Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsuplem3 Structured version   Visualization version   GIF version

Theorem smfsuplem3 46734
Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsuplem3.m (𝜑𝑀 ∈ ℤ)
smfsuplem3.z 𝑍 = (ℤ𝑀)
smfsuplem3.s (𝜑𝑆 ∈ SAlg)
smfsuplem3.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfsuplem3.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
smfsuplem3.g 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
Assertion
Ref Expression
smfsuplem3 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐷,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥,𝑦   𝑛,𝑀   𝑆,𝑛,𝑦   𝑛,𝑍,𝑥,𝑦   𝜑,𝑛,𝑦,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦)

Proof of Theorem smfsuplem3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 nfv 1913 . 2 𝑎𝜑
2 smfsuplem3.s . 2 (𝜑𝑆 ∈ SAlg)
3 smfsuplem3.d . . . . 5 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
4 ssrab2 4103 . . . . 5 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ⊆ 𝑛𝑍 dom (𝐹𝑛)
53, 4eqsstri 4043 . . . 4 𝐷 𝑛𝑍 dom (𝐹𝑛)
65a1i 11 . . 3 (𝜑𝐷 𝑛𝑍 dom (𝐹𝑛))
7 smfsuplem3.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
8 uzid 12918 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
97, 8syl 17 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
10 smfsuplem3.z . . . . 5 𝑍 = (ℤ𝑀)
119, 10eleqtrrdi 2855 . . . 4 (𝜑𝑀𝑍)
12 fveq2 6920 . . . . 5 (𝑛 = 𝑀 → (𝐹𝑛) = (𝐹𝑀))
1312dmeqd 5930 . . . 4 (𝑛 = 𝑀 → dom (𝐹𝑛) = dom (𝐹𝑀))
14 smfsuplem3.f . . . . . 6 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1514, 11ffvelcdmd 7119 . . . . 5 (𝜑 → (𝐹𝑀) ∈ (SMblFn‘𝑆))
16 eqid 2740 . . . . 5 dom (𝐹𝑀) = dom (𝐹𝑀)
172, 15, 16smfdmss 46654 . . . 4 (𝜑 → dom (𝐹𝑀) ⊆ 𝑆)
1811, 13, 17iinssd 45033 . . 3 (𝜑 𝑛𝑍 dom (𝐹𝑛) ⊆ 𝑆)
196, 18sstrd 4019 . 2 (𝜑𝐷 𝑆)
20 nfv 1913 . . . 4 𝑛(𝜑𝑥𝐷)
2111ne0d 4365 . . . . 5 (𝜑𝑍 ≠ ∅)
2221adantr 480 . . . 4 ((𝜑𝑥𝐷) → 𝑍 ≠ ∅)
232adantr 480 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
2414ffvelcdmda 7118 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
25 eqid 2740 . . . . . . 7 dom (𝐹𝑛) = dom (𝐹𝑛)
2623, 24, 25smff 46653 . . . . . 6 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
2726adantlr 714 . . . . 5 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
28 iinss2 5080 . . . . . . . 8 (𝑛𝑍 𝑛𝑍 dom (𝐹𝑛) ⊆ dom (𝐹𝑛))
2928adantl 481 . . . . . . 7 ((𝑥𝐷𝑛𝑍) → 𝑛𝑍 dom (𝐹𝑛) ⊆ dom (𝐹𝑛))
305sseli 4004 . . . . . . . 8 (𝑥𝐷𝑥 𝑛𝑍 dom (𝐹𝑛))
3130adantr 480 . . . . . . 7 ((𝑥𝐷𝑛𝑍) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
3229, 31sseldd 4009 . . . . . 6 ((𝑥𝐷𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
3332adantll 713 . . . . 5 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
3427, 33ffvelcdmd 7119 . . . 4 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
353reqabi 3467 . . . . . 6 (𝑥𝐷 ↔ (𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦))
3635simprbi 496 . . . . 5 (𝑥𝐷 → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
3736adantl 481 . . . 4 ((𝜑𝑥𝐷) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
3820, 22, 34, 37suprclrnmpt 45160 . . 3 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ ℝ)
39 smfsuplem3.g . . 3 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
4038, 39fmptd 7148 . 2 (𝜑𝐺:𝐷⟶ℝ)
417adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑀 ∈ ℤ)
422adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
4314adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝐹:𝑍⟶(SMblFn‘𝑆))
44 simpr 484 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
4541, 10, 42, 43, 3, 39, 44smfsuplem2 46733 . 2 ((𝜑𝑎 ∈ ℝ) → (𝐺 “ (-∞(,]𝑎)) ∈ (𝑆t 𝐷))
461, 2, 19, 40, 45issmfle2d 46730 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  wss 3976  c0 4352   cuni 4931   ciin 5016   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701  wf 6569  cfv 6573  supcsup 9509  cr 11183   < clt 11324  cle 11325  cz 12639  cuz 12903  SAlgcsalg 46229  SMblFncsmblfn 46616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-ioo 13411  df-ioc 13412  df-ico 13413  df-fl 13843  df-rest 17482  df-topgen 17503  df-top 22921  df-bases 22974  df-salg 46230  df-salgen 46234  df-smblfn 46617
This theorem is referenced by:  smfsup  46735
  Copyright terms: Public domain W3C validator