| Step | Hyp | Ref
| Expression |
| 1 | | poimir.0 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 2 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑁 ∈ ℕ) |
| 3 | | fvoveq1 7454 |
. . . . . . . . . . . . 13
⊢ (𝑝 = ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → (𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘}))) = (𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))) |
| 4 | 3 | fveq1d 6908 |
. . . . . . . . . . . 12
⊢ (𝑝 = ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) = ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏)) |
| 5 | 4 | breq2d 5155 |
. . . . . . . . . . 11
⊢ (𝑝 = ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → (0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ↔ 0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏))) |
| 6 | | fveq1 6905 |
. . . . . . . . . . . 12
⊢ (𝑝 = ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → (𝑝‘𝑏) = (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏)) |
| 7 | 6 | neeq1d 3000 |
. . . . . . . . . . 11
⊢ (𝑝 = ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → ((𝑝‘𝑏) ≠ 0 ↔ (((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)) |
| 8 | 5, 7 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑝 = ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → ((0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) ↔ (0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0))) |
| 9 | 8 | ralbidv 3178 |
. . . . . . . . 9
⊢ (𝑝 = ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → (∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) ↔ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0))) |
| 10 | 9 | rabbidv 3444 |
. . . . . . . 8
⊢ (𝑝 = ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)} = {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}) |
| 11 | 10 | uneq2d 4168 |
. . . . . . 7
⊢ (𝑝 = ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) = ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)})) |
| 12 | 11 | supeq1d 9486 |
. . . . . 6
⊢ (𝑝 = ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) = sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)) |
| 13 | 1 | nnnn0d 12587 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 14 | | 0elfz 13664 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ 0 ∈ (0...𝑁)) |
| 15 | 13, 14 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈ (0...𝑁)) |
| 16 | 15 | snssd 4809 |
. . . . . . . . 9
⊢ (𝜑 → {0} ⊆ (0...𝑁)) |
| 17 | | ssrab2 4080 |
. . . . . . . . . . 11
⊢ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)} ⊆ (1...𝑁) |
| 18 | | fz1ssfz0 13663 |
. . . . . . . . . . 11
⊢
(1...𝑁) ⊆
(0...𝑁) |
| 19 | 17, 18 | sstri 3993 |
. . . . . . . . . 10
⊢ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)} ⊆ (0...𝑁) |
| 20 | 19 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)} ⊆ (0...𝑁)) |
| 21 | 16, 20 | unssd 4192 |
. . . . . . . 8
⊢ (𝜑 → ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ⊆ (0...𝑁)) |
| 22 | | ltso 11341 |
. . . . . . . . 9
⊢ < Or
ℝ |
| 23 | | snfi 9083 |
. . . . . . . . . . 11
⊢ {0}
∈ Fin |
| 24 | | fzfi 14013 |
. . . . . . . . . . . 12
⊢
(1...𝑁) ∈
Fin |
| 25 | | rabfi 9303 |
. . . . . . . . . . . 12
⊢
((1...𝑁) ∈ Fin
→ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)} ∈ Fin) |
| 26 | 24, 25 | ax-mp 5 |
. . . . . . . . . . 11
⊢ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)} ∈ Fin |
| 27 | | unfi 9211 |
. . . . . . . . . . 11
⊢ (({0}
∈ Fin ∧ {𝑎 ∈
(1...𝑁) ∣
∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)} ∈ Fin) → ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ∈ Fin) |
| 28 | 23, 26, 27 | mp2an 692 |
. . . . . . . . . 10
⊢ ({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ∈ Fin |
| 29 | | c0ex 11255 |
. . . . . . . . . . . 12
⊢ 0 ∈
V |
| 30 | 29 | snid 4662 |
. . . . . . . . . . 11
⊢ 0 ∈
{0} |
| 31 | | elun1 4182 |
. . . . . . . . . . 11
⊢ (0 ∈
{0} → 0 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)})) |
| 32 | | ne0i 4341 |
. . . . . . . . . . 11
⊢ (0 ∈
({0} ∪ {𝑎 ∈
(1...𝑁) ∣
∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) → ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ≠ ∅) |
| 33 | 30, 31, 32 | mp2b 10 |
. . . . . . . . . 10
⊢ ({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ≠ ∅ |
| 34 | | 0red 11264 |
. . . . . . . . . . . . 13
⊢ ((𝜑 → 𝑁 ∈ ℕ) → 0 ∈
ℝ) |
| 35 | 34 | snssd 4809 |
. . . . . . . . . . . 12
⊢ ((𝜑 → 𝑁 ∈ ℕ) → {0} ⊆
ℝ) |
| 36 | 1, 35 | ax-mp 5 |
. . . . . . . . . . 11
⊢ {0}
⊆ ℝ |
| 37 | | elfzelz 13564 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℤ) |
| 38 | 37 | ssriv 3987 |
. . . . . . . . . . . . 13
⊢
(1...𝑁) ⊆
ℤ |
| 39 | | zssre 12620 |
. . . . . . . . . . . . 13
⊢ ℤ
⊆ ℝ |
| 40 | 38, 39 | sstri 3993 |
. . . . . . . . . . . 12
⊢
(1...𝑁) ⊆
ℝ |
| 41 | 17, 40 | sstri 3993 |
. . . . . . . . . . 11
⊢ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)} ⊆ ℝ |
| 42 | 36, 41 | unssi 4191 |
. . . . . . . . . 10
⊢ ({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ⊆ ℝ |
| 43 | 28, 33, 42 | 3pm3.2i 1340 |
. . . . . . . . 9
⊢ (({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ∈ Fin ∧ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ≠ ∅ ∧ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ⊆ ℝ) |
| 44 | | fisupcl 9509 |
. . . . . . . . 9
⊢ (( <
Or ℝ ∧ (({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ∈ Fin ∧ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ≠ ∅ ∧ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ⊆ ℝ)) → sup(({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ∈ ({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)})) |
| 45 | 22, 43, 44 | mp2an 692 |
. . . . . . . 8
⊢ sup(({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ∈ ({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) |
| 46 | | ssel 3977 |
. . . . . . . 8
⊢ (({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ⊆ (0...𝑁) → (sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ∈ ({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ∈
(0...𝑁))) |
| 47 | 21, 45, 46 | mpisyl 21 |
. . . . . . 7
⊢ (𝜑 → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ∈
(0...𝑁)) |
| 48 | 47 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑝:(1...𝑁)⟶(0...𝑘)) → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ∈
(0...𝑁)) |
| 49 | | elfznn 13593 |
. . . . . . . . 9
⊢ (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ) |
| 50 | | nngt0 12297 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → 0 <
𝑛) |
| 51 | 50 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ (𝑝‘𝑛) = 0) → 0 < 𝑛) |
| 52 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((0 ≤
((𝐹‘(𝑝 ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → (𝑝‘𝑏) ≠ 0) |
| 53 | 52 | ralimi 3083 |
. . . . . . . . . . . . 13
⊢
(∀𝑏 ∈
(1...𝑠)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → ∀𝑏 ∈ (1...𝑠)(𝑝‘𝑏) ≠ 0) |
| 54 | | elfznn 13593 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ (1...𝑁) → 𝑠 ∈ ℕ) |
| 55 | | nnre 12273 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ) |
| 56 | | nnre 12273 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈ ℕ → 𝑠 ∈
ℝ) |
| 57 | | lenlt 11339 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (𝑛 ≤ 𝑠 ↔ ¬ 𝑠 < 𝑛)) |
| 58 | 55, 56, 57 | syl2an 596 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (𝑛 ≤ 𝑠 ↔ ¬ 𝑠 < 𝑛)) |
| 59 | | elfz1b 13633 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ (1...𝑠) ↔ (𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ ∧ 𝑛 ≤ 𝑠)) |
| 60 | 59 | biimpri 228 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ ∧ 𝑛 ≤ 𝑠) → 𝑛 ∈ (1...𝑠)) |
| 61 | 60 | 3expia 1122 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (𝑛 ≤ 𝑠 → 𝑛 ∈ (1...𝑠))) |
| 62 | 58, 61 | sylbird 260 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (¬
𝑠 < 𝑛 → 𝑛 ∈ (1...𝑠))) |
| 63 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 = 𝑛 → (𝑝‘𝑏) = (𝑝‘𝑛)) |
| 64 | 63 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = 𝑛 → ((𝑝‘𝑏) = 0 ↔ (𝑝‘𝑛) = 0)) |
| 65 | 64 | rspcev 3622 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ (1...𝑠) ∧ (𝑝‘𝑛) = 0) → ∃𝑏 ∈ (1...𝑠)(𝑝‘𝑏) = 0) |
| 66 | 65 | expcom 413 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑝‘𝑛) = 0 → (𝑛 ∈ (1...𝑠) → ∃𝑏 ∈ (1...𝑠)(𝑝‘𝑏) = 0)) |
| 67 | 62, 66 | sylan9 507 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℕ) ∧ (𝑝‘𝑛) = 0) → (¬ 𝑠 < 𝑛 → ∃𝑏 ∈ (1...𝑠)(𝑝‘𝑏) = 0)) |
| 68 | 67 | an32s 652 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 ∈ ℕ ∧ (𝑝‘𝑛) = 0) ∧ 𝑠 ∈ ℕ) → (¬ 𝑠 < 𝑛 → ∃𝑏 ∈ (1...𝑠)(𝑝‘𝑏) = 0)) |
| 69 | | nne 2944 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
(𝑝‘𝑏) ≠ 0 ↔ (𝑝‘𝑏) = 0) |
| 70 | 69 | rexbii 3094 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑏 ∈
(1...𝑠) ¬ (𝑝‘𝑏) ≠ 0 ↔ ∃𝑏 ∈ (1...𝑠)(𝑝‘𝑏) = 0) |
| 71 | | rexnal 3100 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑏 ∈
(1...𝑠) ¬ (𝑝‘𝑏) ≠ 0 ↔ ¬ ∀𝑏 ∈ (1...𝑠)(𝑝‘𝑏) ≠ 0) |
| 72 | 70, 71 | bitr3i 277 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑏 ∈
(1...𝑠)(𝑝‘𝑏) = 0 ↔ ¬ ∀𝑏 ∈ (1...𝑠)(𝑝‘𝑏) ≠ 0) |
| 73 | 68, 72 | imbitrdi 251 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 ∈ ℕ ∧ (𝑝‘𝑛) = 0) ∧ 𝑠 ∈ ℕ) → (¬ 𝑠 < 𝑛 → ¬ ∀𝑏 ∈ (1...𝑠)(𝑝‘𝑏) ≠ 0)) |
| 74 | 73 | con4d 115 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ ℕ ∧ (𝑝‘𝑛) = 0) ∧ 𝑠 ∈ ℕ) → (∀𝑏 ∈ (1...𝑠)(𝑝‘𝑏) ≠ 0 → 𝑠 < 𝑛)) |
| 75 | 54, 74 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ ℕ ∧ (𝑝‘𝑛) = 0) ∧ 𝑠 ∈ (1...𝑁)) → (∀𝑏 ∈ (1...𝑠)(𝑝‘𝑏) ≠ 0 → 𝑠 < 𝑛)) |
| 76 | 53, 75 | syl5 34 |
. . . . . . . . . . . 12
⊢ (((𝑛 ∈ ℕ ∧ (𝑝‘𝑛) = 0) ∧ 𝑠 ∈ (1...𝑁)) → (∀𝑏 ∈ (1...𝑠)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → 𝑠 < 𝑛)) |
| 77 | 76 | ralrimiva 3146 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ (𝑝‘𝑛) = 0) → ∀𝑠 ∈ (1...𝑁)(∀𝑏 ∈ (1...𝑠)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → 𝑠 < 𝑛)) |
| 78 | | ralunb 4197 |
. . . . . . . . . . . 12
⊢
(∀𝑠 ∈
({0} ∪ {𝑎 ∈
(1...𝑁) ∣
∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)})𝑠 < 𝑛 ↔ (∀𝑠 ∈ {0}𝑠 < 𝑛 ∧ ∀𝑠 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}𝑠 < 𝑛)) |
| 79 | | breq1 5146 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 0 → (𝑠 < 𝑛 ↔ 0 < 𝑛)) |
| 80 | 29, 79 | ralsn 4681 |
. . . . . . . . . . . . 13
⊢
(∀𝑠 ∈
{0}𝑠 < 𝑛 ↔ 0 < 𝑛) |
| 81 | | oveq2 7439 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑠 → (1...𝑎) = (1...𝑠)) |
| 82 | 81 | raleqdv 3326 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑠 → (∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) ↔ ∀𝑏 ∈ (1...𝑠)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0))) |
| 83 | 82 | ralrab 3699 |
. . . . . . . . . . . . 13
⊢
(∀𝑠 ∈
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}𝑠 < 𝑛 ↔ ∀𝑠 ∈ (1...𝑁)(∀𝑏 ∈ (1...𝑠)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → 𝑠 < 𝑛)) |
| 84 | 80, 83 | anbi12i 628 |
. . . . . . . . . . . 12
⊢
((∀𝑠 ∈
{0}𝑠 < 𝑛 ∧ ∀𝑠 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}𝑠 < 𝑛) ↔ (0 < 𝑛 ∧ ∀𝑠 ∈ (1...𝑁)(∀𝑏 ∈ (1...𝑠)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → 𝑠 < 𝑛))) |
| 85 | 78, 84 | bitri 275 |
. . . . . . . . . . 11
⊢
(∀𝑠 ∈
({0} ∪ {𝑎 ∈
(1...𝑁) ∣
∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)})𝑠 < 𝑛 ↔ (0 < 𝑛 ∧ ∀𝑠 ∈ (1...𝑁)(∀𝑏 ∈ (1...𝑠)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → 𝑠 < 𝑛))) |
| 86 | 51, 77, 85 | sylanbrc 583 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ (𝑝‘𝑛) = 0) → ∀𝑠 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)})𝑠 < 𝑛) |
| 87 | | breq1 5146 |
. . . . . . . . . . 11
⊢ (𝑠 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) → (𝑠 < 𝑛 ↔ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) < 𝑛)) |
| 88 | 87 | rspcva 3620 |
. . . . . . . . . 10
⊢
((sup(({0} ∪ {𝑎
∈ (1...𝑁) ∣
∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ∈ ({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ∧ ∀𝑠 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)})𝑠 < 𝑛) → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) < 𝑛) |
| 89 | 45, 86, 88 | sylancr 587 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ (𝑝‘𝑛) = 0) → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) < 𝑛) |
| 90 | 49, 89 | sylan 580 |
. . . . . . . 8
⊢ ((𝑛 ∈ (1...𝑁) ∧ (𝑝‘𝑛) = 0) → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) < 𝑛) |
| 91 | 90 | 3adant2 1132 |
. . . . . . 7
⊢ ((𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 0) → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) < 𝑛) |
| 92 | 91 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 0)) → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) < 𝑛) |
| 93 | 37 | zred 12722 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℝ) |
| 94 | 93 | 3ad2ant1 1134 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘) → 𝑛 ∈ ℝ) |
| 95 | 94 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → 𝑛 ∈ ℝ) |
| 96 | | simpr1 1195 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → 𝑛 ∈ (1...𝑁)) |
| 97 | | simpll 767 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → 𝜑) |
| 98 | | simplr 769 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘))) → 𝑘 ∈ ℕ) |
| 99 | | elfzelz 13564 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0...𝑘) → 𝑖 ∈ ℤ) |
| 100 | 99 | zred 12722 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0...𝑘) → 𝑖 ∈ ℝ) |
| 101 | | nndivre 12307 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑖 / 𝑘) ∈ ℝ) |
| 102 | 100, 101 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → (𝑖 / 𝑘) ∈ ℝ) |
| 103 | | elfzle1 13567 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0...𝑘) → 0 ≤ 𝑖) |
| 104 | 100, 103 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (0...𝑘) → (𝑖 ∈ ℝ ∧ 0 ≤ 𝑖)) |
| 105 | | nnrp 13046 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ+) |
| 106 | 105 | rpregt0d 13083 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 <
𝑘)) |
| 107 | | divge0 12137 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑖 ∈ ℝ ∧ 0 ≤
𝑖) ∧ (𝑘 ∈ ℝ ∧ 0 <
𝑘)) → 0 ≤ (𝑖 / 𝑘)) |
| 108 | 104, 106,
107 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝑖 / 𝑘)) |
| 109 | | elfzle2 13568 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (0...𝑘) → 𝑖 ≤ 𝑘) |
| 110 | 109 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → 𝑖 ≤ 𝑘) |
| 111 | 100 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → 𝑖 ∈ ℝ) |
| 112 | | 1red 11262 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → 1 ∈
ℝ) |
| 113 | 105 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+) |
| 114 | 111, 112,
113 | ledivmuld 13130 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → ((𝑖 / 𝑘) ≤ 1 ↔ 𝑖 ≤ (𝑘 · 1))) |
| 115 | | nncn 12274 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℂ) |
| 116 | 115 | mulridd 11278 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ ℕ → (𝑘 · 1) = 𝑘) |
| 117 | 116 | breq2d 5155 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ ℕ → (𝑖 ≤ (𝑘 · 1) ↔ 𝑖 ≤ 𝑘)) |
| 118 | 117 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → (𝑖 ≤ (𝑘 · 1) ↔ 𝑖 ≤ 𝑘)) |
| 119 | 114, 118 | bitrd 279 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → ((𝑖 / 𝑘) ≤ 1 ↔ 𝑖 ≤ 𝑘)) |
| 120 | 110, 119 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → (𝑖 / 𝑘) ≤ 1) |
| 121 | | elicc01 13506 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 / 𝑘) ∈ (0[,]1) ↔ ((𝑖 / 𝑘) ∈ ℝ ∧ 0 ≤ (𝑖 / 𝑘) ∧ (𝑖 / 𝑘) ≤ 1)) |
| 122 | 102, 108,
120, 121 | syl3anbrc 1344 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0...𝑘) ∧ 𝑘 ∈ ℕ) → (𝑖 / 𝑘) ∈ (0[,]1)) |
| 123 | 122 | ancoms 458 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (0...𝑘)) → (𝑖 / 𝑘) ∈ (0[,]1)) |
| 124 | | elsni 4643 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ {𝑘} → 𝑗 = 𝑘) |
| 125 | 124 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ {𝑘} → (𝑖 / 𝑗) = (𝑖 / 𝑘)) |
| 126 | 125 | eleq1d 2826 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ {𝑘} → ((𝑖 / 𝑗) ∈ (0[,]1) ↔ (𝑖 / 𝑘) ∈ (0[,]1))) |
| 127 | 123, 126 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (0...𝑘)) → (𝑗 ∈ {𝑘} → (𝑖 / 𝑗) ∈ (0[,]1))) |
| 128 | 127 | impr 454 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ ∧ (𝑖 ∈ (0...𝑘) ∧ 𝑗 ∈ {𝑘})) → (𝑖 / 𝑗) ∈ (0[,]1)) |
