MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbzbi Structured version   Visualization version   GIF version

Theorem lbzbi 12920
Description: If a set of reals is bounded below, it is bounded below by an integer. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
lbzbi (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 ↔ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem lbzbi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1918 . . 3 𝑥 𝐴 ⊆ ℝ
2 nfre1 3283 . . 3 𝑥𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦
3 btwnz 12665 . . . . . . 7 (𝑥 ∈ ℝ → (∃𝑧 ∈ ℤ 𝑧 < 𝑥 ∧ ∃𝑧 ∈ ℤ 𝑥 < 𝑧))
43simpld 496 . . . . . 6 (𝑥 ∈ ℝ → ∃𝑧 ∈ ℤ 𝑧 < 𝑥)
5 ssel2 3978 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
6 zre 12562 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
7 ltleletr 11307 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 < 𝑥𝑥𝑦) → 𝑧𝑦))
86, 7syl3an1 1164 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 < 𝑥𝑥𝑦) → 𝑧𝑦))
98expd 417 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑥 → (𝑥𝑦𝑧𝑦)))
1093expia 1122 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑦 ∈ ℝ → (𝑧 < 𝑥 → (𝑥𝑦𝑧𝑦))))
115, 10syl5 34 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (𝑧 < 𝑥 → (𝑥𝑦𝑧𝑦))))
1211expdimp 454 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) → (𝑦𝐴 → (𝑧 < 𝑥 → (𝑥𝑦𝑧𝑦))))
1312com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) → (𝑧 < 𝑥 → (𝑦𝐴 → (𝑥𝑦𝑧𝑦))))
1413imp 408 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → (𝑦𝐴 → (𝑥𝑦𝑧𝑦)))
1514ralrimiv 3146 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → ∀𝑦𝐴 (𝑥𝑦𝑧𝑦))
16 ralim 3087 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦𝐴 (𝑥𝑦𝑧𝑦) → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦))
1715, 16syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦))
1817ex 414 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) → (𝑧 < 𝑥 → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦)))
1918anasss 468 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ (𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ)) → (𝑧 < 𝑥 → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦)))
2019expcom 415 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑧 ∈ ℤ → (𝑧 < 𝑥 → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦))))
2120com23 86 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑧 < 𝑥 → (𝑧 ∈ ℤ → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦))))
2221imp 408 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → (𝑧 ∈ ℤ → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦)))
2322imdistand 572 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → ((𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑧𝑦)))
24 breq1 5152 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝑥𝑦𝑧𝑦))
2524ralbidv 3178 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑦𝐴 𝑧𝑦))
2625rspcev 3613 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑧𝑦) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)
2723, 26syl6 35 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → ((𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
2827ex 414 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑧 < 𝑥 → ((𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
2928com23 86 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → ((𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
3029ancomsd 467 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → ((∀𝑦𝐴 𝑥𝑦𝑧 ∈ ℤ) → (𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
3130expdimp 454 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑧 ∈ ℤ → (𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
3231rexlimdv 3154 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) ∧ ∀𝑦𝐴 𝑥𝑦) → (∃𝑧 ∈ ℤ 𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
3332anasss 468 . . . . . . 7 ((𝑥 ∈ ℝ ∧ (𝐴 ⊆ ℝ ∧ ∀𝑦𝐴 𝑥𝑦)) → (∃𝑧 ∈ ℤ 𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
3433expcom 415 . . . . . 6 ((𝐴 ⊆ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑥 ∈ ℝ → (∃𝑧 ∈ ℤ 𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
354, 34mpdi 45 . . . . 5 ((𝐴 ⊆ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑥 ∈ ℝ → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
3635ex 414 . . . 4 (𝐴 ⊆ ℝ → (∀𝑦𝐴 𝑥𝑦 → (𝑥 ∈ ℝ → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
3736com23 86 . . 3 (𝐴 ⊆ ℝ → (𝑥 ∈ ℝ → (∀𝑦𝐴 𝑥𝑦 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
381, 2, 37rexlimd 3264 . 2 (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
39 zssre 12565 . . 3 ℤ ⊆ ℝ
40 ssrexv 4052 . . 3 (ℤ ⊆ ℝ → (∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦))
4139, 40ax-mp 5 . 2 (∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
4238, 41impbid1 224 1 (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 ↔ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088  wcel 2107  wral 3062  wrex 3071  wss 3949   class class class wbr 5149  cr 11109   < clt 11248  cle 11249  cz 12558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-z 12559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator