| Step | Hyp | Ref
| Expression |
| 1 | | cfval 10266 |
. . 3
⊢ (𝐴 ∈ On →
(cf‘𝐴) = ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) |
| 2 | | dfss3 3952 |
. . . . . . . . 9
⊢ (𝐴 ⊆ ∪ 𝑦
↔ ∀𝑧 ∈
𝐴 𝑧 ∈ ∪ 𝑦) |
| 3 | | ssel 3957 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ⊆ 𝐴 → (𝑤 ∈ 𝑦 → 𝑤 ∈ 𝐴)) |
| 4 | | onelon 6382 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ On ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ On) |
| 5 | 4 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ On → (𝑤 ∈ 𝐴 → 𝑤 ∈ On)) |
| 6 | 3, 5 | sylan9r 508 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → (𝑤 ∈ 𝑦 → 𝑤 ∈ On)) |
| 7 | | onelss 6399 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ On → (𝑧 ∈ 𝑤 → 𝑧 ⊆ 𝑤)) |
| 8 | 6, 7 | syl6 35 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → (𝑤 ∈ 𝑦 → (𝑧 ∈ 𝑤 → 𝑧 ⊆ 𝑤))) |
| 9 | 8 | imdistand 570 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → ((𝑤 ∈ 𝑦 ∧ 𝑧 ∈ 𝑤) → (𝑤 ∈ 𝑦 ∧ 𝑧 ⊆ 𝑤))) |
| 10 | 9 | ancomsd 465 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → ((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦) → (𝑤 ∈ 𝑦 ∧ 𝑧 ⊆ 𝑤))) |
| 11 | 10 | eximdv 1917 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → (∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦) → ∃𝑤(𝑤 ∈ 𝑦 ∧ 𝑧 ⊆ 𝑤))) |
| 12 | | eluni 4891 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ∪ 𝑦
↔ ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦)) |
| 13 | | df-rex 3062 |
. . . . . . . . . . 11
⊢
(∃𝑤 ∈
𝑦 𝑧 ⊆ 𝑤 ↔ ∃𝑤(𝑤 ∈ 𝑦 ∧ 𝑧 ⊆ 𝑤)) |
| 14 | 11, 12, 13 | 3imtr4g 296 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → (𝑧 ∈ ∪ 𝑦 → ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) |
| 15 | 14 | ralimdv 3155 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → (∀𝑧 ∈ 𝐴 𝑧 ∈ ∪ 𝑦 → ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) |
| 16 | 2, 15 | biimtrid 242 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → (𝐴 ⊆ ∪ 𝑦 → ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) |
| 17 | 16 | imdistanda 571 |
. . . . . . 7
⊢ (𝐴 ∈ On → ((𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦) → (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))) |
| 18 | 17 | anim2d 612 |
. . . . . 6
⊢ (𝐴 ∈ On → ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦)) → (𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)))) |
| 19 | 18 | eximdv 1917 |
. . . . 5
⊢ (𝐴 ∈ On → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦)) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)))) |
| 20 | 19 | ss2abdv 4046 |
. . . 4
⊢ (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) |
| 21 | | intss 4950 |
. . . 4
⊢ ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))} → ∩
{𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))} ⊆ ∩
{𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))}) |
| 22 | 20, 21 | syl 17 |
. . 3
⊢ (𝐴 ∈ On → ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))} ⊆ ∩
{𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))}) |
| 23 | 1, 22 | eqsstrd 3998 |
. 2
⊢ (𝐴 ∈ On →
(cf‘𝐴) ⊆ ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))}) |
| 24 | | cff 10267 |
. . . . . 6
⊢
cf:On⟶On |
| 25 | 24 | fdmi 6722 |
. . . . 5
⊢ dom cf =
On |
| 26 | 25 | eleq2i 2827 |
. . . 4
⊢ (𝐴 ∈ dom cf ↔ 𝐴 ∈ On) |
| 27 | | ndmfv 6916 |
. . . 4
⊢ (¬
𝐴 ∈ dom cf →
(cf‘𝐴) =
∅) |
| 28 | 26, 27 | sylnbir 331 |
. . 3
⊢ (¬
𝐴 ∈ On →
(cf‘𝐴) =
∅) |
| 29 | | 0ss 4380 |
. . 3
⊢ ∅
⊆ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))} |
| 30 | 28, 29 | eqsstrdi 4008 |
. 2
⊢ (¬
𝐴 ∈ On →
(cf‘𝐴) ⊆ ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))}) |
| 31 | 23, 30 | pm2.61i 182 |
1
⊢
(cf‘𝐴) ⊆
∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))} |