| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfsuplem3 | Structured version Visualization version GIF version | ||
| Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| smfsuplem3.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| smfsuplem3.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| smfsuplem3.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfsuplem3.f | ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
| smfsuplem3.d | ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} |
| smfsuplem3.g | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
| Ref | Expression |
|---|---|
| smfsuplem3 | ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑎𝜑 | |
| 2 | smfsuplem3.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 3 | smfsuplem3.d | . . . . 5 ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} | |
| 4 | ssrab2 4039 | . . . . 5 ⊢ {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} ⊆ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) | |
| 5 | 3, 4 | eqsstri 3990 | . . . 4 ⊢ 𝐷 ⊆ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐷 ⊆ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) |
| 7 | smfsuplem3.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 8 | uzid 12784 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 10 | smfsuplem3.z | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 11 | 9, 10 | eleqtrrdi 2839 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
| 12 | fveq2 6840 | . . . . 5 ⊢ (𝑛 = 𝑀 → (𝐹‘𝑛) = (𝐹‘𝑀)) | |
| 13 | 12 | dmeqd 5859 | . . . 4 ⊢ (𝑛 = 𝑀 → dom (𝐹‘𝑛) = dom (𝐹‘𝑀)) |
| 14 | smfsuplem3.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) | |
| 15 | 14, 11 | ffvelcdmd 7039 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑀) ∈ (SMblFn‘𝑆)) |
| 16 | eqid 2729 | . . . . 5 ⊢ dom (𝐹‘𝑀) = dom (𝐹‘𝑀) | |
| 17 | 2, 15, 16 | smfdmss 46704 | . . . 4 ⊢ (𝜑 → dom (𝐹‘𝑀) ⊆ ∪ 𝑆) |
| 18 | 11, 13, 17 | iinssd 45098 | . . 3 ⊢ (𝜑 → ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ⊆ ∪ 𝑆) |
| 19 | 6, 18 | sstrd 3954 | . 2 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
| 20 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ 𝐷) | |
| 21 | 11 | ne0d 4301 | . . . . 5 ⊢ (𝜑 → 𝑍 ≠ ∅) |
| 22 | 21 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑍 ≠ ∅) |
| 23 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ SAlg) |
| 24 | 14 | ffvelcdmda 7038 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ (SMblFn‘𝑆)) |
| 25 | eqid 2729 | . . . . . . 7 ⊢ dom (𝐹‘𝑛) = dom (𝐹‘𝑛) | |
| 26 | 23, 24, 25 | smff 46703 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ) |
| 27 | 26 | adantlr 715 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):dom (𝐹‘𝑛)⟶ℝ) |
| 28 | iinss2 5016 | . . . . . . . 8 ⊢ (𝑛 ∈ 𝑍 → ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ⊆ dom (𝐹‘𝑛)) | |
| 29 | 28 | adantl 481 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ⊆ dom (𝐹‘𝑛)) |
| 30 | 5 | sseli 3939 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) |
| 31 | 30 | adantr 480 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛)) |
| 32 | 29, 31 | sseldd 3944 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ dom (𝐹‘𝑛)) |
| 33 | 32 | adantll 714 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ dom (𝐹‘𝑛)) |
| 34 | 27, 33 | ffvelcdmd 7039 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → ((𝐹‘𝑛)‘𝑥) ∈ ℝ) |
| 35 | 3 | reqabi 3426 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦)) |
| 36 | 35 | simprbi 496 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) |
| 37 | 36 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) |
| 38 | 20, 22, 34, 37 | suprclrnmpt 45218 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < ) ∈ ℝ) |
| 39 | smfsuplem3.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) | |
| 40 | 38, 39 | fmptd 7068 | . 2 ⊢ (𝜑 → 𝐺:𝐷⟶ℝ) |
| 41 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑀 ∈ ℤ) |
| 42 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑆 ∈ SAlg) |
| 43 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
| 44 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ) | |
| 45 | 41, 10, 42, 43, 3, 39, 44 | smfsuplem2 46783 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐺 “ (-∞(,]𝑎)) ∈ (𝑆 ↾t 𝐷)) |
| 46 | 1, 2, 19, 40, 45 | issmfle2d 46780 | 1 ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3402 ⊆ wss 3911 ∅c0 4292 ∪ cuni 4867 ∩ ciin 4952 class class class wbr 5102 ↦ cmpt 5183 dom cdm 5631 ran crn 5632 ⟶wf 6495 ‘cfv 6499 supcsup 9367 ℝcr 11043 < clt 11184 ≤ cle 11185 ℤcz 12505 ℤ≥cuz 12769 SAlgcsalg 46279 SMblFncsmblfn 46666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cc 10364 ax-ac2 10392 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-omul 8416 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-acn 9871 df-ac 10045 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-ioo 13286 df-ioc 13287 df-ico 13288 df-fl 13730 df-rest 17361 df-topgen 17382 df-top 22757 df-bases 22809 df-salg 46280 df-salgen 46284 df-smblfn 46667 |
| This theorem is referenced by: smfsup 46785 |
| Copyright terms: Public domain | W3C validator |