Step | Hyp | Ref
| Expression |
1 | | cfval 10003 |
. . 3
⊢ (𝐴 ∈ On →
(cf‘𝐴) = ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) |
2 | | dfss3 3909 |
. . . . . . . . 9
⊢ (𝐴 ⊆ ∪ 𝑦
↔ ∀𝑧 ∈
𝐴 𝑧 ∈ ∪ 𝑦) |
3 | | ssel 3914 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ⊆ 𝐴 → (𝑤 ∈ 𝑦 → 𝑤 ∈ 𝐴)) |
4 | | onelon 6291 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ On ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ On) |
5 | 4 | ex 413 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ On → (𝑤 ∈ 𝐴 → 𝑤 ∈ On)) |
6 | 3, 5 | sylan9r 509 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → (𝑤 ∈ 𝑦 → 𝑤 ∈ On)) |
7 | | onelss 6308 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ On → (𝑧 ∈ 𝑤 → 𝑧 ⊆ 𝑤)) |
8 | 6, 7 | syl6 35 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → (𝑤 ∈ 𝑦 → (𝑧 ∈ 𝑤 → 𝑧 ⊆ 𝑤))) |
9 | 8 | imdistand 571 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → ((𝑤 ∈ 𝑦 ∧ 𝑧 ∈ 𝑤) → (𝑤 ∈ 𝑦 ∧ 𝑧 ⊆ 𝑤))) |
10 | 9 | ancomsd 466 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → ((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦) → (𝑤 ∈ 𝑦 ∧ 𝑧 ⊆ 𝑤))) |
11 | 10 | eximdv 1920 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → (∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦) → ∃𝑤(𝑤 ∈ 𝑦 ∧ 𝑧 ⊆ 𝑤))) |
12 | | eluni 4842 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ∪ 𝑦
↔ ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦)) |
13 | | df-rex 3070 |
. . . . . . . . . . 11
⊢
(∃𝑤 ∈
𝑦 𝑧 ⊆ 𝑤 ↔ ∃𝑤(𝑤 ∈ 𝑦 ∧ 𝑧 ⊆ 𝑤)) |
14 | 11, 12, 13 | 3imtr4g 296 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → (𝑧 ∈ ∪ 𝑦 → ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) |
15 | 14 | ralimdv 3109 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → (∀𝑧 ∈ 𝐴 𝑧 ∈ ∪ 𝑦 → ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) |
16 | 2, 15 | syl5bi 241 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → (𝐴 ⊆ ∪ 𝑦 → ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) |
17 | 16 | imdistanda 572 |
. . . . . . 7
⊢ (𝐴 ∈ On → ((𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦) → (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))) |
18 | 17 | anim2d 612 |
. . . . . 6
⊢ (𝐴 ∈ On → ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦)) → (𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)))) |
19 | 18 | eximdv 1920 |
. . . . 5
⊢ (𝐴 ∈ On → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦)) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)))) |
20 | 19 | ss2abdv 3997 |
. . . 4
⊢ (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) |
21 | | intss 4900 |
. . . 4
⊢ ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))} → ∩
{𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))} ⊆ ∩
{𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))}) |
22 | 20, 21 | syl 17 |
. . 3
⊢ (𝐴 ∈ On → ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))} ⊆ ∩
{𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))}) |
23 | 1, 22 | eqsstrd 3959 |
. 2
⊢ (𝐴 ∈ On →
(cf‘𝐴) ⊆ ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))}) |
24 | | cff 10004 |
. . . . . 6
⊢
cf:On⟶On |
25 | 24 | fdmi 6612 |
. . . . 5
⊢ dom cf =
On |
26 | 25 | eleq2i 2830 |
. . . 4
⊢ (𝐴 ∈ dom cf ↔ 𝐴 ∈ On) |
27 | | ndmfv 6804 |
. . . 4
⊢ (¬
𝐴 ∈ dom cf →
(cf‘𝐴) =
∅) |
28 | 26, 27 | sylnbir 331 |
. . 3
⊢ (¬
𝐴 ∈ On →
(cf‘𝐴) =
∅) |
29 | | 0ss 4330 |
. . 3
⊢ ∅
⊆ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))} |
30 | 28, 29 | eqsstrdi 3975 |
. 2
⊢ (¬
𝐴 ∈ On →
(cf‘𝐴) ⊆ ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))}) |
31 | 23, 30 | pm2.61i 182 |
1
⊢
(cf‘𝐴) ⊆
∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))} |