| 129 | 98, 128 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘))) ∧ (𝑖 ∈ (0...𝑘) ∧ 𝑗 ∈ {𝑘})) → (𝑖 / 𝑗) ∈ (0[,]1)) |
| 130 | | simprr 773 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘))) → 𝑝:(1...𝑁)⟶(0...𝑘)) |
| 131 | | vex 3484 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑘 ∈ V |
| 132 | 131 | fconst 6794 |
. . . . . . . . . . . . . . . . 17
⊢
((1...𝑁) ×
{𝑘}):(1...𝑁)⟶{𝑘} |
| 133 | 132 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘))) → ((1...𝑁) × {𝑘}):(1...𝑁)⟶{𝑘}) |
| 134 | | fzfid 14014 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘))) → (1...𝑁) ∈ Fin) |
| 135 | | inidm 4227 |
. . . . . . . . . . . . . . . 16
⊢
((1...𝑁) ∩
(1...𝑁)) = (1...𝑁) |
| 136 | 129, 130,
133, 134, 134, 135 | off 7715 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘))) → (𝑝 ∘f / ((1...𝑁) × {𝑘})):(1...𝑁)⟶(0[,]1)) |
| 137 | | poimir.i |
. . . . . . . . . . . . . . . . 17
⊢ 𝐼 = ((0[,]1) ↑m
(1...𝑁)) |
| 138 | 137 | eleq2i 2833 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑝 ∘f /
((1...𝑁) × {𝑘})) ∈ 𝐼 ↔ (𝑝 ∘f / ((1...𝑁) × {𝑘})) ∈ ((0[,]1) ↑m
(1...𝑁))) |
| 139 | | ovex 7464 |
. . . . . . . . . . . . . . . . 17
⊢ (0[,]1)
∈ V |
| 140 | | ovex 7464 |
. . . . . . . . . . . . . . . . 17
⊢
(1...𝑁) ∈
V |
| 141 | 139, 140 | elmap 8911 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑝 ∘f /
((1...𝑁) × {𝑘})) ∈ ((0[,]1)
↑m (1...𝑁))
↔ (𝑝
∘f / ((1...𝑁) × {𝑘})):(1...𝑁)⟶(0[,]1)) |
| 142 | 138, 141 | bitri 275 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ∘f /
((1...𝑁) × {𝑘})) ∈ 𝐼 ↔ (𝑝 ∘f / ((1...𝑁) × {𝑘})):(1...𝑁)⟶(0[,]1)) |
| 143 | 136, 142 | sylibr 234 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘))) → (𝑝 ∘f / ((1...𝑁) × {𝑘})) ∈ 𝐼) |
| 144 | 143 | 3adantr3 1172 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → (𝑝 ∘f / ((1...𝑁) × {𝑘})) ∈ 𝐼) |
| 145 | | 3anass 1095 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘) ↔ (𝑛 ∈ (1...𝑁) ∧ (𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘))) |
| 146 | | ancom 460 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ (1...𝑁) ∧ (𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) ↔ ((𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘) ∧ 𝑛 ∈ (1...𝑁))) |
| 147 | 145, 146 | bitri 275 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘) ↔ ((𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘) ∧ 𝑛 ∈ (1...𝑁))) |
| 148 | | ffn 6736 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝:(1...𝑁)⟶(0...𝑘) → 𝑝 Fn (1...𝑁)) |
| 149 | 148 | ad2antrl 728 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → 𝑝 Fn (1...𝑁)) |
| 150 | | fnconstg 6796 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ V → ((1...𝑁) × {𝑘}) Fn (1...𝑁)) |
| 151 | 131, 150 | mp1i 13 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → ((1...𝑁) × {𝑘}) Fn (1...𝑁)) |
| 152 | | fzfid 14014 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → (1...𝑁) ∈ Fin) |
| 153 | | simplrr 778 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) ∧ 𝑛 ∈ (1...𝑁)) → (𝑝‘𝑛) = 𝑘) |
| 154 | 131 | fvconst2 7224 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {𝑘})‘𝑛) = 𝑘) |
| 155 | 154 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) ∧ 𝑛 ∈ (1...𝑁)) → (((1...𝑁) × {𝑘})‘𝑛) = 𝑘) |
| 156 | 149, 151,
152, 152, 135, 153, 155 | ofval 7708 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑝 ∘f / ((1...𝑁) × {𝑘}))‘𝑛) = (𝑘 / 𝑘)) |
| 157 | 156 | anasss 466 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ ((𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘) ∧ 𝑛 ∈ (1...𝑁))) → ((𝑝 ∘f / ((1...𝑁) × {𝑘}))‘𝑛) = (𝑘 / 𝑘)) |
| 158 | 147, 157 | sylan2b 594 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → ((𝑝 ∘f / ((1...𝑁) × {𝑘}))‘𝑛) = (𝑘 / 𝑘)) |
| 159 | | nnne0 12300 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ → 𝑘 ≠ 0) |
| 160 | 115, 159 | dividd 12041 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ → (𝑘 / 𝑘) = 1) |
| 161 | 160 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → (𝑘 / 𝑘) = 1) |
| 162 | 158, 161 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → ((𝑝 ∘f / ((1...𝑁) × {𝑘}))‘𝑛) = 1) |
| 163 | | ovex 7464 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∘f /
((1...𝑁) × {𝑘})) ∈ V |
| 164 | | eleq1 2829 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑝 ∘f / ((1...𝑁) × {𝑘})) → (𝑧 ∈ 𝐼 ↔ (𝑝 ∘f / ((1...𝑁) × {𝑘})) ∈ 𝐼)) |
| 165 | | fveq1 6905 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝑝 ∘f / ((1...𝑁) × {𝑘})) → (𝑧‘𝑛) = ((𝑝 ∘f / ((1...𝑁) × {𝑘}))‘𝑛)) |
| 166 | 165 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑝 ∘f / ((1...𝑁) × {𝑘})) → ((𝑧‘𝑛) = 1 ↔ ((𝑝 ∘f / ((1...𝑁) × {𝑘}))‘𝑛) = 1)) |
| 167 | 164, 166 | 3anbi23d 1441 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑝 ∘f / ((1...𝑁) × {𝑘})) → ((𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 1) ↔ (𝑛 ∈ (1...𝑁) ∧ (𝑝 ∘f / ((1...𝑁) × {𝑘})) ∈ 𝐼 ∧ ((𝑝 ∘f / ((1...𝑁) × {𝑘}))‘𝑛) = 1))) |
| 168 | 167 | anbi2d 630 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑝 ∘f / ((1...𝑁) × {𝑘})) → ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 1)) ↔ (𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑝 ∘f / ((1...𝑁) × {𝑘})) ∈ 𝐼 ∧ ((𝑝 ∘f / ((1...𝑁) × {𝑘}))‘𝑛) = 1)))) |
| 169 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑝 ∘f / ((1...𝑁) × {𝑘})) → (𝐹‘𝑧) = (𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))) |
| 170 | 169 | fveq1d 6908 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑝 ∘f / ((1...𝑁) × {𝑘})) → ((𝐹‘𝑧)‘𝑛) = ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑛)) |
| 171 | 170 | breq2d 5155 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑝 ∘f / ((1...𝑁) × {𝑘})) → (0 ≤ ((𝐹‘𝑧)‘𝑛) ↔ 0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑛))) |
| 172 | 168, 171 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑝 ∘f / ((1...𝑁) × {𝑘})) → (((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 1)) → 0 ≤ ((𝐹‘𝑧)‘𝑛)) ↔ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑝 ∘f / ((1...𝑁) × {𝑘})) ∈ 𝐼 ∧ ((𝑝 ∘f / ((1...𝑁) × {𝑘}))‘𝑛) = 1)) → 0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑛)))) |
| 173 | | poimir.3 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 1)) → 0 ≤ ((𝐹‘𝑧)‘𝑛)) |
| 174 | 163, 172,
173 | vtocl 3558 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑝 ∘f / ((1...𝑁) × {𝑘})) ∈ 𝐼 ∧ ((𝑝 ∘f / ((1...𝑁) × {𝑘}))‘𝑛) = 1)) → 0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑛)) |
| 175 | 97, 96, 144, 162, 174 | syl13anc 1374 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → 0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑛)) |
| 176 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
| 177 | | simp3 1139 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘) → (𝑝‘𝑛) = 𝑘) |
| 178 | | neeq1 3003 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝‘𝑛) = 𝑘 → ((𝑝‘𝑛) ≠ 0 ↔ 𝑘 ≠ 0)) |
| 179 | 159, 178 | syl5ibrcom 247 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → ((𝑝‘𝑛) = 𝑘 → (𝑝‘𝑛) ≠ 0)) |
| 180 | 179 | imp 406 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ ∧ (𝑝‘𝑛) = 𝑘) → (𝑝‘𝑛) ≠ 0) |
| 181 | 176, 177,
180 | syl2an 596 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → (𝑝‘𝑛) ≠ 0) |
| 182 | | vex 3484 |
. . . . . . . . . . . . 13
⊢ 𝑛 ∈ V |
| 183 | | fveq2 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑛 → ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) = ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑛)) |
| 184 | 183 | breq2d 5155 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑛 → (0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ↔ 0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑛))) |
| 185 | 63 | neeq1d 3000 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑛 → ((𝑝‘𝑏) ≠ 0 ↔ (𝑝‘𝑛) ≠ 0)) |
| 186 | 184, 185 | anbi12d 632 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑛 → ((0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) ↔ (0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ∧ (𝑝‘𝑛) ≠ 0))) |
| 187 | 182, 186 | ralsn 4681 |
. . . . . . . . . . . 12
⊢
(∀𝑏 ∈
