| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cfval 10288 | . . 3
⊢ (𝐴 ∈ On →
(cf‘𝐴) = ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) | 
| 2 |  | dfss3 3971 | . . . . . . . . 9
⊢ (𝐴 ⊆ ∪ 𝑦
↔ ∀𝑧 ∈
𝐴 𝑧 ∈ ∪ 𝑦) | 
| 3 |  | ssel 3976 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 ⊆ 𝐴 → (𝑤 ∈ 𝑦 → 𝑤 ∈ 𝐴)) | 
| 4 |  | onelon 6408 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ On ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ On) | 
| 5 | 4 | ex 412 | . . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ On → (𝑤 ∈ 𝐴 → 𝑤 ∈ On)) | 
| 6 | 3, 5 | sylan9r 508 | . . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → (𝑤 ∈ 𝑦 → 𝑤 ∈ On)) | 
| 7 |  | onelss 6425 | . . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ On → (𝑧 ∈ 𝑤 → 𝑧 ⊆ 𝑤)) | 
| 8 | 6, 7 | syl6 35 | . . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → (𝑤 ∈ 𝑦 → (𝑧 ∈ 𝑤 → 𝑧 ⊆ 𝑤))) | 
| 9 | 8 | imdistand 570 | . . . . . . . . . . . . 13
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → ((𝑤 ∈ 𝑦 ∧ 𝑧 ∈ 𝑤) → (𝑤 ∈ 𝑦 ∧ 𝑧 ⊆ 𝑤))) | 
| 10 | 9 | ancomsd 465 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → ((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦) → (𝑤 ∈ 𝑦 ∧ 𝑧 ⊆ 𝑤))) | 
| 11 | 10 | eximdv 1916 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → (∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦) → ∃𝑤(𝑤 ∈ 𝑦 ∧ 𝑧 ⊆ 𝑤))) | 
| 12 |  | eluni 4909 | . . . . . . . . . . 11
⊢ (𝑧 ∈ ∪ 𝑦
↔ ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦)) | 
| 13 |  | df-rex 3070 | . . . . . . . . . . 11
⊢
(∃𝑤 ∈
𝑦 𝑧 ⊆ 𝑤 ↔ ∃𝑤(𝑤 ∈ 𝑦 ∧ 𝑧 ⊆ 𝑤)) | 
| 14 | 11, 12, 13 | 3imtr4g 296 | . . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → (𝑧 ∈ ∪ 𝑦 → ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) | 
| 15 | 14 | ralimdv 3168 | . . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → (∀𝑧 ∈ 𝐴 𝑧 ∈ ∪ 𝑦 → ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) | 
| 16 | 2, 15 | biimtrid 242 | . . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝑦 ⊆ 𝐴) → (𝐴 ⊆ ∪ 𝑦 → ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) | 
| 17 | 16 | imdistanda 571 | . . . . . . 7
⊢ (𝐴 ∈ On → ((𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦) → (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))) | 
| 18 | 17 | anim2d 612 | . . . . . 6
⊢ (𝐴 ∈ On → ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦)) → (𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)))) | 
| 19 | 18 | eximdv 1916 | . . . . 5
⊢ (𝐴 ∈ On → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦)) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)))) | 
| 20 | 19 | ss2abdv 4065 | . . . 4
⊢ (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) | 
| 21 |  | intss 4968 | . . . 4
⊢ ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))} → ∩
{𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))} ⊆ ∩
{𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))}) | 
| 22 | 20, 21 | syl 17 | . . 3
⊢ (𝐴 ∈ On → ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))} ⊆ ∩
{𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))}) | 
| 23 | 1, 22 | eqsstrd 4017 | . 2
⊢ (𝐴 ∈ On →
(cf‘𝐴) ⊆ ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))}) | 
| 24 |  | cff 10289 | . . . . . 6
⊢
cf:On⟶On | 
| 25 | 24 | fdmi 6746 | . . . . 5
⊢ dom cf =
On | 
| 26 | 25 | eleq2i 2832 | . . . 4
⊢ (𝐴 ∈ dom cf ↔ 𝐴 ∈ On) | 
| 27 |  | ndmfv 6940 | . . . 4
⊢ (¬
𝐴 ∈ dom cf →
(cf‘𝐴) =
∅) | 
| 28 | 26, 27 | sylnbir 331 | . . 3
⊢ (¬
𝐴 ∈ On →
(cf‘𝐴) =
∅) | 
| 29 |  | 0ss 4399 | . . 3
⊢ ∅
⊆ ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))} | 
| 30 | 28, 29 | eqsstrdi 4027 | . 2
⊢ (¬
𝐴 ∈ On →
(cf‘𝐴) ⊆ ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))}) | 
| 31 | 23, 30 | pm2.61i 182 | 1
⊢
(cf‘𝐴) ⊆
∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))} |