MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfub Structured version   Visualization version   GIF version

Theorem cfub 10140
Description: An upper bound on cofinality. (Contributed by NM, 25-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cfub (cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))}
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem cfub
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfval 10138 . . 3 (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
2 dfss3 3923 . . . . . . . . 9 (𝐴 𝑦 ↔ ∀𝑧𝐴 𝑧 𝑦)
3 ssel 3928 . . . . . . . . . . . . . . . 16 (𝑦𝐴 → (𝑤𝑦𝑤𝐴))
4 onelon 6331 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝑤𝐴) → 𝑤 ∈ On)
54ex 412 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On → (𝑤𝐴𝑤 ∈ On))
63, 5sylan9r 508 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝑦𝐴) → (𝑤𝑦𝑤 ∈ On))
7 onelss 6348 . . . . . . . . . . . . . . 15 (𝑤 ∈ On → (𝑧𝑤𝑧𝑤))
86, 7syl6 35 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑦𝐴) → (𝑤𝑦 → (𝑧𝑤𝑧𝑤)))
98imdistand 570 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝑦𝐴) → ((𝑤𝑦𝑧𝑤) → (𝑤𝑦𝑧𝑤)))
109ancomsd 465 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑦𝐴) → ((𝑧𝑤𝑤𝑦) → (𝑤𝑦𝑧𝑤)))
1110eximdv 1918 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦𝐴) → (∃𝑤(𝑧𝑤𝑤𝑦) → ∃𝑤(𝑤𝑦𝑧𝑤)))
12 eluni 4862 . . . . . . . . . . 11 (𝑧 𝑦 ↔ ∃𝑤(𝑧𝑤𝑤𝑦))
13 df-rex 3057 . . . . . . . . . . 11 (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤(𝑤𝑦𝑧𝑤))
1411, 12, 133imtr4g 296 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦𝐴) → (𝑧 𝑦 → ∃𝑤𝑦 𝑧𝑤))
1514ralimdv 3146 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑦𝐴) → (∀𝑧𝐴 𝑧 𝑦 → ∀𝑧𝐴𝑤𝑦 𝑧𝑤))
162, 15biimtrid 242 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑦𝐴) → (𝐴 𝑦 → ∀𝑧𝐴𝑤𝑦 𝑧𝑤))
1716imdistanda 571 . . . . . . 7 (𝐴 ∈ On → ((𝑦𝐴𝐴 𝑦) → (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
1817anim2d 612 . . . . . 6 (𝐴 ∈ On → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦)) → (𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
1918eximdv 1918 . . . . 5 (𝐴 ∈ On → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦)) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
2019ss2abdv 4017 . . . 4 (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
21 intss 4919 . . . 4 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))})
2220, 21syl 17 . . 3 (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))})
231, 22eqsstrd 3969 . 2 (𝐴 ∈ On → (cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))})
24 cff 10139 . . . . . 6 cf:On⟶On
2524fdmi 6662 . . . . 5 dom cf = On
2625eleq2i 2823 . . . 4 (𝐴 ∈ dom cf ↔ 𝐴 ∈ On)
27 ndmfv 6854 . . . 4 𝐴 ∈ dom cf → (cf‘𝐴) = ∅)
2826, 27sylnbir 331 . . 3 𝐴 ∈ On → (cf‘𝐴) = ∅)
29 0ss 4350 . . 3 ∅ ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))}
3028, 29eqsstrdi 3979 . 2 𝐴 ∈ On → (cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))})
3123, 30pm2.61i 182 1 (cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wral 3047  wrex 3056  wss 3902  c0 4283   cuni 4859   cint 4897  dom cdm 5616  Oncon0 6306  cfv 6481  cardccrd 9828  cfccf 9830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-card 9832  df-cf 9834
This theorem is referenced by:  cflm  10141  cf0  10142
  Copyright terms: Public domain W3C validator