{𝑛} (0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) ↔ (0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑛) ∧ (𝑝‘𝑛) ≠ 0)) |
| 188 | 175, 181,
187 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)) |
| 189 | 37 | zcnd 12723 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℂ) |
| 190 | | 1cnd 11256 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ (1...𝑁) → 1 ∈ ℂ) |
| 191 | 189, 190 | subeq0ad 11630 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) = 0 ↔ 𝑛 = 1)) |
| 192 | 191 | biimpcd 249 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 − 1) = 0 → (𝑛 ∈ (1...𝑁) → 𝑛 = 1)) |
| 193 | | 1z 12647 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ∈
ℤ |
| 194 | | fzsn 13606 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (1 ∈
ℤ → (1...1) = {1}) |
| 195 | 193, 194 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1...1) =
{1} |
| 196 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 1 → (1...𝑛) = (1...1)) |
| 197 | | sneq 4636 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 1 → {𝑛} = {1}) |
| 198 | 195, 196,
197 | 3eqtr4a 2803 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 1 → (1...𝑛) = {𝑛}) |
| 199 | 198 | raleqdv 3326 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 1 → (∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) ↔ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0))) |
| 200 | 199 | biimprd 248 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 1 → (∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0))) |
| 201 | 192, 200 | syl6 35 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 − 1) = 0 → (𝑛 ∈ (1...𝑁) → (∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)))) |
| 202 | | ralun 4198 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑏 ∈
(1...(𝑛 − 1))(0 ≤
((𝐹‘(𝑝 ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) ∧ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)) → ∀𝑏 ∈ ((1...(𝑛 − 1)) ∪ {𝑛})(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)) |
| 203 | | npcan1 11688 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 ∈ ℂ → ((𝑛 − 1) + 1) = 𝑛) |
| 204 | 189, 203 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) + 1) = 𝑛) |
| 205 | | elfzuz 13560 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ (1...𝑁) → 𝑛 ∈
(ℤ≥‘1)) |
| 206 | 204, 205 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) + 1) ∈
(ℤ≥‘1)) |
| 207 | | peano2zm 12660 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 ∈ ℤ → (𝑛 − 1) ∈
ℤ) |
| 208 | | uzid 12893 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑛 − 1) ∈ ℤ
→ (𝑛 − 1) ∈
(ℤ≥‘(𝑛 − 1))) |
| 209 | | peano2uz 12943 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑛 − 1) ∈
(ℤ≥‘(𝑛 − 1)) → ((𝑛 − 1) + 1) ∈
(ℤ≥‘(𝑛 − 1))) |
| 210 | 37, 207, 208, 209 | 4syl 19 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ (1...𝑁) → ((𝑛 − 1) + 1) ∈
(ℤ≥‘(𝑛 − 1))) |
| 211 | 204, 210 | eqeltrrd 2842 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ (1...𝑁) → 𝑛 ∈ (ℤ≥‘(𝑛 − 1))) |
| 212 | | fzsplit2 13589 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑛 − 1) + 1) ∈
(ℤ≥‘1) ∧ 𝑛 ∈ (ℤ≥‘(𝑛 − 1))) → (1...𝑛) = ((1...(𝑛 − 1)) ∪ (((𝑛 − 1) + 1)...𝑛))) |
| 213 | 206, 211,
212 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ (1...𝑁) → (1...𝑛) = ((1...(𝑛 − 1)) ∪ (((𝑛 − 1) + 1)...𝑛))) |
| 214 | 204 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ (1...𝑁) → (((𝑛 − 1) + 1)...𝑛) = (𝑛...𝑛)) |
| 215 | | fzsn 13606 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 ∈ ℤ → (𝑛...𝑛) = {𝑛}) |
| 216 | 37, 215 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ (1...𝑁) → (𝑛...𝑛) = {𝑛}) |
| 217 | 214, 216 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ (1...𝑁) → (((𝑛 − 1) + 1)...𝑛) = {𝑛}) |
| 218 | 217 | uneq2d 4168 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ (1...𝑁) → ((1...(𝑛 − 1)) ∪ (((𝑛 − 1) + 1)...𝑛)) = ((1...(𝑛 − 1)) ∪ {𝑛})) |
| 219 | 213, 218 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ (1...𝑁) → (1...𝑛) = ((1...(𝑛 − 1)) ∪ {𝑛})) |
| 220 | 219 | raleqdv 3326 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ (1...𝑁) → (∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) ↔ ∀𝑏 ∈ ((1...(𝑛 − 1)) ∪ {𝑛})(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0))) |
| 221 | 202, 220 | imbitrrid 246 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ (1...𝑁) → ((∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) ∧ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)) → ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0))) |
| 222 | 221 | expd 415 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (1...𝑁) → (∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → (∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)))) |
| 223 | 222 | com12 32 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑏 ∈
(1...(𝑛 − 1))(0 ≤
((𝐹‘(𝑝 ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → (𝑛 ∈ (1...𝑁) → (∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)))) |
| 224 | 223 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)) → (𝑛 ∈ (1...𝑁) → (∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)))) |
| 225 | 201, 224 | jaoi 858 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 − 1) = 0 ∨ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0))) → (𝑛 ∈ (1...𝑁) → (∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) → ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)))) |
| 226 | 225 | imdistand 570 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 − 1) = 0 ∨ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0))) → ((𝑛 ∈ (1...𝑁) ∧ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)) → (𝑛 ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)))) |
| 227 | 226 | com12 32 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ (1...𝑁) ∧ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)) → (((𝑛 − 1) = 0 ∨ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0))) → (𝑛 ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)))) |
| 228 | | elun 4153 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 − 1) ∈ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ↔ ((𝑛 − 1) ∈ {0} ∨ (𝑛 − 1) ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)})) |
| 229 | | ovex 7464 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 − 1) ∈
V |
| 230 | 229 | elsn 4641 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 − 1) ∈ {0} ↔
(𝑛 − 1) =
0) |
| 231 | | oveq2 7439 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = (𝑛 − 1) → (1...𝑎) = (1...(𝑛 − 1))) |
| 232 | 231 | raleqdv 3326 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = (𝑛 − 1) → (∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) ↔ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0))) |
| 233 | 232 | elrab 3692 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 − 1) ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)} ↔ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0))) |
| 234 | 230, 233 | orbi12i 915 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 − 1) ∈ {0} ∨
(𝑛 − 1) ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ↔ ((𝑛 − 1) = 0 ∨ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)))) |
| 235 | 228, 234 | bitri 275 |
. . . . . . . . . . . . 13
⊢ ((𝑛 − 1) ∈ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ↔ ((𝑛 − 1) = 0 ∨ ((𝑛 − 1) ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...(𝑛 − 1))(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)))) |
| 236 | | oveq2 7439 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑛 → (1...𝑎) = (1...𝑛)) |
| 237 | 236 | raleqdv 3326 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑛 → (∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0) ↔ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0))) |
| 238 | 237 | elrab 3692 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)} ↔ (𝑛 ∈ (1...𝑁) ∧ ∀𝑏 ∈ (1...𝑛)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0))) |
| 239 | 227, 235,
