| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2736 | . . 3
⊢ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) | 
| 2 |  | rfovd.b | . . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ 𝑊) | 
| 3 |  | ssrab2 4079 | . . . . . . . . 9
⊢ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦} ⊆ 𝐵 | 
| 4 | 3 | a1i 11 | . . . . . . . 8
⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦} ⊆ 𝐵) | 
| 5 | 2, 4 | sselpwd 5327 | . . . . . . 7
⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦} ∈ 𝒫 𝐵) | 
| 6 | 5 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦} ∈ 𝒫 𝐵) | 
| 7 | 6 | fmpttd 7134 | . . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}):𝐴⟶𝒫 𝐵) | 
| 8 | 2 | pwexd 5378 | . . . . . 6
⊢ (𝜑 → 𝒫 𝐵 ∈ V) | 
| 9 |  | rfovd.a | . . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| 10 | 8, 9 | elmapd 8881 | . . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}) ∈ (𝒫 𝐵 ↑m 𝐴) ↔ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}):𝐴⟶𝒫 𝐵)) | 
| 11 | 7, 10 | mpbird 257 | . . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}) ∈ (𝒫 𝐵 ↑m 𝐴)) | 
| 12 | 11 | adantr 480 | . . 3
⊢ ((𝜑 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐵)) → (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}) ∈ (𝒫 𝐵 ↑m 𝐴)) | 
| 13 | 9, 2 | xpexd 7772 | . . . . 5
⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) | 
| 14 | 13 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) → (𝐴 × 𝐵) ∈ V) | 
| 15 | 8, 9 | elmapd 8881 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↔ 𝑓:𝐴⟶𝒫 𝐵)) | 
| 16 | 15 | biimpa 476 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) → 𝑓:𝐴⟶𝒫 𝐵) | 
| 17 | 16 | ffvelcdmda 7103 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ 𝒫 𝐵) | 
| 18 | 17 | ex 412 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) → (𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ 𝒫 𝐵)) | 
| 19 |  | elpwi 4606 | . . . . . . . . . 10
⊢ ((𝑓‘𝑥) ∈ 𝒫 𝐵 → (𝑓‘𝑥) ⊆ 𝐵) | 
| 20 | 19 | sseld 3981 | . . . . . . . . 9
⊢ ((𝑓‘𝑥) ∈ 𝒫 𝐵 → (𝑦 ∈ (𝑓‘𝑥) → 𝑦 ∈ 𝐵)) | 
| 21 | 18, 20 | syl6 35 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) → (𝑥 ∈ 𝐴 → (𝑦 ∈ (𝑓‘𝑥) → 𝑦 ∈ 𝐵))) | 
| 22 | 21 | imdistand 570 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) | 
| 23 |  | trud 1549 | . . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥)) → ⊤) | 
| 24 | 22, 23 | jca2 513 | . . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥)) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ ⊤))) | 
| 25 | 24 | ssopab2dv 5555 | . . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))} ⊆ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ ⊤)}) | 
| 26 |  | opabssxp 5777 | . . . . 5
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ ⊤)} ⊆ (𝐴 × 𝐵) | 
| 27 | 25, 26 | sstrdi 3995 | . . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))} ⊆ (𝐴 × 𝐵)) | 
| 28 | 14, 27 | sselpwd 5327 | . . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))} ∈ 𝒫 (𝐴 × 𝐵)) | 
