Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sltlpss Structured version   Visualization version   GIF version

Theorem sltlpss 34014
Description: If two surreals share a birthday, then 𝑋 <s 𝑌 iff the left set of 𝑋 is a proper subset of the left set of 𝑌. (Contributed by Scott Fenton, 17-Sep-2024.)
Assertion
Ref Expression
sltlpss ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (𝑋 <s 𝑌 ↔ ( L ‘𝑋) ⊊ ( L ‘𝑌)))

Proof of Theorem sltlpss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oldssno 33972 . . . . . . . . . . . 12 ( O ‘( bday 𝑋)) ⊆ No
21sseli 3913 . . . . . . . . . . 11 (𝑥 ∈ ( O ‘( bday 𝑋)) → 𝑥 No )
323ad2ant2 1132 . . . . . . . . . 10 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ 𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) → 𝑥 No )
4 simp1l1 1264 . . . . . . . . . 10 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ 𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) → 𝑋 No )
5 simp1l2 1265 . . . . . . . . . 10 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ 𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) → 𝑌 No )
6 simp3 1136 . . . . . . . . . 10 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ 𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) → 𝑥 <s 𝑋)
7 simp1r 1196 . . . . . . . . . 10 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ 𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) → 𝑋 <s 𝑌)
83, 4, 5, 6, 7slttrd 33889 . . . . . . . . 9 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ 𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) → 𝑥 <s 𝑌)
983exp 1117 . . . . . . . 8 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( O ‘( bday 𝑋)) → (𝑥 <s 𝑋𝑥 <s 𝑌)))
109imdistand 570 . . . . . . 7 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ((𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) → (𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑌)))
11 fveq2 6756 . . . . . . . . . . 11 (( bday 𝑋) = ( bday 𝑌) → ( O ‘( bday 𝑋)) = ( O ‘( bday 𝑌)))
12113ad2ant3 1133 . . . . . . . . . 10 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → ( O ‘( bday 𝑋)) = ( O ‘( bday 𝑌)))
1312adantr 480 . . . . . . . . 9 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ( O ‘( bday 𝑋)) = ( O ‘( bday 𝑌)))
1413eleq2d 2824 . . . . . . . 8 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( O ‘( bday 𝑋)) ↔ 𝑥 ∈ ( O ‘( bday 𝑌))))
1514anbi1d 629 . . . . . . 7 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ((𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑌) ↔ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)))
1610, 15sylibd 238 . . . . . 6 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ((𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) → (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)))
17 leftval 33974 . . . . . . . . 9 ( L ‘𝑋) = {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋}
1817a1i 11 . . . . . . . 8 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ( L ‘𝑋) = {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋})
