MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfub Structured version   Visualization version   GIF version

Theorem cfub 10202
Description: An upper bound on cofinality. (Contributed by NM, 25-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cfub (cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))}
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem cfub
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfval 10200 . . 3 (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
2 dfss3 3935 . . . . . . . . 9 (𝐴 𝑦 ↔ ∀𝑧𝐴 𝑧 𝑦)
3 ssel 3940 . . . . . . . . . . . . . . . 16 (𝑦𝐴 → (𝑤𝑦𝑤𝐴))
4 onelon 6357 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝑤𝐴) → 𝑤 ∈ On)
54ex 412 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On → (𝑤𝐴𝑤 ∈ On))
63, 5sylan9r 508 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝑦𝐴) → (𝑤𝑦𝑤 ∈ On))
7 onelss 6374 . . . . . . . . . . . . . . 15 (𝑤 ∈ On → (𝑧𝑤𝑧𝑤))
86, 7syl6 35 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑦𝐴) → (𝑤𝑦 → (𝑧𝑤𝑧𝑤)))
98imdistand 570 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝑦𝐴) → ((𝑤𝑦𝑧𝑤) → (𝑤𝑦𝑧𝑤)))
109ancomsd 465 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑦𝐴) → ((𝑧𝑤𝑤𝑦) → (𝑤𝑦𝑧𝑤)))
1110eximdv 1917 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦𝐴) → (∃𝑤(𝑧𝑤𝑤𝑦) → ∃𝑤(𝑤𝑦𝑧𝑤)))
12 eluni 4874 . . . . . . . . . . 11 (𝑧 𝑦 ↔ ∃𝑤(𝑧𝑤𝑤𝑦))
13 df-rex 3054 . . . . . . . . . . 11 (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤(𝑤𝑦𝑧𝑤))
1411, 12, 133imtr4g 296 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦𝐴) → (𝑧 𝑦 → ∃𝑤𝑦 𝑧𝑤))
1514ralimdv 3147 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑦𝐴) → (∀𝑧𝐴 𝑧 𝑦 → ∀𝑧𝐴𝑤𝑦 𝑧𝑤))
162, 15biimtrid 242 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑦𝐴) → (𝐴 𝑦 → ∀𝑧𝐴𝑤𝑦 𝑧𝑤))
1716imdistanda 571 . . . . . . 7 (𝐴 ∈ On → ((𝑦𝐴𝐴 𝑦) → (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
1817anim2d 612 . . . . . 6 (𝐴 ∈ On → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦)) → (𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
1918eximdv 1917 . . . . 5 (𝐴 ∈ On → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦)) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
2019ss2abdv 4029 . . . 4 (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
21 intss 4933 . . . 4 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))})
2220, 21syl 17 . . 3 (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))})
231, 22eqsstrd 3981 . 2 (𝐴 ∈ On → (cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))})
24 cff 10201 . . . . . 6 cf:On⟶On
2524fdmi 6699 . . . . 5 dom cf = On
2625eleq2i 2820 . . . 4 (𝐴 ∈ dom cf ↔ 𝐴 ∈ On)
27 ndmfv 6893 . . . 4 𝐴 ∈ dom cf → (cf‘𝐴) = ∅)
2826, 27sylnbir 331 . . 3 𝐴 ∈ On → (cf‘𝐴) = ∅)
29 0ss 4363 . . 3 ∅ ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))}
3028, 29eqsstrdi 3991 . 2 𝐴 ∈ On → (cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))})
3123, 30pm2.61i 182 1 (cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wrex 3053  wss 3914  c0 4296   cuni 4871   cint 4910  dom cdm 5638  Oncon0 6332  cfv 6511  cardccrd 9888  cfccf 9890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-card 9892  df-cf 9894
This theorem is referenced by:  cflm  10203  cf0  10204
  Copyright terms: Public domain W3C validator