MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfub Structured version   Visualization version   GIF version

Theorem cfub 10290
Description: An upper bound on cofinality. (Contributed by NM, 25-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cfub (cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))}
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem cfub
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfval 10288 . . 3 (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
2 dfss3 3971 . . . . . . . . 9 (𝐴 𝑦 ↔ ∀𝑧𝐴 𝑧 𝑦)
3 ssel 3976 . . . . . . . . . . . . . . . 16 (𝑦𝐴 → (𝑤𝑦𝑤𝐴))
4 onelon 6408 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝑤𝐴) → 𝑤 ∈ On)
54ex 412 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On → (𝑤𝐴𝑤 ∈ On))
63, 5sylan9r 508 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝑦𝐴) → (𝑤𝑦𝑤 ∈ On))
7 onelss 6425 . . . . . . . . . . . . . . 15 (𝑤 ∈ On → (𝑧𝑤𝑧𝑤))
86, 7syl6 35 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑦𝐴) → (𝑤𝑦 → (𝑧𝑤𝑧𝑤)))
98imdistand 570 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝑦𝐴) → ((𝑤𝑦𝑧𝑤) → (𝑤𝑦𝑧𝑤)))
109ancomsd 465 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑦𝐴) → ((𝑧𝑤𝑤𝑦) → (𝑤𝑦𝑧𝑤)))
1110eximdv 1916 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦𝐴) → (∃𝑤(𝑧𝑤𝑤𝑦) → ∃𝑤(𝑤𝑦𝑧𝑤)))
12 eluni 4909 . . . . . . . . . . 11 (𝑧 𝑦 ↔ ∃𝑤(𝑧𝑤𝑤𝑦))
13 df-rex 3070 . . . . . . . . . . 11 (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤(𝑤𝑦𝑧𝑤))
1411, 12, 133imtr4g 296 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦𝐴) → (𝑧 𝑦 → ∃𝑤𝑦 𝑧𝑤))
1514ralimdv 3168 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑦𝐴) → (∀𝑧𝐴 𝑧 𝑦 → ∀𝑧𝐴𝑤𝑦 𝑧𝑤))
162, 15biimtrid 242 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑦𝐴) → (𝐴 𝑦 → ∀𝑧𝐴𝑤𝑦 𝑧𝑤))
1716imdistanda 571 . . . . . . 7 (𝐴 ∈ On → ((𝑦𝐴𝐴 𝑦) → (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
1817anim2d 612 . . . . . 6 (𝐴 ∈ On → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦)) → (𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
1918eximdv 1916 . . . . 5 (𝐴 ∈ On → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦)) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
2019ss2abdv 4065 . . . 4 (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
21 intss 4968 . . . 4 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))})
2220, 21syl 17 . . 3 (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))})
231, 22eqsstrd 4017 . 2 (𝐴 ∈ On → (cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))})
24 cff 10289 . . . . . 6 cf:On⟶On
2524fdmi 6746 . . . . 5 dom cf = On
2625eleq2i 2832 . . . 4 (𝐴 ∈ dom cf ↔ 𝐴 ∈ On)
27 ndmfv 6940 . . . 4 𝐴 ∈ dom cf → (cf‘𝐴) = ∅)
2826, 27sylnbir 331 . . 3 𝐴 ∈ On → (cf‘𝐴) = ∅)
29 0ss 4399 . . 3 ∅ ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))}
3028, 29eqsstrdi 4027 . 2 𝐴 ∈ On → (cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))})
3123, 30pm2.61i 182 1 (cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  {cab 2713  wral 3060  wrex 3069  wss 3950  c0 4332   cuni 4906   cint 4945  dom cdm 5684  Oncon0 6383  cfv 6560  cardccrd 9976  cfccf 9978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-card 9980  df-cf 9982
This theorem is referenced by:  cflm  10291  cf0  10292
  Copyright terms: Public domain W3C validator