1918eleq2d 2824 . . . . . . 7 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( L ‘𝑋) ↔ 𝑥 ∈ {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋}))
20 rabid 3304 . . . . . . 7 (𝑥 ∈ {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋} ↔ (𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋))
2119, 20bitrdi 286 . . . . . 6 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( L ‘𝑋) ↔ (𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋)))
22 leftval 33974 . . . . . . . . 9 ( L ‘𝑌) = {𝑥 ∈ ( O ‘( bday 𝑌)) ∣ 𝑥 <s 𝑌}
2322a1i 11 . . . . . . . 8 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ( L ‘𝑌) = {𝑥 ∈ ( O ‘( bday 𝑌)) ∣ 𝑥 <s 𝑌})
2423eleq2d 2824 . . . . . . 7 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( L ‘𝑌) ↔ 𝑥 ∈ {𝑥 ∈ ( O ‘( bday 𝑌)) ∣ 𝑥 <s 𝑌}))
25 rabid 3304 . . . . . . 7 (𝑥 ∈ {𝑥 ∈ ( O ‘( bday 𝑌)) ∣ 𝑥 <s 𝑌} ↔ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌))
2624, 25bitrdi 286 . . . . . 6 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( L ‘𝑌) ↔ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)))
2716, 21, 263imtr4d 293 . . . . 5 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( L ‘𝑋) → 𝑥 ∈ ( L ‘𝑌)))
2827ssrdv 3923 . . . 4 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ( L ‘𝑋) ⊆ ( L ‘𝑌))
29 sltirr 33876 . . . . . . . . 9 (𝑌 No → ¬ 𝑌 <s 𝑌)
30293ad2ant2 1132 . . . . . . . 8 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → ¬ 𝑌 <s 𝑌)
31 breq1 5073 . . . . . . . . 9 (𝑋 = 𝑌 → (𝑋 <s 𝑌𝑌 <s 𝑌))
3231notbid 317 . . . . . . . 8 (𝑋 = 𝑌 → (¬ 𝑋 <s 𝑌 ↔ ¬ 𝑌 <s 𝑌))
3330, 32syl5ibrcom 246 . . . . . . 7 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (𝑋 = 𝑌 → ¬ 𝑋 <s 𝑌))
3433con2d 134 . . . . . 6 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (𝑋 <s 𝑌 → ¬ 𝑋 = 𝑌))
3534imp 406 . . . . 5 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ¬ 𝑋 = 𝑌)
36 simpr 484 . . . . . . 7 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → ( L ‘𝑋) = ( L ‘𝑌))
37 lruneq 34013 . . . . . . . . . . 11 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (( L ‘𝑋) ∪ ( R ‘𝑋)) = (( L ‘𝑌) ∪ ( R ‘𝑌)))
3837adantr 480 . . . . . . . . . 10 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → (( L ‘𝑋) ∪ ( R ‘𝑋)) = (( L ‘𝑌) ∪ ( R ‘𝑌)))
3938adantr 480 . . . . . . . . 9 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( L ‘𝑋) ∪ ( R ‘𝑋)) = (( L ‘𝑌) ∪ ( R ‘𝑌)))
4039, 36difeq12d 4054 . . . . . . . 8 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → ((( L ‘𝑋) ∪ ( R ‘𝑋)) ∖ ( L ‘𝑋)) = ((( L ‘𝑌) ∪ ( R ‘𝑌)) ∖ ( L ‘𝑌)))
41 difundir 4211 . . . . . . . . . 10 ((( L ‘𝑋) ∪ ( R ‘𝑋)) ∖ ( L ‘𝑋)) = ((( L ‘𝑋) ∖ ( L ‘𝑋)) ∪ (( R ‘𝑋) ∖ ( L ‘𝑋)))
42 difid 4301 . . . . . . . . . . 11 (( L ‘𝑋) ∖ ( L ‘𝑋)) = ∅
4342uneq1i 4089 . . . . . . . . . 10 ((( L ‘𝑋) ∖ ( L ‘𝑋)) ∪ (( R ‘𝑋) ∖ ( L ‘𝑋))) = (∅ ∪ (( R ‘𝑋) ∖ ( L ‘𝑋)))
44 0un 4323 . . . . . . . . . 10 (∅ ∪ (( R ‘𝑋) ∖ ( L ‘𝑋))) = (( R ‘𝑋) ∖ ( L ‘𝑋))
4541, 43, 443eqtri 2770 . . . . . . . . 9 ((( L ‘𝑋) ∪ ( R ‘𝑋)) ∖ ( L ‘𝑋)) = (( R ‘𝑋) ∖ ( L ‘𝑋))
46 incom 4131 . . . . . . . . . . 11 (( L ‘𝑋) ∩ ( R ‘𝑋)) = (( R ‘𝑋) ∩ ( L ‘𝑋))