238 | 3imtr4g 296 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ (1...𝑁) ∧ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)) → ((𝑛 − 1) ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) → 𝑛 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)})) |
| 240 | | elun2 4183 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)} → 𝑛 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)})) |
| 241 | 239, 240 | syl6 35 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ (1...𝑁) ∧ ∀𝑏 ∈ {𝑛} (0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)) → ((𝑛 − 1) ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) → 𝑛 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}))) |
| 242 | 96, 188, 241 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → ((𝑛 − 1) ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) → 𝑛 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}))) |
| 243 | | fimaxre2 12213 |
. . . . . . . . . . . . 13
⊢ ((({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ⊆ ℝ ∧ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ∈ Fin) → ∃𝑖 ∈ ℝ ∀𝑗 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)})𝑗 ≤ 𝑖) |
| 244 | 42, 28, 243 | mp2an 692 |
. . . . . . . . . . . 12
⊢
∃𝑖 ∈
ℝ ∀𝑗 ∈
({0} ∪ {𝑎 ∈
(1...𝑁) ∣
∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)})𝑗 ≤ 𝑖 |
| 245 | 42, 33, 244 | 3pm3.2i 1340 |
. . . . . . . . . . 11
⊢ (({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ⊆ ℝ ∧ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ≠ ∅ ∧ ∃𝑖 ∈ ℝ ∀𝑗 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)})𝑗 ≤ 𝑖) |
| 246 | 245 | suprubii 12243 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) → 𝑛 ≤ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, <
)) |
| 247 | 242, 246 | syl6 35 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → ((𝑛 − 1) ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) → 𝑛 ≤ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, <
))) |
| 248 | | ltm1 12109 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℝ → (𝑛 − 1) < 𝑛) |
| 249 | | peano2rem 11576 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℝ → (𝑛 − 1) ∈
ℝ) |
| 250 | 42, 45 | sselii 3980 |
. . . . . . . . . . . 12
⊢ sup(({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ∈
ℝ |
| 251 | | ltletr 11353 |
. . . . . . . . . . . 12
⊢ (((𝑛 − 1) ∈ ℝ ∧
𝑛 ∈ ℝ ∧
sup(({0} ∪ {𝑎 ∈
(1...𝑁) ∣
∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ∈ ℝ)
→ (((𝑛 − 1) <
𝑛 ∧ 𝑛 ≤ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < )) → (𝑛 − 1) < sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, <
))) |
| 252 | 250, 251 | mp3an3 1452 |
. . . . . . . . . . 11
⊢ (((𝑛 − 1) ∈ ℝ ∧
𝑛 ∈ ℝ) →
(((𝑛 − 1) < 𝑛 ∧ 𝑛 ≤ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < )) → (𝑛 − 1) < sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, <
))) |
| 253 | 249, 252 | mpancom 688 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℝ → (((𝑛 − 1) < 𝑛 ∧ 𝑛 ≤ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < )) → (𝑛 − 1) < sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, <
))) |
| 254 | 248, 253 | mpand 695 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℝ → (𝑛 ≤ sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) → (𝑛 − 1) < sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, <
))) |
| 255 | 95, 247, 254 | sylsyld 61 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → ((𝑛 − 1) ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) → (𝑛 − 1) < sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, <
))) |
| 256 | 250 | ltnri 11370 |
. . . . . . . . . 10
⊢ ¬
sup(({0} ∪ {𝑎 ∈
(1...𝑁) ∣
∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) < sup(({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) |
| 257 | | breq1 5146 |
. . . . . . . . . 10
⊢ (sup(({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) = (𝑛 − 1) → (sup(({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) < sup(({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ↔ (𝑛 − 1) < sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, <
))) |
| 258 | 256, 257 | mtbii 326 |
. . . . . . . . 9
⊢ (sup(({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) = (𝑛 − 1) → ¬ (𝑛 − 1) < sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, <
)) |
| 259 | 258 | necon2ai 2970 |
. . . . . . . 8
⊢ ((𝑛 − 1) < sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) → sup(({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ≠ (𝑛 − 1)) |
| 260 | 255, 259 | syl6 35 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → ((𝑛 − 1) ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ≠ (𝑛 − 1))) |
| 261 | | eleq1 2829 |
. . . . . . . . 9
⊢ (sup(({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) = (𝑛 − 1) → (sup(({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ∈ ({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) ↔ (𝑛 − 1) ∈ ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}))) |
| 262 | 45, 261 | mpbii 233 |
. . . . . . . 8
⊢ (sup(({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) = (𝑛 − 1) → (𝑛 − 1) ∈ ({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)})) |
| 263 | 262 | necon3bi 2967 |
. . . . . . 7
⊢ (¬
(𝑛 − 1) ∈ ({0}
∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}) → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ≠ (𝑛 − 1)) |
| 264 | 260, 263 | pm2.61d1 180 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝑘) ∧ (𝑝‘𝑛) = 𝑘)) → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(𝑝 ∘f / ((1...𝑁) × {𝑘})))‘𝑏) ∧ (𝑝‘𝑏) ≠ 0)}), ℝ, < ) ≠ (𝑛 − 1)) |
| 265 | 2, 12, 48, 92, 264, 176 | poimirlem28 37655 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ∃𝑠 ∈ (((0..^𝑘) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)) |
| 266 | | nn0ex 12532 |
. . . . . . . . . . . 12
⊢
ℕ0 ∈ V |
| 267 | | fzo0ssnn0 13785 |
. . . . . . . . . . . 12
⊢
(0..^𝑘) ⊆
ℕ0 |
| 268 | | mapss 8929 |
. . . . . . . . . . . 12
⊢
((ℕ0 ∈ V ∧ (0..^𝑘) ⊆ ℕ0) →
((0..^𝑘) ↑m
(1...𝑁)) ⊆
(ℕ0 ↑m (1...𝑁))) |
| 269 | 266, 267,
268 | mp2an 692 |
. . . . . . . . . . 11
⊢
((0..^𝑘)
↑m (1...𝑁))
⊆ (ℕ0 ↑m (1...𝑁)) |
| 270 | | xpss1 5704 |
. . . . . . . . . . 11
⊢
(((0..^𝑘)
↑m (1...𝑁))
⊆ (ℕ0 ↑m (1...𝑁)) → (((0..^𝑘) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ⊆ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
| 271 | 269, 270 | ax-mp 5 |
. . . . . . . . . 10
⊢
(((0..^𝑘)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ⊆ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
| 272 | 271 | sseli 3979 |
. . . . . . . . 9
⊢ (𝑠 ∈ (((0..^𝑘) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → 𝑠 ∈ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
| 273 | | xp1st 8046 |
. . . . . . . . . 10
⊢ (𝑠 ∈ (((0..^𝑘) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘𝑠) ∈ ((0..^𝑘) ↑m (1...𝑁))) |
| 274 | | elmapi 8889 |
. . . . . . . . . 10
⊢
((1st ‘𝑠) ∈ ((0..^𝑘) ↑m (1...𝑁)) → (1st ‘𝑠):(1...𝑁)⟶(0..^𝑘)) |
| 275 | | frn 6743 |
. . . . . . . . . 10
⊢
((1st ‘𝑠):(1...𝑁)⟶(0..^𝑘) → ran (1st ‘𝑠) ⊆ (0..^𝑘)) |
| 276 | 273, 274,
275 | 3syl 18 |
. . . . . . . . 9
⊢ (𝑠 ∈ (((0..^𝑘) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → ran (1st ‘𝑠) ⊆ (0..^𝑘)) |
| 277 | 272, 276 | jca 511 |
. . . . . . . 8
⊢ (𝑠 ∈ (((0..^𝑘) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (𝑠 ∈ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ran (1st ‘𝑠) ⊆ (0..^𝑘))) |
| 278 | 277 | anim1i 615 |
. . . . . . 7
⊢ ((𝑠 ∈ (((0..^𝑘) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < )) → ((𝑠 ∈ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ran (1st ‘𝑠) ⊆ (0..^𝑘)) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
| 279 | | anass 468 |
. . . . . . 7
⊢ (((𝑠 ∈ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ran (1st ‘𝑠) ⊆ (0..^𝑘)) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < )) ↔ (𝑠 ∈ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ (ran (1st ‘𝑠) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)))) |
| 280 | 278, 279 | sylib 218 |
. . . . . 6
⊢ ((𝑠 ∈ (((0..^𝑘) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < )) → (𝑠 ∈ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ (ran (1st ‘𝑠) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)))) |
| 281 | 280 | reximi2 3079 |
. . . . 5
⊢
(∃𝑠 ∈
(((0..^𝑘)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) →
∃𝑠 ∈
((ℕ0 ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})(ran (1st ‘𝑠) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
| 282 | 265, 281 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ∃𝑠 ∈ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})(ran (1st ‘𝑠) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
| 283 | 282 | ralrimiva 3146 |
. . 3
⊢ (𝜑 → ∀𝑘 ∈ ℕ ∃𝑠 ∈ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})(ran (1st ‘𝑠) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
| 284 | | nnex 12272 |
. . . 4
⊢ ℕ
∈ V |
| 285 | 140, 266 | ixpconst 8947 |
. . . . . . 7
⊢ X𝑛 ∈
(1...𝑁)ℕ0
= (ℕ0 ↑m (1...𝑁)) |
| 286 | | omelon 9686 |
. . . . . . . . . 10
⊢ ω
∈ On |
| 287 | | nn0ennn 14020 |
. . . . . . . . . . 11
⊢
ℕ0 ≈ ℕ |
| 288 | | nnenom 14021 |
. . . . . . . . . . 11
⊢ ℕ
≈ ω |
| 289 | 287, 288 | entr2i 9049 |
. . . . . . . . . 10
⊢ ω
≈ ℕ0 |
| 290 | | isnumi 9986 |
. . . . . . . . . 10
⊢ ((ω
∈ On ∧ ω ≈ ℕ0) → ℕ0
∈ dom card) |
| 291 | 286, 289,
290 | mp2an 692 |
. . . . . . . . 9
⊢
ℕ0 ∈ dom card |
| 292 | 291 | rgenw 3065 |
. . . . . . . 8
⊢
∀𝑛 ∈
(1...𝑁)ℕ0
∈ dom card |
| 293 | | finixpnum 37612 |
. . . . . . . 8
⊢
(((1...𝑁) ∈ Fin
∧ ∀𝑛 ∈
(1...𝑁)ℕ0
∈ dom card) → X𝑛 ∈ (1...𝑁)ℕ0 ∈ dom
card) |
| 294 | 24, 292, 293 | mp2an 692 |
. . . . . . 7
⊢ X𝑛 ∈
(1...𝑁)ℕ0
∈ dom card |
| 295 | 285, 294 | eqeltrri 2838 |
. . . . . 6
⊢
(ℕ0 ↑m (1...𝑁)) ∈ dom card |
| 296 | 140, 140 | mapval 8878 |
. . . . . . . . 9
⊢
((1...𝑁)
↑m (1...𝑁))
= {𝑓 ∣ 𝑓:(1...𝑁)⟶(1...𝑁)} |
| 297 | | mapfi 9388 |
. . . . . . . . . 10
⊢
(((1...𝑁) ∈ Fin
∧ (1...𝑁) ∈ Fin)
→ ((1...𝑁)
↑m (1...𝑁))
∈ Fin) |
| 298 | 24, 24, 297 | mp2an 692 |
. . . . . . . . 9
⊢
((1...𝑁)
↑m (1...𝑁))
∈ Fin |
| 299 | 296, 298 | eqeltrri 2838 |
. . . . . . . 8
⊢ {𝑓 ∣ 𝑓:(1...𝑁)⟶(1...𝑁)} ∈ Fin |
| 300 | | f1of 6848 |
. . . . . . . . 9
⊢ (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑓:(1...𝑁)⟶(1...𝑁)) |
| 301 | 300 | ss2abi 4067 |
. . . . . . . 8
⊢ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ⊆ {𝑓 ∣ 𝑓:(1...𝑁)⟶(1...𝑁)} |
| 302 | | ssfi 9213 |
. . . . . . . 8
⊢ (({𝑓 ∣ 𝑓:(1...𝑁)⟶(1...𝑁)} ∈ Fin ∧ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ⊆ {𝑓 ∣ 𝑓:(1...𝑁)⟶(1...𝑁)}) → {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ Fin) |
| 303 | 299, 301,
302 | mp2an 692 |
. . . . . . 7
⊢ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ Fin |
| 304 | | finnum 9988 |
. . . . . . 7
⊢ ({𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ Fin → {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ dom card) |
| 305 | 303, 304 | ax-mp 5 |
. . . . . 6
⊢ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ dom card |
| 306 | | xpnum 9991 |
. . . . . 6
⊢
(((ℕ0 ↑m (1...𝑁)) ∈ dom card ∧ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ∈ dom card) →
((ℕ0 ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∈ dom card) |
| 307 | 295, 305,
306 | mp2an 692 |
. . . . 5
⊢
((ℕ0 ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∈ dom card |
| 308 | | ssrab2 4080 |
. . . . . . . 8
⊢ {𝑠 ∈ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (ran (1st
‘𝑠) ⊆
(0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))} ⊆
((ℕ0 ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
| 309 | 308 | rgenw 3065 |
. . . . . . 7
⊢
∀𝑘 ∈
ℕ {𝑠 ∈
((ℕ0 ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (ran (1st
‘𝑠) ⊆
(0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))} ⊆
((ℕ0 ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
| 310 | | ss2iun 5010 |
. . . . . . 7
⊢
(∀𝑘 ∈
ℕ {𝑠 ∈
((ℕ0 ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (ran (1st
‘𝑠) ⊆
(0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))} ⊆
((ℕ0 ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → ∪ 𝑘 ∈ ℕ {𝑠 ∈ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (ran (1st
‘𝑠) ⊆
(0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))} ⊆
∪ 𝑘 ∈ ℕ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
| 311 | 309, 310 | ax-mp 5 |
. . . . . 6
⊢ ∪ 𝑘 ∈ ℕ {𝑠 ∈ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (ran (1st
‘𝑠) ⊆
(0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))} ⊆
∪ 𝑘 ∈ ℕ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
| 312 | | 1nn 12277 |
. . . . . . 7
⊢ 1 ∈
ℕ |
| 313 | | ne0i 4341 |
. . . . . . 7
⊢ (1 ∈
ℕ → ℕ ≠ ∅) |
| 314 | | iunconst 5001 |
. . . . . . 7
⊢ (ℕ
≠ ∅ → ∪ 𝑘 ∈ ℕ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) = ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
| 315 | 312, 313,
314 | mp2b 10 |
. . . . . 6
⊢ ∪ 𝑘 ∈ ℕ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) = ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
| 316 | 311, 315 | sseqtri 4032 |
. . . . 5
⊢ ∪ 𝑘 ∈ ℕ {𝑠 ∈ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (ran (1st
‘𝑠) ⊆
(0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))} ⊆
((ℕ0 ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
| 317 | | ssnum 10079 |
. . . . 5
⊢
((((ℕ0 ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∈ dom card ∧ ∪ 𝑘 ∈ ℕ {𝑠 ∈ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (ran (1st
‘𝑠) ⊆
(0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))} ⊆
((ℕ0 ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) → ∪ 𝑘 ∈ ℕ {𝑠 ∈ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (ran (1st
‘𝑠) ⊆
(0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))} ∈ dom
card) |
| 318 | 307, 316,
317 | mp2an 692 |
. . . 4
⊢ ∪ 𝑘 ∈ ℕ {𝑠 ∈ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (ran (1st
‘𝑠) ⊆
(0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))} ∈ dom
card |
| 319 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑠 = (𝑔‘𝑘) → (1st ‘𝑠) = (1st
‘(𝑔‘𝑘))) |
| 320 | 319 | rneqd 5949 |
. . . . . . 7
⊢ (𝑠 = (𝑔‘𝑘) → ran (1st ‘𝑠) = ran (1st
‘(𝑔‘𝑘))) |
| 321 | 320 | sseq1d 4015 |
. . . . . 6
⊢ (𝑠 = (𝑔‘𝑘) → (ran (1st ‘𝑠) ⊆ (0..^𝑘) ↔ ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘))) |
| 322 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 = (𝑔‘𝑘) → (2nd ‘𝑠) = (2nd
‘(𝑔‘𝑘))) |
| 323 | 322 | imaeq1d 6077 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 = (𝑔‘𝑘) → ((2nd ‘𝑠) “ (1...𝑗)) = ((2nd
‘(𝑔‘𝑘)) “ (1...𝑗))) |
| 324 | 323 | xpeq1d 5714 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 = (𝑔‘𝑘) → (((2nd ‘𝑠) “ (1...𝑗)) × {1}) =
(((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1})) |
| 325 | 322 | imaeq1d 6077 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 = (𝑔‘𝑘) → ((2nd ‘𝑠) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁))) |
| 326 | 325 | xpeq1d 5714 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 = (𝑔‘𝑘) → (((2nd ‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})) |
| 327 | 324, 326 | uneq12d 4169 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 = (𝑔‘𝑘) → ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) × {0})) =
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) |
| 328 | 319, 327 | oveq12d 7449 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = (𝑔‘𝑘) → ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(𝑔‘𝑘)) ∘f +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 329 | 328 | fvoveq1d 7453 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = (𝑔‘𝑘) → (𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘}))) = (𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))) |
| 330 | 329 | fveq1d 6908 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = (𝑔‘𝑘) → ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) = ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏)) |
| 331 | 330 | breq2d 5155 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = (𝑔‘𝑘) → (0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ↔ 0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏))) |
| 332 | 328 | fveq1d 6908 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = (𝑔‘𝑘) → (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) = (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏)) |
| 333 | 332 | neeq1d 3000 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = (𝑔‘𝑘) → ((((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0 ↔ (((1st
‘(𝑔‘𝑘)) ∘f +
((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)) |
| 334 | 331, 333 | anbi12d 632 |
. . . . . . . . . . . . 13
⊢ (𝑠 = (𝑔‘𝑘) → ((0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0) ↔ (0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0))) |
| 335 | 334 | ralbidv 3178 |
. . . . . . . . . . . 12
⊢ (𝑠 = (𝑔‘𝑘) → (∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0) ↔ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0))) |
| 336 | 335 | rabbidv 3444 |
. . . . . . . . . . 11
⊢ (𝑠 = (𝑔‘𝑘) → {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)} = {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}) |
| 337 | 336 | uneq2d 4168 |
. . . . . . . . . 10
⊢ (𝑠 = (𝑔‘𝑘) → ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}) = ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)})) |
| 338 | 337 | supeq1d 9486 |
. . . . . . . . 9
⊢ (𝑠 = (𝑔‘𝑘) → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) = sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)) |
| 339 | 338 | eqeq2d 2748 |
. . . . . . . 8
⊢ (𝑠 = (𝑔‘𝑘) → (𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) ↔ 𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
| 340 | 339 | rexbidv 3179 |
. . . . . . 7
⊢ (𝑠 = (𝑔‘𝑘) → (∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) ↔
∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
| 341 | 340 | ralbidv 3178 |
. . . . . 6
⊢ (𝑠 = (𝑔‘𝑘) → (∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) ↔
∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
| 342 | 321, 341 | anbi12d 632 |
. . . . 5
⊢ (𝑠 = (𝑔‘𝑘) → ((ran (1st ‘𝑠) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < )) ↔ (ran
(1st ‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)))) |
| 343 | 342 | ac6num 10519 |
. . . 4
⊢ ((ℕ
∈ V ∧ ∪ 𝑘 ∈ ℕ {𝑠 ∈ ((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ (ran (1st
‘𝑠) ⊆
(0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))} ∈ dom
card ∧ ∀𝑘 ∈
ℕ ∃𝑠 ∈
((ℕ0 ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})(ran (1st ‘𝑠) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))) →
∃𝑔(𝑔:ℕ⟶((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)))) |
| 344 | 284, 318,
343 | mp3an12 1453 |
. . 3
⊢
(∀𝑘 ∈
ℕ ∃𝑠 ∈
((ℕ0 ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})(ran (1st ‘𝑠) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < )) →
∃𝑔(𝑔:ℕ⟶((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)))) |
| 345 | 283, 344 | syl 17 |
. 2
⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)))) |
| 346 | 1 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝑔:ℕ⟶((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))) → 𝑁 ∈
ℕ) |
| 347 | | poimir.r |
. . . 4
⊢ 𝑅 =
(∏t‘((1...𝑁) × {(topGen‘ran
(,))})) |
| 348 | | poimir.1 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ ((𝑅 ↾t 𝐼) Cn 𝑅)) |
| 349 | 348 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝑔:ℕ⟶((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))) → 𝐹 ∈ ((𝑅 ↾t 𝐼) Cn 𝑅)) |
| 350 | | eqid 2737 |
. . . 4
⊢ ((𝐹‘(((1st
‘(𝑔‘𝑝)) ∘f +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑛) = ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑛) |
| 351 | | simplr 769 |
. . . 4
⊢ (((𝜑 ∧ 𝑔:ℕ⟶((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))) → 𝑔:ℕ⟶((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
| 352 | | simpl 482 |
. . . . . . 7
⊢ ((ran
(1st ‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < )) → ran
(1st ‘(𝑔‘𝑘)) ⊆ (0..^𝑘)) |
| 353 | 352 | ralimi 3083 |
. . . . . 6
⊢
(∀𝑘 ∈
ℕ (ran (1st ‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < )) →
∀𝑘 ∈ ℕ
ran (1st ‘(𝑔‘𝑘)) ⊆ (0..^𝑘)) |
| 354 | 353 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔:ℕ⟶((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))) →
∀𝑘 ∈ ℕ
ran (1st ‘(𝑔‘𝑘)) ⊆ (0..^𝑘)) |
| 355 | | 2fveq3 6911 |
. . . . . . . 8
⊢ (𝑘 = 𝑝 → (1st ‘(𝑔‘𝑘)) = (1st ‘(𝑔‘𝑝))) |
| 356 | 355 | rneqd 5949 |
. . . . . . 7
⊢ (𝑘 = 𝑝 → ran (1st ‘(𝑔‘𝑘)) = ran (1st ‘(𝑔‘𝑝))) |
| 357 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑘 = 𝑝 → (0..^𝑘) = (0..^𝑝)) |
| 358 | 356, 357 | sseq12d 4017 |
. . . . . 6
⊢ (𝑘 = 𝑝 → (ran (1st ‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ↔ ran (1st ‘(𝑔‘𝑝)) ⊆ (0..^𝑝))) |
| 359 | 358 | rspccva 3621 |
. . . . 5
⊢
((∀𝑘 ∈
ℕ ran (1st ‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ 𝑝 ∈ ℕ) → ran (1st
‘(𝑔‘𝑝)) ⊆ (0..^𝑝)) |
| 360 | 354, 359 | sylan 580 |
. . . 4
⊢ ((((𝜑 ∧ 𝑔:ℕ⟶((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))) ∧ 𝑝 ∈ ℕ) → ran
(1st ‘(𝑔‘𝑝)) ⊆ (0..^𝑝)) |
| 361 | | simpll 767 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔:ℕ⟶((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))) → 𝜑) |
| 362 | | poimir.2 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 0)) → ((𝐹‘𝑧)‘𝑛) ≤ 0) |
| 363 | 361, 362 | sylan 580 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑔:ℕ⟶((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))) ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 0)) → ((𝐹‘𝑧)‘𝑛) ≤ 0) |
| 364 | | eqid 2737 |
. . . . 5
⊢
((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0}))) = ((1st
‘(𝑔‘𝑝)) ∘f +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0}))) |
| 365 | | simpr 484 |
. . . . . . . 8
⊢ ((ran
(1st ‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < )) →
∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)) |
| 366 | 365 | ralimi 3083 |
. . . . . . 7
⊢
(∀𝑘 ∈
ℕ (ran (1st ‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < )) →
∀𝑘 ∈ ℕ
∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)) |
| 367 | 366 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔:ℕ⟶((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))) →
∀𝑘 ∈ ℕ
∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)) |
| 368 | | 2fveq3 6911 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 𝑝 → (2nd ‘(𝑔‘𝑘)) = (2nd ‘(𝑔‘𝑝))) |
| 369 | 368 | imaeq1d 6077 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑝 → ((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) = ((2nd ‘(𝑔‘𝑝)) “ (1...𝑗))) |
| 370 | 369 | xpeq1d 5714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑝 → (((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) = (((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) ×
{1})) |
| 371 | 368 | imaeq1d 6077 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑝 → ((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁))) |
| 372 | 371 | xpeq1d 5714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑝 → (((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})) |
| 373 | 370, 372 | uneq12d 4169 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑝 → ((((2nd ‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) |
| 374 | 355, 373 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑝 → ((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(𝑔‘𝑝)) ∘f +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 375 | | sneq 4636 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑝 → {𝑘} = {𝑝}) |
| 376 | 375 | xpeq2d 5715 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑝 → ((1...𝑁) × {𝑘}) = ((1...𝑁) × {𝑝})) |
| 377 | 374, 376 | oveq12d 7449 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑝 → (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})) = (((1st
‘(𝑔‘𝑝)) ∘f +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝}))) |
| 378 | 377 | fveq2d 6910 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑝 → (𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘}))) = (𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))) |
| 379 | 378 | fveq1d 6908 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑝 → ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) = ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏)) |
| 380 | 379 | breq2d 5155 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑝 → (0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ↔ 0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏))) |
| 381 | 374 | fveq1d 6908 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑝 → (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) = (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏)) |
| 382 | 381 | neeq1d 3000 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑝 → ((((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0 ↔ (((1st
‘(𝑔‘𝑝)) ∘f +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)) |
| 383 | 380, 382 | anbi12d 632 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑝 → ((0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0) ↔ (0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0))) |
| 384 | 383 | ralbidv 3178 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑝 → (∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0) ↔ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0))) |
| 385 | 384 | rabbidv 3444 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑝 → {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)} = {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}) |
| 386 | 385 | uneq2d 4168 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑝 → ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}) = ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)})) |
| 387 | 386 | supeq1d 9486 |
. . . . . . . . 9
⊢ (𝑘 = 𝑝 → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) = sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)) |
| 388 | 387 | eqeq2d 2748 |
. . . . . . . 8
⊢ (𝑘 = 𝑝 → (𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) ↔ 𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
| 389 | 388 | rexbidv 3179 |
. . . . . . 7
⊢ (𝑘 = 𝑝 → (∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) ↔
∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
| 390 | | eqeq1 2741 |
. . . . . . . . 9
⊢ (𝑖 = 𝑞 → (𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) ↔ 𝑞 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
| 391 | 390 | rexbidv 3179 |
. . . . . . . 8
⊢ (𝑖 = 𝑞 → (∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) ↔
∃𝑗 ∈ (0...𝑁)𝑞 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
| 392 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 𝑚 → (1...𝑗) = (1...𝑚)) |
| 393 | 392 | imaeq2d 6078 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑚 → ((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) = ((2nd ‘(𝑔‘𝑝)) “ (1...𝑚))) |
| 394 | 393 | xpeq1d 5714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑚 → (((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) = (((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) ×
{1})) |
| 395 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = 𝑚 → (𝑗 + 1) = (𝑚 + 1)) |
| 396 | 395 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 𝑚 → ((𝑗 + 1)...𝑁) = ((𝑚 + 1)...𝑁)) |
| 397 | 396 | imaeq2d 6078 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑚 → ((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁))) |
| 398 | 397 | xpeq1d 5714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑚 → (((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})) |
| 399 | 394, 398 | uneq12d 4169 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑚 → ((((2nd ‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0}))) |
| 400 | 399 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑚 → ((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(𝑔‘𝑝)) ∘f +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))) |
| 401 | 400 | fvoveq1d 7453 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑚 → (𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝}))) = (𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))) |
| 402 | 401 | fveq1d 6908 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑚 → ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) = ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏)) |
| 403 | 402 | breq2d 5155 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑚 → (0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ↔ 0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏))) |
| 404 | 400 | fveq1d 6908 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑚 → (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) = (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))‘𝑏)) |
| 405 | 404 | neeq1d 3000 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑚 → ((((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0 ↔ (((1st
‘(𝑔‘𝑝)) ∘f +
((((2nd ‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪ (((2nd
‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)) |
| 406 | 403, 405 | anbi12d 632 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑚 → ((0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0) ↔ (0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0))) |
| 407 | 406 | ralbidv 3178 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑚 → (∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0) ↔ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0))) |
| 408 | 407 | rabbidv 3444 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑚 → {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)} = {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}) |
| 409 | 408 | uneq2d 4168 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑚 → ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}) = ({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)})) |
| 410 | 409 | supeq1d 9486 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑚 → sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) = sup(({0} ∪
{𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)) |
| 411 | 410 | eqeq2d 2748 |
. . . . . . . . 9
⊢ (𝑗 = 𝑚 → (𝑞 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) ↔ 𝑞 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
| 412 | 411 | cbvrexvw 3238 |
. . . . . . . 8
⊢
(∃𝑗 ∈
(0...𝑁)𝑞 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) ↔
∃𝑚 ∈ (0...𝑁)𝑞 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)) |
| 413 | 391, 412 | bitrdi 287 |
. . . . . . 7
⊢ (𝑖 = 𝑞 → (∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) ↔
∃𝑚 ∈ (0...𝑁)𝑞 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
| 414 | 389, 413 | rspc2v 3633 |
. . . . . 6
⊢ ((𝑝 ∈ ℕ ∧ 𝑞 ∈ (0...𝑁)) → (∀𝑘 ∈ ℕ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ) →
∃𝑚 ∈ (0...𝑁)𝑞 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
))) |
| 415 | 367, 414 | mpan9 506 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑔:ℕ⟶((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ (0...𝑁))) → ∃𝑚 ∈ (0...𝑁)𝑞 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, <
)) |
| 416 | 346, 137,
347, 349, 363, 364, 351, 360, 415 | poimirlem31 37658 |
. . . 4
⊢ ((((𝜑 ∧ 𝑔:ℕ⟶((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))) ∧ (𝑝 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁) ∧ 𝑟 ∈ { ≤ , ◡ ≤ })) → ∃𝑚 ∈ (0...𝑁)0𝑟((𝐹‘(((1st ‘(𝑔‘𝑝)) ∘f + ((((2nd
‘(𝑔‘𝑝)) “ (1...𝑚)) × {1}) ∪
(((2nd ‘(𝑔‘𝑝)) “ ((𝑚 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑝})))‘𝑛)) |
| 417 | 346, 137,
347, 349, 350, 351, 360, 416 | poimirlem30 37657 |
. . 3
⊢ (((𝜑 ∧ 𝑔:ℕ⟶((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < ))) →
∃𝑐 ∈ 𝐼 ∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛))) |
| 418 | 417 | anasss 466 |
. 2
⊢ ((𝜑 ∧ (𝑔:ℕ⟶((ℕ0
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ ∀𝑘 ∈ ℕ (ran (1st
‘(𝑔‘𝑘)) ⊆ (0..^𝑘) ∧ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = sup(({0} ∪ {𝑎 ∈ (1...𝑁) ∣ ∀𝑏 ∈ (1...𝑎)(0 ≤ ((𝐹‘(((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f /
((1...𝑁) × {𝑘})))‘𝑏) ∧ (((1st ‘(𝑔‘𝑘)) ∘f + ((((2nd
‘(𝑔‘𝑘)) “ (1...𝑗)) × {1}) ∪
(((2nd ‘(𝑔‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑏) ≠ 0)}), ℝ, < )))) →
∃𝑐 ∈ 𝐼 ∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛))) |
| 419 | 345, 418 | exlimddv 1935 |
1
⊢ (𝜑 → ∃𝑐 ∈ 𝐼 ∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛))) |