| 29 |  | simplrr 777 | . . . . . 6
⊢ (((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) → 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) | 
| 30 |  | elmapfn 8906 | . . . . . 6
⊢ (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) → 𝑓 Fn 𝐴) | 
| 31 | 29, 30 | syl 17 | . . . . 5
⊢ (((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) → 𝑓 Fn 𝐴) | 
| 32 | 2 | ad2antrr 726 | . . . . . 6
⊢ (((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) → 𝐵 ∈ 𝑊) | 
| 33 |  | rabexg 5336 | . . . . . . 7
⊢ (𝐵 ∈ 𝑊 → {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦} ∈ V) | 
| 34 | 33 | ralrimivw 3149 | . . . . . 6
⊢ (𝐵 ∈ 𝑊 → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦} ∈ V) | 
| 35 |  | nfcv 2904 | . . . . . . 7
⊢
Ⅎ𝑥𝐴 | 
| 36 | 35 | fnmptf 6703 | . . . . . 6
⊢
(∀𝑥 ∈
𝐴 {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦} ∈ V → (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}) Fn 𝐴) | 
| 37 | 32, 34, 36 | 3syl 18 | . . . . 5
⊢ (((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) → (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}) Fn 𝐴) | 
| 38 |  | dfin5 3958 | . . . . . . 7
⊢ (𝐵 ∩ (𝑓‘𝑢)) = {𝑏 ∈ 𝐵 ∣ 𝑏 ∈ (𝑓‘𝑢)} | 
| 39 |  | simpllr 775 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑢 ∈ 𝐴) → (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) | 
| 40 |  | elmapi 8890 | . . . . . . . . . . 11
⊢ (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) → 𝑓:𝐴⟶𝒫 𝐵) | 
| 41 | 39, 40 | simpl2im 503 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑢 ∈ 𝐴) → 𝑓:𝐴⟶𝒫 𝐵) | 
| 42 |  | simpr 484 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑢 ∈ 𝐴) → 𝑢 ∈ 𝐴) | 
| 43 | 41, 42 | ffvelcdmd 7104 | . . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑢 ∈ 𝐴) → (𝑓‘𝑢) ∈ 𝒫 𝐵) | 
| 44 | 43 | elpwid 4608 | . . . . . . . 8
⊢ ((((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑢 ∈ 𝐴) → (𝑓‘𝑢) ⊆ 𝐵) | 
| 45 |  | sseqin2 4222 | . . . . . . . 8
⊢ ((𝑓‘𝑢) ⊆ 𝐵 ↔ (𝐵 ∩ (𝑓‘𝑢)) = (𝑓‘𝑢)) | 
| 46 | 44, 45 | sylib 218 | . . . . . . 7
⊢ ((((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑢 ∈ 𝐴) → (𝐵 ∩ (𝑓‘𝑢)) = (𝑓‘𝑢)) | 
| 47 |  | ibar 528 | . . . . . . . . 9
⊢ (𝑢 ∈ 𝐴 → (𝑏 ∈ (𝑓‘𝑢) ↔ (𝑢 ∈ 𝐴 ∧ 𝑏 ∈ (𝑓‘𝑢)))) | 
| 48 | 47 | rabbidv 3443 | . . . . . . . 8
⊢ (𝑢 ∈ 𝐴 → {𝑏 ∈ 𝐵 ∣ 𝑏 ∈ (𝑓‘𝑢)} = {𝑏 ∈ 𝐵 ∣ (𝑢 ∈ 𝐴 ∧ 𝑏 ∈ (𝑓‘𝑢))}) | 
| 49 | 48 | adantl 481 | . . . . . . 7
⊢ ((((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑢 ∈ 𝐴) → {𝑏 ∈ 𝐵 ∣ 𝑏 ∈ (𝑓‘𝑢)} = {𝑏 ∈ 𝐵 ∣ (𝑢 ∈ 𝐴 ∧ 𝑏 ∈ (𝑓‘𝑢))}) | 
| 50 | 38, 46, 49 | 3eqtr3a 2800 | . . . . . 6
⊢ ((((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑢 ∈ 𝐴) → (𝑓‘𝑢) = {𝑏 ∈ 𝐵 ∣ (𝑢 ∈ 𝐴 ∧ 𝑏 ∈ (𝑓‘𝑢))}) | 
| 51 |  | breq2 5146 | . . . . . . . . . 10
⊢ (𝑦 = 𝑏 → (𝑥𝑟𝑦 ↔ 𝑥𝑟𝑏)) | 
| 52 | 51 | cbvrabv 3446 | . . . . . . . . 9
⊢ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦} = {𝑏 ∈ 𝐵 ∣ 𝑥𝑟𝑏} | 
| 53 |  | breq1 5145 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑎 → (𝑥𝑟𝑏 ↔ 𝑎𝑟𝑏)) | 
