MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbzbi Structured version   Visualization version   GIF version

Theorem lbzbi 12924
Description: If a set of reals is bounded below, it is bounded below by an integer. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
lbzbi (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 ↔ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem lbzbi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1917 . . 3 𝑥 𝐴 ⊆ ℝ
2 nfre1 3282 . . 3 𝑥𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦
3 btwnz 12669 . . . . . . 7 (𝑥 ∈ ℝ → (∃𝑧 ∈ ℤ 𝑧 < 𝑥 ∧ ∃𝑧 ∈ ℤ 𝑥 < 𝑧))
43simpld 495 . . . . . 6 (𝑥 ∈ ℝ → ∃𝑧 ∈ ℤ 𝑧 < 𝑥)
5 ssel2 3977 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
6 zre 12566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
7 ltleletr 11311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 < 𝑥𝑥𝑦) → 𝑧𝑦))
86, 7syl3an1 1163 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 < 𝑥𝑥𝑦) → 𝑧𝑦))
98expd 416 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑥 → (𝑥𝑦𝑧𝑦)))
1093expia 1121 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑦 ∈ ℝ → (𝑧 < 𝑥 → (𝑥𝑦𝑧𝑦))))
115, 10syl5 34 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (𝑧 < 𝑥 → (𝑥𝑦𝑧𝑦))))
1211expdimp 453 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) → (𝑦𝐴 → (𝑧 < 𝑥 → (𝑥𝑦𝑧𝑦))))
1312com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) → (𝑧 < 𝑥 → (𝑦𝐴 → (𝑥𝑦𝑧𝑦))))
1413imp 407 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → (𝑦𝐴 → (𝑥𝑦𝑧𝑦)))
1514ralrimiv 3145 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → ∀𝑦𝐴 (𝑥𝑦𝑧𝑦))
16 ralim 3086 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦𝐴 (𝑥𝑦𝑧𝑦) → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦))
1715, 16syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦))
1817ex 413 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) ∧ 𝐴 ⊆ ℝ) → (𝑧 < 𝑥 → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦)))
1918anasss 467 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ (𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ)) → (𝑧 < 𝑥 → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦)))
2019expcom 414 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑧 ∈ ℤ → (𝑧 < 𝑥 → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦))))
2120com23 86 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑧 < 𝑥 → (𝑧 ∈ ℤ → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦))))
2221imp 407 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → (𝑧 ∈ ℤ → (∀𝑦𝐴 𝑥𝑦 → ∀𝑦𝐴 𝑧𝑦)))
2322imdistand 571 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → ((𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑧𝑦)))
24 breq1 5151 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝑥𝑦𝑧𝑦))
2524ralbidv 3177 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑦𝐴 𝑧𝑦))
2625rspcev 3612 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑧𝑦) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)
2723, 26syl6 35 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑧 < 𝑥) → ((𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
2827ex 413 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑧 < 𝑥 → ((𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
2928com23 86 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → ((𝑧 ∈ ℤ ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
3029ancomsd 466 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → ((∀𝑦𝐴 𝑥𝑦𝑧 ∈ ℤ) → (𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
3130expdimp 453 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑧 ∈ ℤ → (𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
3231rexlimdv 3153 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ) ∧ ∀𝑦𝐴 𝑥𝑦) → (∃𝑧 ∈ ℤ 𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
3332anasss 467 . . . . . . 7 ((𝑥 ∈ ℝ ∧ (𝐴 ⊆ ℝ ∧ ∀𝑦𝐴 𝑥𝑦)) → (∃𝑧 ∈ ℤ 𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
3433expcom 414 . . . . . 6 ((𝐴 ⊆ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑥 ∈ ℝ → (∃𝑧 ∈ ℤ 𝑧 < 𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
354, 34mpdi 45 . . . . 5 ((𝐴 ⊆ ℝ ∧ ∀𝑦𝐴 𝑥𝑦) → (𝑥 ∈ ℝ → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
3635ex 413 . . . 4 (𝐴 ⊆ ℝ → (∀𝑦𝐴 𝑥𝑦 → (𝑥 ∈ ℝ → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
3736com23 86 . . 3 (𝐴 ⊆ ℝ → (𝑥 ∈ ℝ → (∀𝑦𝐴 𝑥𝑦 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦)))
381, 2, 37rexlimd 3263 . 2 (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
39 zssre 12569 . . 3 ℤ ⊆ ℝ
40 ssrexv 4051 . . 3 (ℤ ⊆ ℝ → (∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦))
4139, 40ax-mp 5 . 2 (∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
4238, 41impbid1 224 1 (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦 ↔ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087  wcel 2106  wral 3061  wrex 3070  wss 3948   class class class wbr 5148  cr 11111   < clt 11252  cle 11253  cz 12562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-z 12563
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator