MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfub Structured version   Visualization version   GIF version

Theorem cfub 10149
Description: An upper bound on cofinality. (Contributed by NM, 25-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cfub (cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))}
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem cfub
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfval 10147 . . 3 (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
2 dfss3 3919 . . . . . . . . 9 (𝐴 𝑦 ↔ ∀𝑧𝐴 𝑧 𝑦)
3 ssel 3924 . . . . . . . . . . . . . . . 16 (𝑦𝐴 → (𝑤𝑦𝑤𝐴))
4 onelon 6338 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝑤𝐴) → 𝑤 ∈ On)
54ex 412 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On → (𝑤𝐴𝑤 ∈ On))
63, 5sylan9r 508 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝑦𝐴) → (𝑤𝑦𝑤 ∈ On))
7 onelss 6355 . . . . . . . . . . . . . . 15 (𝑤 ∈ On → (𝑧𝑤𝑧𝑤))
86, 7syl6 35 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑦𝐴) → (𝑤𝑦 → (𝑧𝑤𝑧𝑤)))
98imdistand 570 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝑦𝐴) → ((𝑤𝑦𝑧𝑤) → (𝑤𝑦𝑧𝑤)))
109ancomsd 465 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑦𝐴) → ((𝑧𝑤𝑤𝑦) → (𝑤𝑦𝑧𝑤)))
1110eximdv 1918 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦𝐴) → (∃𝑤(𝑧𝑤𝑤𝑦) → ∃𝑤(𝑤𝑦𝑧𝑤)))
12 eluni 4863 . . . . . . . . . . 11 (𝑧 𝑦 ↔ ∃𝑤(𝑧𝑤𝑤𝑦))
13 df-rex 3058 . . . . . . . . . . 11 (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤(𝑤𝑦𝑧𝑤))
1411, 12, 133imtr4g 296 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦𝐴) → (𝑧 𝑦 → ∃𝑤𝑦 𝑧𝑤))
1514ralimdv 3147 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑦𝐴) → (∀𝑧𝐴 𝑧 𝑦 → ∀𝑧𝐴𝑤𝑦 𝑧𝑤))
162, 15biimtrid 242 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑦𝐴) → (𝐴 𝑦 → ∀𝑧𝐴𝑤𝑦 𝑧𝑤))
1716imdistanda 571 . . . . . . 7 (𝐴 ∈ On → ((𝑦𝐴𝐴 𝑦) → (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
1817anim2d 612 . . . . . 6 (𝐴 ∈ On → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦)) → (𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
1918eximdv 1918 . . . . 5 (𝐴 ∈ On → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦)) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
2019ss2abdv 4014 . . . 4 (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
21 intss 4921 . . . 4 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))})
2220, 21syl 17 . . 3 (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))})
231, 22eqsstrd 3965 . 2 (𝐴 ∈ On → (cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))})
24 cff 10148 . . . . . 6 cf:On⟶On
2524fdmi 6669 . . . . 5 dom cf = On
2625eleq2i 2825 . . . 4 (𝐴 ∈ dom cf ↔ 𝐴 ∈ On)
27 ndmfv 6862 . . . 4 𝐴 ∈ dom cf → (cf‘𝐴) = ∅)
2826, 27sylnbir 331 . . 3 𝐴 ∈ On → (cf‘𝐴) = ∅)
29 0ss 4349 . . 3 ∅ ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))}
3028, 29eqsstrdi 3975 . 2 𝐴 ∈ On → (cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))})
3123, 30pm2.61i 182 1 (cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2113  {cab 2711  wral 3048  wrex 3057  wss 3898  c0 4282   cuni 4860   cint 4899  dom cdm 5621  Oncon0 6313  cfv 6488  cardccrd 9837  cfccf 9839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6316  df-on 6317  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-fv 6496  df-card 9841  df-cf 9843
This theorem is referenced by:  cflm  10150  cf0  10151
  Copyright terms: Public domain W3C validator