| 54 |  | df-br 5143 | . . . . . . . . . . 11
⊢ (𝑎𝑟𝑏 ↔ 〈𝑎, 𝑏〉 ∈ 𝑟) | 
| 55 | 53, 54 | bitrdi 287 | . . . . . . . . . 10
⊢ (𝑥 = 𝑎 → (𝑥𝑟𝑏 ↔ 〈𝑎, 𝑏〉 ∈ 𝑟)) | 
| 56 | 55 | rabbidv 3443 | . . . . . . . . 9
⊢ (𝑥 = 𝑎 → {𝑏 ∈ 𝐵 ∣ 𝑥𝑟𝑏} = {𝑏 ∈ 𝐵 ∣ 〈𝑎, 𝑏〉 ∈ 𝑟}) | 
| 57 | 52, 56 | eqtrid 2788 | . . . . . . . 8
⊢ (𝑥 = 𝑎 → {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦} = {𝑏 ∈ 𝐵 ∣ 〈𝑎, 𝑏〉 ∈ 𝑟}) | 
| 58 | 57 | cbvmptv 5254 | . . . . . . 7
⊢ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}) = (𝑎 ∈ 𝐴 ↦ {𝑏 ∈ 𝐵 ∣ 〈𝑎, 𝑏〉 ∈ 𝑟}) | 
| 59 |  | simpr 484 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑢 ∈ 𝐴) ∧ 𝑎 = 𝑢) → 𝑎 = 𝑢) | 
| 60 | 59 | opeq1d 4878 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑢 ∈ 𝐴) ∧ 𝑎 = 𝑢) → 〈𝑎, 𝑏〉 = 〈𝑢, 𝑏〉) | 
| 61 |  | simpllr 775 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑢 ∈ 𝐴) ∧ 𝑎 = 𝑢) → 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) | 
| 62 | 60, 61 | eleq12d 2834 | . . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑢 ∈ 𝐴) ∧ 𝑎 = 𝑢) → (〈𝑎, 𝑏〉 ∈ 𝑟 ↔ 〈𝑢, 𝑏〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))})) | 
| 63 |  | vex 3483 | . . . . . . . . . 10
⊢ 𝑢 ∈ V | 
| 64 |  | vex 3483 | . . . . . . . . . 10
⊢ 𝑏 ∈ V | 
| 65 |  | simpl 482 | . . . . . . . . . . . 12
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑏) → 𝑥 = 𝑢) | 
| 66 | 65 | eleq1d 2825 | . . . . . . . . . . 11
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑏) → (𝑥 ∈ 𝐴 ↔ 𝑢 ∈ 𝐴)) | 
| 67 |  | simpr 484 | . . . . . . . . . . . 12
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑏) → 𝑦 = 𝑏) | 
| 68 | 65 | fveq2d 6909 | . . . . . . . . . . . 12
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑏) → (𝑓‘𝑥) = (𝑓‘𝑢)) | 
| 69 | 67, 68 | eleq12d 2834 | . . . . . . . . . . 11
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑏) → (𝑦 ∈ (𝑓‘𝑥) ↔ 𝑏 ∈ (𝑓‘𝑢))) | 
| 70 | 66, 69 | anbi12d 632 | . . . . . . . . . 10
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑏) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥)) ↔ (𝑢 ∈ 𝐴 ∧ 𝑏 ∈ (𝑓‘𝑢)))) | 
| 71 | 63, 64, 70 | opelopaba 5540 | . . . . . . . . 9
⊢
(〈𝑢, 𝑏〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))} ↔ (𝑢 ∈ 𝐴 ∧ 𝑏 ∈ (𝑓‘𝑢))) | 
| 72 | 62, 71 | bitrdi 287 | . . . . . . . 8
⊢
(((((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑢 ∈ 𝐴) ∧ 𝑎 = 𝑢) → (〈𝑎, 𝑏〉 ∈ 𝑟 ↔ (𝑢 ∈ 𝐴 ∧ 𝑏 ∈ (𝑓‘𝑢)))) | 
| 73 | 72 | rabbidv 3443 | . . . . . . 7
⊢
(((((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑢 ∈ 𝐴) ∧ 𝑎 = 𝑢) → {𝑏 ∈ 𝐵 ∣ 〈𝑎, 𝑏〉 ∈ 𝑟} = {𝑏 ∈ 𝐵 ∣ (𝑢 ∈ 𝐴 ∧ 𝑏 ∈ (𝑓‘𝑢))}) | 
| 74 | 2 | ad3antrrr 730 | . . . . . . . 8
⊢ ((((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑢 ∈ 𝐴) → 𝐵 ∈ 𝑊) | 
| 75 |  | rabexg 5336 | . . . . . . . 8
⊢ (𝐵 ∈ 𝑊 → {𝑏 ∈ 𝐵 ∣ (𝑢 ∈ 𝐴 ∧ 𝑏 ∈ (𝑓‘𝑢))} ∈ V) | 
| 76 | 74, 75 | syl 17 | . . . . . . 7
⊢ ((((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑢 ∈ 𝐴) → {𝑏 ∈ 𝐵 ∣ (𝑢 ∈ 𝐴 ∧ 𝑏 ∈ (𝑓‘𝑢))} ∈ V) | 
| 77 | 58, 73, 42, 76 | fvmptd2 7023 | . . . . . 6
⊢ ((((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑢 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})‘𝑢) = {𝑏 ∈ 𝐵 ∣ (𝑢 ∈ 𝐴 ∧ 𝑏 ∈ (𝑓‘𝑢))}) | 
| 78 | 50, 77 | eqtr4d 2779 | . . . . 5
⊢ ((((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ 𝑢 ∈ 𝐴) → (𝑓‘𝑢) = ((𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})‘𝑢)) | 
| 79 | 31, 37, 78 | eqfnfvd 7053 | . . . 4
⊢ (((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) → 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) | 
| 80 |  | simplrl 776 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → 𝑟 ∈ 𝒫 (𝐴 × 𝐵)) | 
| 81 | 80 | elpwid 4608 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → 𝑟 ⊆ (𝐴 × 𝐵)) | 
| 82 |  | xpss 5700 | . . . . . . 7
⊢ (𝐴 × 𝐵) ⊆ (V × V) | 
| 83 | 81, 82 | sstrdi 3995 | . . . . . 6
⊢ (((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → 𝑟 ⊆ (V × V)) | 
| 84 |  | df-rel 5691 | . . . . . 6
⊢ (Rel
𝑟 ↔ 𝑟 ⊆ (V × V)) | 
| 85 | 83, 84 | sylibr 234 | . . . . 5
⊢ (((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → Rel 𝑟) | 
| 86 |  | relopabv 5830 | . . . . . 6
⊢ Rel
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))} | 
| 87 | 86 | a1i 11 | . . . . 5
⊢ (((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) | 
| 88 |  | simpl 482 | . . . . . . 7
⊢ ((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) → 𝑟 ∈ 𝒫 (𝐴 × 𝐵)) | 
| 89 | 2, 88 | anim12i 613 | . . . . . 6
⊢ ((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) → (𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐵))) | 
| 90 | 89 | anim1i 615 | . . . . 5
⊢ (((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → ((𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐵)) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}))) | 
| 91 |  | vex 3483 | . . . . . . . 8
⊢ 𝑣 ∈ V | 
| 92 |  | simpl 482 | . . . . . . . . . 10
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑥 = 𝑢) | 
| 93 | 92 | eleq1d 2825 | . . . . . . . . 9
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (𝑥 ∈ 𝐴 ↔ 𝑢 ∈ 𝐴)) | 
| 94 |  | simpr 484 | . . . . . . . . . 10
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑦 = 𝑣) | 
| 95 | 92 | fveq2d 6909 | . . . . . . . . . 10
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (𝑓‘𝑥) = (𝑓‘𝑢)) | 
| 96 | 94, 95 | eleq12d 2834 | . . . . . . . . 9
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (𝑦 ∈ (𝑓‘𝑥) ↔ 𝑣 ∈ (𝑓‘𝑢))) | 
| 97 | 93, 96 | anbi12d 632 | . . . . . . . 8
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥)) ↔ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢)))) | 
| 98 | 63, 91, 97 | opelopaba 5540 | . . . . . . 7
⊢
(〈𝑢, 𝑣〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))} ↔ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))) | 
| 99 |  | breq2 5146 | . . . . . . . . . . . 12
⊢ (𝑏 = 𝑣 → (𝑢𝑟𝑏 ↔ 𝑢𝑟𝑣)) | 
| 100 |  | df-br 5143 | . . . . . . . . . . . 12
⊢ (𝑢𝑟𝑣 ↔ 〈𝑢, 𝑣〉 ∈ 𝑟) | 
| 101 | 99, 100 | bitrdi 287 | . . . . . . . . . . 11
⊢ (𝑏 = 𝑣 → (𝑢𝑟𝑏 ↔ 〈𝑢, 𝑣〉 ∈ 𝑟)) | 
| 102 | 101 | elrab 3691 | . . . . . . . . . 10
⊢ (𝑣 ∈ {𝑏 ∈ 𝐵 ∣ 𝑢𝑟𝑏} ↔ (𝑣 ∈ 𝐵 ∧ 〈𝑢, 𝑣〉 ∈ 𝑟)) | 
| 103 | 102 | anbi2i 623 | . . . . . . . . 9
⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ {𝑏 ∈ 𝐵 ∣ 𝑢𝑟𝑏}) ↔ (𝑢 ∈ 𝐴 ∧ (𝑣 ∈ 𝐵 ∧ 〈𝑢, 𝑣〉 ∈ 𝑟))) | 
| 104 | 103 | a1i 11 | . . . . . . . 8
⊢ (((𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐵)) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ {𝑏 ∈ 𝐵 ∣ 𝑢𝑟𝑏}) ↔ (𝑢 ∈ 𝐴 ∧ (𝑣 ∈ 𝐵 ∧ 〈𝑢, 𝑣〉 ∈ 𝑟)))) | 
| 105 |  | simplr 768 | . . . . . . . . . . . 12
⊢ ((((𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐵)) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) ∧ 𝑢 ∈ 𝐴) → 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) | 
| 106 |  | breq1 5145 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑎 → (𝑥𝑟𝑦 ↔ 𝑎𝑟𝑦)) | 
| 107 | 106 | rabbidv 3443 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑎 → {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦} = {𝑦 ∈ 𝐵 ∣ 𝑎𝑟𝑦}) | 
| 108 |  | breq2 5146 | . . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑏 → (𝑎𝑟𝑦 ↔ 𝑎𝑟𝑏)) | 
| 109 | 108 | cbvrabv 3446 | . . . . . . . . . . . . . 14
⊢ {𝑦 ∈ 𝐵 ∣ 𝑎𝑟𝑦} = {𝑏 ∈ 𝐵 ∣ 𝑎𝑟𝑏} | 
| 110 | 107, 109 | eqtrdi 2792 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑎 → {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦} = {𝑏 ∈ 𝐵 ∣ 𝑎𝑟𝑏}) | 
| 111 | 110 | cbvmptv 5254 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}) = (𝑎 ∈ 𝐴 ↦ {𝑏 ∈ 𝐵 ∣ 𝑎𝑟𝑏}) | 
| 112 | 105, 111 | eqtrdi 2792 | . . . . . . . . . . 11
⊢ ((((𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐵)) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) ∧ 𝑢 ∈ 𝐴) → 𝑓 = (𝑎 ∈ 𝐴 ↦ {𝑏 ∈ 𝐵 ∣ 𝑎𝑟𝑏})) | 
| 113 |  | breq1 5145 | . . . . . . . . . . . . 13
⊢ (𝑎 = 𝑢 → (𝑎𝑟𝑏 ↔ 𝑢𝑟𝑏)) | 
| 114 | 113 | rabbidv 3443 | . . . . . . . . . . . 12
⊢ (𝑎 = 𝑢 → {𝑏 ∈ 𝐵 ∣ 𝑎𝑟𝑏} = {𝑏 ∈ 𝐵 ∣ 𝑢𝑟𝑏}) | 
| 115 | 114 | adantl 481 | . . . . . . . . . . 11
⊢
(((((𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐵)) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) ∧ 𝑢 ∈ 𝐴) ∧ 𝑎 = 𝑢) → {𝑏 ∈ 𝐵 ∣ 𝑎𝑟𝑏} = {𝑏 ∈ 𝐵 ∣ 𝑢𝑟𝑏}) | 
| 116 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((((𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐵)) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) ∧ 𝑢 ∈ 𝐴) → 𝑢 ∈ 𝐴) | 
| 117 |  | rabexg 5336 | . . . . . . . . . . . 12
⊢ (𝐵 ∈ 𝑊 → {𝑏 ∈ 𝐵 ∣ 𝑢𝑟𝑏} ∈ V) | 
| 118 | 117 | ad3antrrr 730 | . . . . . . . . . . 11
⊢ ((((𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐵)) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) ∧ 𝑢 ∈ 𝐴) → {𝑏 ∈ 𝐵 ∣ 𝑢𝑟𝑏} ∈ V) | 
| 119 | 112, 115,
116, 118 | fvmptd 7022 | . . . . . . . . . 10
⊢ ((((𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐵)) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) ∧ 𝑢 ∈ 𝐴) → (𝑓‘𝑢) = {𝑏 ∈ 𝐵 ∣ 𝑢𝑟𝑏}) | 
| 120 | 119 | eleq2d 2826 | . . . . . . . . 9
⊢ ((((𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐵)) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) ∧ 𝑢 ∈ 𝐴) → (𝑣 ∈ (𝑓‘𝑢) ↔ 𝑣 ∈ {𝑏 ∈ 𝐵 ∣ 𝑢𝑟𝑏})) | 
| 121 | 120 | pm5.32da 579 | . . . . . . . 8
⊢ (((𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐵)) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢)) ↔ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ {𝑏 ∈ 𝐵 ∣ 𝑢𝑟𝑏}))) | 
| 122 |  | simplr 768 | . . . . . . . . . 10
⊢ (((𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐵)) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → 𝑟 ∈ 𝒫 (𝐴 × 𝐵)) | 
| 123 | 122 | elpwid 4608 | . . . . . . . . 9
⊢ (((𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐵)) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → 𝑟 ⊆ (𝐴 × 𝐵)) | 
| 124 | 63, 91 | opeldm 5917 | . . . . . . . . . . . 12
⊢
(〈𝑢, 𝑣〉 ∈ 𝑟 → 𝑢 ∈ dom 𝑟) | 
| 125 |  | dmss 5912 | . . . . . . . . . . . . . 14
⊢ (𝑟 ⊆ (𝐴 × 𝐵) → dom 𝑟 ⊆ dom (𝐴 × 𝐵)) | 
| 126 |  | dmxpss 6190 | . . . . . . . . . . . . . 14
⊢ dom
(𝐴 × 𝐵) ⊆ 𝐴 | 
| 127 | 125, 126 | sstrdi 3995 | . . . . . . . . . . . . 13
⊢ (𝑟 ⊆ (𝐴 × 𝐵) → dom 𝑟 ⊆ 𝐴) | 
| 128 | 127 | sseld 3981 | . . . . . . . . . . . 12
⊢ (𝑟 ⊆ (𝐴 × 𝐵) → (𝑢 ∈ dom 𝑟 → 𝑢 ∈ 𝐴)) | 
| 129 | 124, 128 | syl5 34 | . . . . . . . . . . 11
⊢ (𝑟 ⊆ (𝐴 × 𝐵) → (〈𝑢, 𝑣〉 ∈ 𝑟 → 𝑢 ∈ 𝐴)) | 
| 130 | 129 | pm4.71rd 562 | . . . . . . . . . 10
⊢ (𝑟 ⊆ (𝐴 × 𝐵) → (〈𝑢, 𝑣〉 ∈ 𝑟 ↔ (𝑢 ∈ 𝐴 ∧ 〈𝑢, 𝑣〉 ∈ 𝑟))) | 
| 131 | 63, 91 | opelrn 5953 | . . . . . . . . . . . . 13
⊢
(〈𝑢, 𝑣〉 ∈ 𝑟 → 𝑣 ∈ ran 𝑟) | 
| 132 |  | rnss 5949 | . . . . . . . . . . . . . . 15
⊢ (𝑟 ⊆ (𝐴 × 𝐵) → ran 𝑟 ⊆ ran (𝐴 × 𝐵)) | 
| 133 |  | rnxpss 6191 | . . . . . . . . . . . . . . 15
⊢ ran
(𝐴 × 𝐵) ⊆ 𝐵 | 
| 134 | 132, 133 | sstrdi 3995 | . . . . . . . . . . . . . 14
⊢ (𝑟 ⊆ (𝐴 × 𝐵) → ran 𝑟 ⊆ 𝐵) | 
| 135 | 134 | sseld 3981 | . . . . . . . . . . . . 13
⊢ (𝑟 ⊆ (𝐴 × 𝐵) → (𝑣 ∈ ran 𝑟 → 𝑣 ∈ 𝐵)) | 
| 136 | 131, 135 | syl5 34 | . . . . . . . . . . . 12
⊢ (𝑟 ⊆ (𝐴 × 𝐵) → (〈𝑢, 𝑣〉 ∈ 𝑟 → 𝑣 ∈ 𝐵)) | 
| 137 | 136 | pm4.71rd 562 | . . . . . . . . . . 11
⊢ (𝑟 ⊆ (𝐴 × 𝐵) → (〈𝑢, 𝑣〉 ∈ 𝑟 ↔ (𝑣 ∈ 𝐵 ∧ 〈𝑢, 𝑣〉 ∈ 𝑟))) | 
| 138 | 137 | anbi2d 630 | . . . . . . . . . 10
⊢ (𝑟 ⊆ (𝐴 × 𝐵) → ((𝑢 ∈ 𝐴 ∧ 〈𝑢, 𝑣〉 ∈ 𝑟) ↔ (𝑢 ∈ 𝐴 ∧ (𝑣 ∈ 𝐵 ∧ 〈𝑢, 𝑣〉 ∈ 𝑟)))) | 
| 139 | 130, 138 | bitrd 279 | . . . . . . . . 9
⊢ (𝑟 ⊆ (𝐴 × 𝐵) → (〈𝑢, 𝑣〉 ∈ 𝑟 ↔ (𝑢 ∈ 𝐴 ∧ (𝑣 ∈ 𝐵 ∧ 〈𝑢, 𝑣〉 ∈ 𝑟)))) | 
| 140 | 123, 139 | syl 17 | . . . . . . . 8
⊢ (((𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐵)) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → (〈𝑢, 𝑣〉 ∈ 𝑟 ↔ (𝑢 ∈ 𝐴 ∧ (𝑣 ∈ 𝐵 ∧ 〈𝑢, 𝑣〉 ∈ 𝑟)))) | 
| 141 | 104, 121,
140 | 3bitr4d 311 | . . . . . . 7
⊢ (((𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐵)) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢)) ↔ 〈𝑢, 𝑣〉 ∈ 𝑟)) | 
| 142 | 98, 141 | bitr2id 284 | . . . . . 6
⊢ (((𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐵)) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → (〈𝑢, 𝑣〉 ∈ 𝑟 ↔ 〈𝑢, 𝑣〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))})) | 
| 143 | 142 | eqrelrdv2 5804 | . . . . 5
⊢ (((Rel
𝑟 ∧ Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ∧ ((𝐵 ∈ 𝑊 ∧ 𝑟 ∈ 𝒫 (𝐴 × 𝐵)) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}))) → 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) | 
| 144 | 85, 87, 90, 143 | syl21anc 837 | . . . 4
⊢ (((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) ∧ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → 𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) | 
| 145 | 79, 144 | impbida 800 | . . 3
⊢ ((𝜑 ∧ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴))) → (𝑟 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))} ↔ 𝑓 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}))) | 
| 146 | 1, 12, 28, 145 | f1ocnv2d 7687 | . 2
⊢ (𝜑 → ((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})):𝒫 (𝐴 × 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝐴) ∧ ◡(𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}))) | 
| 147 |  | rfovcnvf1od.f | . . . 4
⊢ 𝐹 = (𝐴𝑂𝐵) | 
| 148 |  | rfovd.rf | . . . . 5
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) | 
| 149 | 148, 9, 2 | rfovd 44019 | . . . 4
⊢ (𝜑 → (𝐴𝑂𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}))) | 
| 150 | 147, 149 | eqtrid 2788 | . . 3
⊢ (𝜑 → 𝐹 = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}))) | 
| 151 |  | f1oeq1 6835 | . . . 4
⊢ (𝐹 = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → (𝐹:𝒫 (𝐴 × 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝐴) ↔ (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})):𝒫 (𝐴 × 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝐴))) | 
| 152 |  | cnveq 5883 | . . . . 5
⊢ (𝐹 = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → ◡𝐹 = ◡(𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}))) | 
| 153 | 152 | eqeq1d 2738 | . . . 4
⊢ (𝐹 = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → (◡𝐹 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ↔ ◡(𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}))) | 
| 154 | 151, 153 | anbi12d 632 | . . 3
⊢ (𝐹 = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) → ((𝐹:𝒫 (𝐴 × 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝐴) ∧ ◡𝐹 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))})) ↔ ((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})):𝒫 (𝐴 × 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝐴) ∧ ◡(𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))})))) | 
| 155 | 150, 154 | syl 17 | . 2
⊢ (𝜑 → ((𝐹:𝒫 (𝐴 × 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝐴) ∧ ◡𝐹 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))})) ↔ ((𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})):𝒫 (𝐴 × 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝐴) ∧ ◡(𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦})) = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))})))) | 
| 156 | 146, 155 | mpbird 257 | 1
⊢ (𝜑 → (𝐹:𝒫 (𝐴 × 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝐴) ∧ ◡𝐹 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}))) |