47 simpll1 1210 . . . . . . . . . . . 12 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → 𝑋 No )
48 lltropt 33983 . . . . . . . . . . . 12 (𝑋 No → ( L ‘𝑋) <<s ( R ‘𝑋))
49 ssltdisj 33942 . . . . . . . . . . . 12 (( L ‘𝑋) <<s ( R ‘𝑋) → (( L ‘𝑋) ∩ ( R ‘𝑋)) = ∅)
5047, 48, 493syl 18 . . . . . . . . . . 11 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( L ‘𝑋) ∩ ( R ‘𝑋)) = ∅)
5146, 50eqtr3id 2793 . . . . . . . . . 10 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( R ‘𝑋) ∩ ( L ‘𝑋)) = ∅)
52 disjdif2 4410 . . . . . . . . . 10 ((( R ‘𝑋) ∩ ( L ‘𝑋)) = ∅ → (( R ‘𝑋) ∖ ( L ‘𝑋)) = ( R ‘𝑋))
5351, 52syl 17 . . . . . . . . 9 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( R ‘𝑋) ∖ ( L ‘𝑋)) = ( R ‘𝑋))
5445, 53syl5eq 2791 . . . . . . . 8 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → ((( L ‘𝑋) ∪ ( R ‘𝑋)) ∖ ( L ‘𝑋)) = ( R ‘𝑋))
55 difundir 4211 . . . . . . . . . 10 ((( L ‘𝑌) ∪ ( R ‘𝑌)) ∖ ( L ‘𝑌)) = ((( L ‘𝑌) ∖ ( L ‘𝑌)) ∪ (( R ‘𝑌) ∖ ( L ‘𝑌)))
56 difid 4301 . . . . . . . . . . 11 (( L ‘𝑌) ∖ ( L ‘𝑌)) = ∅
5756uneq1i 4089 . . . . . . . . . 10 ((( L ‘𝑌) ∖ ( L ‘𝑌)) ∪ (( R ‘𝑌) ∖ ( L ‘𝑌))) = (∅ ∪ (( R ‘𝑌) ∖ ( L ‘𝑌)))
58 0un 4323 . . . . . . . . . 10 (∅ ∪ (( R ‘𝑌) ∖ ( L ‘𝑌))) = (( R ‘𝑌) ∖ ( L ‘𝑌))
5955, 57, 583eqtri 2770 . . . . . . . . 9 ((( L ‘𝑌) ∪ ( R ‘𝑌)) ∖ ( L ‘𝑌)) = (( R ‘𝑌) ∖ ( L ‘𝑌))
60 incom 4131 . . . . . . . . . . 11 (( L ‘𝑌) ∩ ( R ‘𝑌)) = (( R ‘𝑌) ∩ ( L ‘𝑌))
61 simpll2 1211 . . . . . . . . . . . 12 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → 𝑌 No )
62 lltropt 33983 . . . . . . . . . . . 12 (𝑌 No → ( L ‘𝑌) <<s ( R ‘𝑌))
63 ssltdisj 33942 . . . . . . . . . . . 12 (( L ‘𝑌) <<s ( R ‘𝑌) → (( L ‘𝑌) ∩ ( R ‘𝑌)) = ∅)
6461, 62, 633syl 18 . . . . . . . . . . 11 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( L ‘𝑌) ∩ ( R ‘𝑌)) = ∅)
6560, 64eqtr3id 2793 . . . . . . . . . 10 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( R ‘𝑌) ∩ ( L ‘𝑌)) = ∅)
66 disjdif2 4410 . . . . . . . . . 10 ((( R ‘𝑌) ∩ ( L ‘𝑌)) = ∅ → (( R ‘𝑌) ∖ ( L ‘𝑌)) = ( R ‘𝑌))
6765, 66syl 17 . . . . . . . . 9 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( R ‘𝑌) ∖ ( L ‘𝑌)) = ( R ‘𝑌))
6859, 67syl5eq 2791 . . . . . . . 8 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → ((( L ‘𝑌) ∪ ( R ‘𝑌)) ∖ ( L ‘𝑌)) = ( R ‘𝑌))
6940, 54, 683eqtr3d 2786 . . . . . . 7 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → ( R ‘𝑋) = ( R ‘𝑌))
7036, 69oveq12d 7273 . . . . . 6 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( L ‘𝑋) |s ( R ‘𝑋)) = (( L ‘𝑌) |s ( R ‘𝑌)))
71 lrcut 34010 . . . . . . 7 (𝑋 No → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋)
7247, 71syl 17 . . . . . 6 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋)
73 lrcut 34010 . . . . . . 7 (𝑌 No → (( L ‘𝑌) |s ( R ‘𝑌)) = 𝑌)
7461, 73syl 17 . . . . . 6 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( L ‘𝑌) |s ( R ‘𝑌)) = 𝑌)
7570, 72, 743eqtr3d 2786 . . . . 5 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → 𝑋 = 𝑌)
7635, 75mtand 812 . . . 4 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ¬ ( L ‘𝑋) = ( L ‘𝑌))
