-div 11272  df-nn 11613  df-n0 11873  df-z 11957  df-uz 12219  df-q 12324  df-rp 12365  df-ioo 12717  df-ioc 12718  df-ico 12719  df-fl 13142  df-rest 16671  df-topgen 16692  df-top 21474  df-bases 21526  df-salg 42738  df-salgen 42742  df-smblfn 43122 This theorem is referenced by:  smfsup  43232
 Copyright terms: Public domain W3C validator