77 dfpss2 4016 . . . 4 (( L ‘𝑋) ⊊ ( L ‘𝑌) ↔ (( L ‘𝑋) ⊆ ( L ‘𝑌) ∧ ¬ ( L ‘𝑋) = ( L ‘𝑌)))
7828, 76, 77sylanbrc 582 . . 3 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ( L ‘𝑋) ⊊ ( L ‘𝑌))
7978ex 412 . 2 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (𝑋 <s 𝑌 → ( L ‘𝑋) ⊊ ( L ‘𝑌)))
80 dfpss3 4017 . . 3 (( L ‘𝑋) ⊊ ( L ‘𝑌) ↔ (( L ‘𝑋) ⊆ ( L ‘𝑌) ∧ ¬ ( L ‘𝑌) ⊆ ( L ‘𝑋)))
81 ssdif0 4294 . . . . . . 7 (( L ‘𝑌) ⊆ ( L ‘𝑋) ↔ (( L ‘𝑌) ∖ ( L ‘𝑋)) = ∅)
8281necon3bbii 2990 . . . . . 6 (¬ ( L ‘𝑌) ⊆ ( L ‘𝑋) ↔ (( L ‘𝑌) ∖ ( L ‘𝑋)) ≠ ∅)
83 n0 4277 . . . . . 6 ((( L ‘𝑌) ∖ ( L ‘𝑋)) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (( L ‘𝑌) ∖ ( L ‘𝑋)))
8482, 83bitri 274 . . . . 5 (¬ ( L ‘𝑌) ⊆ ( L ‘𝑋) ↔ ∃𝑥 𝑥 ∈ (( L ‘𝑌) ∖ ( L ‘𝑋)))
85 eldif 3893 . . . . . . 7 (𝑥 ∈ (( L ‘𝑌) ∖ ( L ‘𝑋)) ↔ (𝑥 ∈ ( L ‘𝑌) ∧ ¬ 𝑥 ∈ ( L ‘𝑋)))
8622a1i 11 . . . . . . . . . . . 12 (𝑌 No → ( L ‘𝑌) = {𝑥 ∈ ( O ‘( bday 𝑌)) ∣ 𝑥 <s 𝑌})
8786eleq2d 2824 . . . . . . . . . . 11 (𝑌 No → (𝑥 ∈ ( L ‘𝑌) ↔ 𝑥 ∈ {𝑥 ∈ ( O ‘( bday 𝑌)) ∣ 𝑥 <s 𝑌}))
8887, 25bitrdi 286 . . . . . . . . . 10 (𝑌 No → (𝑥 ∈ ( L ‘𝑌) ↔ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)))
8917a1i 11 . . . . . . . . . . . . . 14 (𝑋 No → ( L ‘𝑋) = {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋})
9089eleq2d 2824 . . . . . . . . . . . . 13 (𝑋 No → (𝑥 ∈ ( L ‘𝑋) ↔ 𝑥 ∈ {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋}))
9190, 20bitrdi 286 . . . . . . . . . . . 12 (𝑋 No → (𝑥 ∈ ( L ‘𝑋) ↔ (𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋)))
9291notbid 317 . . . . . . . . . . 11 (𝑋 No → (¬ 𝑥 ∈ ( L ‘𝑋) ↔ ¬ (𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋)))
93 ianor 978 . . . . . . . . . . 11 (¬ (𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) ↔ (¬ 𝑥 ∈ ( O ‘( bday 𝑋)) ∨ ¬ 𝑥 <s 𝑋))
9492, 93bitrdi 286 . . . . . . . . . 10 (𝑋 No → (¬ 𝑥 ∈ ( L ‘𝑋) ↔ (¬ 𝑥 ∈ ( O ‘( bday 𝑋)) ∨ ¬ 𝑥 <s 𝑋)))
9588, 94bi2anan9r 636 . . . . . . . . 9 ((𝑋 No 𝑌 No ) → ((𝑥 ∈ ( L ‘𝑌) ∧ ¬ 𝑥 ∈ ( L ‘𝑋)) ↔ ((𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌) ∧ (¬ 𝑥 ∈ ( O ‘( bday 𝑋)) ∨ ¬ 𝑥 <s 𝑋))))
96953adant3 1130 . . . . . . . 8 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → ((𝑥 ∈ ( L ‘𝑌) ∧ ¬ 𝑥 ∈ ( L ‘𝑋)) ↔ ((𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌) ∧ (¬ 𝑥 ∈ ( O ‘( bday 𝑋)) ∨ ¬ 𝑥 <s 𝑋))))
97 simprl 767 . . . . . . . . . . . 12 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → 𝑥 ∈ ( O ‘( bday 𝑌)))
98 simpl3 1191 . . . . . . . . . . . . 13 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → ( bday 𝑋) = ( bday 𝑌))
9998fveq2d 6760 . . . . . . . . . . . 12 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → ( O ‘( bday 𝑋)) = ( O ‘( bday 𝑌)))
10097, 99eleqtrrd 2842 . . . . . . . . . . 11 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → 𝑥 ∈ ( O ‘( bday 𝑋)))
101100pm2.24d 151 . . . . . . . . . 10 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → (¬ 𝑥 ∈ ( O ‘( bday 𝑋)) → 𝑋 <s 𝑌))
102 simpll1 1210 . . . . . . . . . . . 12 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) ∧ ¬ 𝑥 <s 𝑋) → 𝑋 No )
103 oldssno 33972 . . . . . . . . . . . . . 14 ( O ‘( bday 𝑌)) ⊆ No
104103, 97sselid 3915 . . . . . . . . . . . . 13 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → 𝑥 No )
105104adantr 480 . . . . . . . . . . . 12 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) ∧ ¬ 𝑥 <s 𝑋) → 𝑥 No )
106 simpll2 1211 . . . . . . . . . . . 12 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) ∧ ¬ 𝑥 <s 𝑋) → 𝑌 No )
107 simpl1 1189 . . . . . . . . . . . . . 14 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → 𝑋 No )
108 slenlt 33882 . . . . . . . . . . . . . 14 ((𝑋 No 𝑥 No ) → (𝑋 ≤s 𝑥 ↔ ¬ 𝑥 <s 𝑋))
109107, 104, 108syl2anc 583 . . . . . . . . . . . . 13 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → (𝑋 ≤s 𝑥 ↔ ¬ 𝑥 <s 𝑋))
110109biimpar 477 . . . . . . . . . . . 12 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) ∧ ¬ 𝑥 <s 𝑋) → 𝑋 ≤s 𝑥)
111 simplrr 774 . . . . . . . . . . . 12 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) ∧ ¬ 𝑥 <s 𝑋) → 𝑥 <s 𝑌)
112102, 105, 106, 110, 111slelttrd 33891 . . . . . . . . . . 11 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) ∧ ¬ 𝑥 <s 𝑋) → 𝑋 <s 𝑌)
113112ex 412 . . . . . . . . . 10 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → (¬ 𝑥 <s 𝑋𝑋 <s 𝑌))
114101, 113jaod 855 . . . . . . . . 9 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → ((¬ 𝑥 ∈ ( O ‘( bday 𝑋)) ∨ ¬ 𝑥 <s 𝑋) → 𝑋 <s 𝑌))
115114expimpd 453 . . . . . . . 8 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (((𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌) ∧ (¬ 𝑥 ∈ ( O ‘( bday 𝑋)) ∨ ¬ 𝑥 <s 𝑋)) → 𝑋 <s 𝑌))
11696, 115sylbid 239 . . . . . . 7 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → ((𝑥 ∈ ( L ‘𝑌) ∧ ¬ 𝑥 ∈ ( L ‘𝑋)) → 𝑋 <s 𝑌))
11785, 116syl5bi 241 . . . . . 6 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (𝑥 ∈ (( L ‘𝑌) ∖ ( L ‘𝑋)) → 𝑋 <s 𝑌))
118117exlimdv 1937 . . . . 5 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (∃𝑥 𝑥 ∈ (( L ‘𝑌) ∖ ( L ‘𝑋)) → 𝑋 <s 𝑌))
11984, 118syl5bi 241 . . . 4 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (¬ ( L ‘𝑌) ⊆ ( L ‘𝑋) → 𝑋 <s 𝑌))
120119adantld 490 . . 3 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → ((( L ‘𝑋) ⊆ ( L ‘𝑌) ∧ ¬ ( L ‘𝑌) ⊆ ( L ‘𝑋)) → 𝑋 <s 𝑌))
12180, 120syl5bi 241 . 2 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (( L ‘𝑋) ⊊ ( L ‘𝑌) → 𝑋 <s 𝑌))
12279, 121impbid 211 1 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (𝑋 <s 𝑌 ↔ ( L ‘𝑋) ⊊ ( L ‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wne 2942  {crab 3067  cdif 3880  cun 3881  cin 3882  wss 3883  wpss 3884  c0 4253   class class class wbr 5070  cfv 6418  (class class class)co 7255   No csur 33770   <s cslt 33771   bday cbday 33772   ≤s csle 33874   <<s csslt 33902   |s cscut 33904   O cold 33954   L cleft 33956   R cright 33957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-1o 8267  df-2o 8268  df-no 33773  df-slt 33774  df-bday 33775  df-sle 33875  df-sslt 33903  df-scut 33905  df-made 33958  df-old 33959  df-left 33961  df-right 33962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator