MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltlpss Structured version   Visualization version   GIF version

Theorem sltlpss 27819
Description: If two surreals share a birthday, then 𝑋 <s 𝑌 iff the left set of 𝑋 is a proper subset of the left set of 𝑌. (Contributed by Scott Fenton, 17-Sep-2024.)
Assertion
Ref Expression
sltlpss ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (𝑋 <s 𝑌 ↔ ( L ‘𝑋) ⊊ ( L ‘𝑌)))

Proof of Theorem sltlpss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oldssno 27769 . . . . . . . . . . . 12 ( O ‘( bday 𝑋)) ⊆ No
21sseli 3942 . . . . . . . . . . 11 (𝑥 ∈ ( O ‘( bday 𝑋)) → 𝑥 No )
323ad2ant2 1134 . . . . . . . . . 10 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ 𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) → 𝑥 No )
4 simp1l1 1267 . . . . . . . . . 10 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ 𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) → 𝑋 No )
5 simp1l2 1268 . . . . . . . . . 10 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ 𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) → 𝑌 No )
6 simp3 1138 . . . . . . . . . 10 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ 𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) → 𝑥 <s 𝑋)
7 simp1r 1199 . . . . . . . . . 10 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ 𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) → 𝑋 <s 𝑌)
83, 4, 5, 6, 7slttrd 27671 . . . . . . . . 9 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ 𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) → 𝑥 <s 𝑌)
983exp 1119 . . . . . . . 8 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( O ‘( bday 𝑋)) → (𝑥 <s 𝑋𝑥 <s 𝑌)))
109imdistand 570 . . . . . . 7 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ((𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) → (𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑌)))
11 fveq2 6858 . . . . . . . . . . 11 (( bday 𝑋) = ( bday 𝑌) → ( O ‘( bday 𝑋)) = ( O ‘( bday 𝑌)))
12113ad2ant3 1135 . . . . . . . . . 10 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → ( O ‘( bday 𝑋)) = ( O ‘( bday 𝑌)))
1312adantr 480 . . . . . . . . 9 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ( O ‘( bday 𝑋)) = ( O ‘( bday 𝑌)))
1413eleq2d 2814 . . . . . . . 8 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( O ‘( bday 𝑋)) ↔ 𝑥 ∈ ( O ‘( bday 𝑌))))
1514anbi1d 631 . . . . . . 7 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ((𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑌) ↔ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)))
1610, 15sylibd 239 . . . . . 6 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ((𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) → (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)))
17 leftval 27771 . . . . . . . . 9 ( L ‘𝑋) = {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋}
1817a1i 11 . . . . . . . 8 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ( L ‘𝑋) = {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋})
1918eleq2d 2814 . . . . . . 7 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( L ‘𝑋) ↔ 𝑥 ∈ {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋}))
20 rabid 3427 . . . . . . 7 (𝑥 ∈ {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋} ↔ (𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋))
2119, 20bitrdi 287 . . . . . 6 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( L ‘𝑋) ↔ (𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋)))
22 leftval 27771 . . . . . . . . 9 ( L ‘𝑌) = {𝑥 ∈ ( O ‘( bday 𝑌)) ∣ 𝑥 <s 𝑌}
2322a1i 11 . . . . . . . 8 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ( L ‘𝑌) = {𝑥 ∈ ( O ‘( bday 𝑌)) ∣ 𝑥 <s 𝑌})
2423eleq2d 2814 . . . . . . 7 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( L ‘𝑌) ↔ 𝑥 ∈ {𝑥 ∈ ( O ‘( bday 𝑌)) ∣ 𝑥 <s 𝑌}))
25 rabid 3427 . . . . . . 7 (𝑥 ∈ {𝑥 ∈ ( O ‘( bday 𝑌)) ∣ 𝑥 <s 𝑌} ↔ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌))
2624, 25bitrdi 287 . . . . . 6 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( L ‘𝑌) ↔ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)))
2716, 21, 263imtr4d 294 . . . . 5 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( L ‘𝑋) → 𝑥 ∈ ( L ‘𝑌)))
2827ssrdv 3952 . . . 4 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ( L ‘𝑋) ⊆ ( L ‘𝑌))
29 sltirr 27658 . . . . . . . . 9 (𝑌 No → ¬ 𝑌 <s 𝑌)
30293ad2ant2 1134 . . . . . . . 8 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → ¬ 𝑌 <s 𝑌)
31 breq1 5110 . . . . . . . . 9 (𝑋 = 𝑌 → (𝑋 <s 𝑌𝑌 <s 𝑌))
3231notbid 318 . . . . . . . 8 (𝑋 = 𝑌 → (¬ 𝑋 <s 𝑌 ↔ ¬ 𝑌 <s 𝑌))
3330, 32syl5ibrcom 247 . . . . . . 7 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (𝑋 = 𝑌 → ¬ 𝑋 <s 𝑌))
3433con2d 134 . . . . . 6 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (𝑋 <s 𝑌 → ¬ 𝑋 = 𝑌))
3534imp 406 . . . . 5 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ¬ 𝑋 = 𝑌)
36 simpr 484 . . . . . . 7 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → ( L ‘𝑋) = ( L ‘𝑌))
37 lruneq 27818 . . . . . . . . . . 11 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (( L ‘𝑋) ∪ ( R ‘𝑋)) = (( L ‘𝑌) ∪ ( R ‘𝑌)))
3837adantr 480 . . . . . . . . . 10 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → (( L ‘𝑋) ∪ ( R ‘𝑋)) = (( L ‘𝑌) ∪ ( R ‘𝑌)))
3938adantr 480 . . . . . . . . 9 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( L ‘𝑋) ∪ ( R ‘𝑋)) = (( L ‘𝑌) ∪ ( R ‘𝑌)))
4039, 36difeq12d 4090 . . . . . . . 8 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → ((( L ‘𝑋) ∪ ( R ‘𝑋)) ∖ ( L ‘𝑋)) = ((( L ‘𝑌) ∪ ( R ‘𝑌)) ∖ ( L ‘𝑌)))
41 difundir 4254 . . . . . . . . . 10 ((( L ‘𝑋) ∪ ( R ‘𝑋)) ∖ ( L ‘𝑋)) = ((( L ‘𝑋) ∖ ( L ‘𝑋)) ∪ (( R ‘𝑋) ∖ ( L ‘𝑋)))
42 difid 4339 . . . . . . . . . . 11 (( L ‘𝑋) ∖ ( L ‘𝑋)) = ∅
4342uneq1i 4127 . . . . . . . . . 10 ((( L ‘𝑋) ∖ ( L ‘𝑋)) ∪ (( R ‘𝑋) ∖ ( L ‘𝑋))) = (∅ ∪ (( R ‘𝑋) ∖ ( L ‘𝑋)))
44 0un 4359 . . . . . . . . . 10 (∅ ∪ (( R ‘𝑋) ∖ ( L ‘𝑋))) = (( R ‘𝑋) ∖ ( L ‘𝑋))
4541, 43, 443eqtri 2756 . . . . . . . . 9 ((( L ‘𝑋) ∪ ( R ‘𝑋)) ∖ ( L ‘𝑋)) = (( R ‘𝑋) ∖ ( L ‘𝑋))
46 incom 4172 . . . . . . . . . . 11 (( L ‘𝑋) ∩ ( R ‘𝑋)) = (( R ‘𝑋) ∩ ( L ‘𝑋))
47 lltropt 27784 . . . . . . . . . . . 12 ( L ‘𝑋) <<s ( R ‘𝑋)
48 ssltdisj 27733 . . . . . . . . . . . 12 (( L ‘𝑋) <<s ( R ‘𝑋) → (( L ‘𝑋) ∩ ( R ‘𝑋)) = ∅)
4947, 48mp1i 13 . . . . . . . . . . 11 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( L ‘𝑋) ∩ ( R ‘𝑋)) = ∅)
5046, 49eqtr3id 2778 . . . . . . . . . 10 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( R ‘𝑋) ∩ ( L ‘𝑋)) = ∅)
51 disjdif2 4443 . . . . . . . . . 10 ((( R ‘𝑋) ∩ ( L ‘𝑋)) = ∅ → (( R ‘𝑋) ∖ ( L ‘𝑋)) = ( R ‘𝑋))
5250, 51syl 17 . . . . . . . . 9 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( R ‘𝑋) ∖ ( L ‘𝑋)) = ( R ‘𝑋))
5345, 52eqtrid 2776 . . . . . . . 8 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → ((( L ‘𝑋) ∪ ( R ‘𝑋)) ∖ ( L ‘𝑋)) = ( R ‘𝑋))
54 difundir 4254 . . . . . . . . . 10 ((( L ‘𝑌) ∪ ( R ‘𝑌)) ∖ ( L ‘𝑌)) = ((( L ‘𝑌) ∖ ( L ‘𝑌)) ∪ (( R ‘𝑌) ∖ ( L ‘𝑌)))
55 difid 4339 . . . . . . . . . . 11 (( L ‘𝑌) ∖ ( L ‘𝑌)) = ∅
5655uneq1i 4127 . . . . . . . . . 10 ((( L ‘𝑌) ∖ ( L ‘𝑌)) ∪ (( R ‘𝑌) ∖ ( L ‘𝑌))) = (∅ ∪ (( R ‘𝑌) ∖ ( L ‘𝑌)))
57 0un 4359 . . . . . . . . . 10 (∅ ∪ (( R ‘𝑌) ∖ ( L ‘𝑌))) = (( R ‘𝑌) ∖ ( L ‘𝑌))
5854, 56, 573eqtri 2756 . . . . . . . . 9 ((( L ‘𝑌) ∪ ( R ‘𝑌)) ∖ ( L ‘𝑌)) = (( R ‘𝑌) ∖ ( L ‘𝑌))
59 incom 4172 . . . . . . . . . . 11 (( L ‘𝑌) ∩ ( R ‘𝑌)) = (( R ‘𝑌) ∩ ( L ‘𝑌))
60 lltropt 27784 . . . . . . . . . . . 12 ( L ‘𝑌) <<s ( R ‘𝑌)
61 ssltdisj 27733 . . . . . . . . . . . 12 (( L ‘𝑌) <<s ( R ‘𝑌) → (( L ‘𝑌) ∩ ( R ‘𝑌)) = ∅)
6260, 61mp1i 13 . . . . . . . . . . 11 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( L ‘𝑌) ∩ ( R ‘𝑌)) = ∅)
6359, 62eqtr3id 2778 . . . . . . . . . 10 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( R ‘𝑌) ∩ ( L ‘𝑌)) = ∅)
64 disjdif2 4443 . . . . . . . . . 10 ((( R ‘𝑌) ∩ ( L ‘𝑌)) = ∅ → (( R ‘𝑌) ∖ ( L ‘𝑌)) = ( R ‘𝑌))
6563, 64syl 17 . . . . . . . . 9 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( R ‘𝑌) ∖ ( L ‘𝑌)) = ( R ‘𝑌))
6658, 65eqtrid 2776 . . . . . . . 8 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → ((( L ‘𝑌) ∪ ( R ‘𝑌)) ∖ ( L ‘𝑌)) = ( R ‘𝑌))
6740, 53, 663eqtr3d 2772 . . . . . . 7 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → ( R ‘𝑋) = ( R ‘𝑌))
6836, 67oveq12d 7405 . . . . . 6 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( L ‘𝑋) |s ( R ‘𝑋)) = (( L ‘𝑌) |s ( R ‘𝑌)))
69 simpll1 1213 . . . . . . 7 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → 𝑋 No )
70 lrcut 27815 . . . . . . 7 (𝑋 No → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋)
7169, 70syl 17 . . . . . 6 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋)
72 simpll2 1214 . . . . . . 7 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → 𝑌 No )
73 lrcut 27815 . . . . . . 7 (𝑌 No → (( L ‘𝑌) |s ( R ‘𝑌)) = 𝑌)
7472, 73syl 17 . . . . . 6 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( L ‘𝑌) |s ( R ‘𝑌)) = 𝑌)
7568, 71, 743eqtr3d 2772 . . . . 5 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → 𝑋 = 𝑌)
7635, 75mtand 815 . . . 4 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ¬ ( L ‘𝑋) = ( L ‘𝑌))
77 dfpss2 4051 . . . 4 (( L ‘𝑋) ⊊ ( L ‘𝑌) ↔ (( L ‘𝑋) ⊆ ( L ‘𝑌) ∧ ¬ ( L ‘𝑋) = ( L ‘𝑌)))
7828, 76, 77sylanbrc 583 . . 3 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ( L ‘𝑋) ⊊ ( L ‘𝑌))
7978ex 412 . 2 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (𝑋 <s 𝑌 → ( L ‘𝑋) ⊊ ( L ‘𝑌)))
80 dfpss3 4052 . . 3 (( L ‘𝑋) ⊊ ( L ‘𝑌) ↔ (( L ‘𝑋) ⊆ ( L ‘𝑌) ∧ ¬ ( L ‘𝑌) ⊆ ( L ‘𝑋)))
81 ssdif0 4329 . . . . . . 7 (( L ‘𝑌) ⊆ ( L ‘𝑋) ↔ (( L ‘𝑌) ∖ ( L ‘𝑋)) = ∅)
8281necon3bbii 2972 . . . . . 6 (¬ ( L ‘𝑌) ⊆ ( L ‘𝑋) ↔ (( L ‘𝑌) ∖ ( L ‘𝑋)) ≠ ∅)
83 n0 4316 . . . . . 6 ((( L ‘𝑌) ∖ ( L ‘𝑋)) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (( L ‘𝑌) ∖ ( L ‘𝑋)))
8482, 83bitri 275 . . . . 5 (¬ ( L ‘𝑌) ⊆ ( L ‘𝑋) ↔ ∃𝑥 𝑥 ∈ (( L ‘𝑌) ∖ ( L ‘𝑋)))
85 eldif 3924 . . . . . . 7 (𝑥 ∈ (( L ‘𝑌) ∖ ( L ‘𝑋)) ↔ (𝑥 ∈ ( L ‘𝑌) ∧ ¬ 𝑥 ∈ ( L ‘𝑋)))
8622a1i 11 . . . . . . . . . . . 12 (𝑌 No → ( L ‘𝑌) = {𝑥 ∈ ( O ‘( bday 𝑌)) ∣ 𝑥 <s 𝑌})
8786eleq2d 2814 . . . . . . . . . . 11 (𝑌 No → (𝑥 ∈ ( L ‘𝑌) ↔ 𝑥 ∈ {𝑥 ∈ ( O ‘( bday 𝑌)) ∣ 𝑥 <s 𝑌}))
8887, 25bitrdi 287 . . . . . . . . . 10 (𝑌 No → (𝑥 ∈ ( L ‘𝑌) ↔ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)))
8917a1i 11 . . . . . . . . . . . . . 14 (𝑋 No → ( L ‘𝑋) = {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋})
9089eleq2d 2814 . . . . . . . . . . . . 13 (𝑋 No → (𝑥 ∈ ( L ‘𝑋) ↔ 𝑥 ∈ {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋}))
9190, 20bitrdi 287 . . . . . . . . . . . 12 (𝑋 No → (𝑥 ∈ ( L ‘𝑋) ↔ (𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋)))
9291notbid 318 . . . . . . . . . . 11 (𝑋 No → (¬ 𝑥 ∈ ( L ‘𝑋) ↔ ¬ (𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋)))
93 ianor 983 . . . . . . . . . . 11 (¬ (𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) ↔ (¬ 𝑥 ∈ ( O ‘( bday 𝑋)) ∨ ¬ 𝑥 <s 𝑋))
9492, 93bitrdi 287 . . . . . . . . . 10 (𝑋 No → (¬ 𝑥 ∈ ( L ‘𝑋) ↔ (¬ 𝑥 ∈ ( O ‘( bday 𝑋)) ∨ ¬ 𝑥 <s 𝑋)))
9588, 94bi2anan9r 639 . . . . . . . . 9 ((𝑋 No 𝑌 No ) → ((𝑥 ∈ ( L ‘𝑌) ∧ ¬ 𝑥 ∈ ( L ‘𝑋)) ↔ ((𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌) ∧ (¬ 𝑥 ∈ ( O ‘( bday 𝑋)) ∨ ¬ 𝑥 <s 𝑋))))
96953adant3 1132 . . . . . . . 8 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → ((𝑥 ∈ ( L ‘𝑌) ∧ ¬ 𝑥 ∈ ( L ‘𝑋)) ↔ ((𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌) ∧ (¬ 𝑥 ∈ ( O ‘( bday 𝑋)) ∨ ¬ 𝑥 <s 𝑋))))
97 simprl 770 . . . . . . . . . . . 12 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → 𝑥 ∈ ( O ‘( bday 𝑌)))
98 simpl3 1194 . . . . . . . . . . . . 13 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → ( bday 𝑋) = ( bday 𝑌))
9998fveq2d 6862 . . . . . . . . . . . 12 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → ( O ‘( bday 𝑋)) = ( O ‘( bday 𝑌)))
10097, 99eleqtrrd 2831 . . . . . . . . . . 11 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → 𝑥 ∈ ( O ‘( bday 𝑋)))
101100pm2.24d 151 . . . . . . . . . 10 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → (¬ 𝑥 ∈ ( O ‘( bday 𝑋)) → 𝑋 <s 𝑌))
102 simpll1 1213 . . . . . . . . . . . 12 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) ∧ ¬ 𝑥 <s 𝑋) → 𝑋 No )
103 oldssno 27769 . . . . . . . . . . . . . 14 ( O ‘( bday 𝑌)) ⊆ No
104103, 97sselid 3944 . . . . . . . . . . . . 13 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → 𝑥 No )
105104adantr 480 . . . . . . . . . . . 12 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) ∧ ¬ 𝑥 <s 𝑋) → 𝑥 No )
106 simpll2 1214 . . . . . . . . . . . 12 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) ∧ ¬ 𝑥 <s 𝑋) → 𝑌 No )
107 simpl1 1192 . . . . . . . . . . . . . 14 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → 𝑋 No )
108 slenlt 27664 . . . . . . . . . . . . . 14 ((𝑋 No 𝑥 No ) → (𝑋 ≤s 𝑥 ↔ ¬ 𝑥 <s 𝑋))
109107, 104, 108syl2anc 584 . . . . . . . . . . . . 13 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → (𝑋 ≤s 𝑥 ↔ ¬ 𝑥 <s 𝑋))
110109biimpar 477 . . . . . . . . . . . 12 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) ∧ ¬ 𝑥 <s 𝑋) → 𝑋 ≤s 𝑥)
111 simplrr 777 . . . . . . . . . . . 12 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) ∧ ¬ 𝑥 <s 𝑋) → 𝑥 <s 𝑌)
112102, 105, 106, 110, 111slelttrd 27673 . . . . . . . . . . 11 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) ∧ ¬ 𝑥 <s 𝑋) → 𝑋 <s 𝑌)
113112ex 412 . . . . . . . . . 10 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → (¬ 𝑥 <s 𝑋𝑋 <s 𝑌))
114101, 113jaod 859 . . . . . . . . 9 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → ((¬ 𝑥 ∈ ( O ‘( bday 𝑋)) ∨ ¬ 𝑥 <s 𝑋) → 𝑋 <s 𝑌))
115114expimpd 453 . . . . . . . 8 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (((𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌) ∧ (¬ 𝑥 ∈ ( O ‘( bday 𝑋)) ∨ ¬ 𝑥 <s 𝑋)) → 𝑋 <s 𝑌))
11696, 115sylbid 240 . . . . . . 7 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → ((𝑥 ∈ ( L ‘𝑌) ∧ ¬ 𝑥 ∈ ( L ‘𝑋)) → 𝑋 <s 𝑌))
11785, 116biimtrid 242 . . . . . 6 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (𝑥 ∈ (( L ‘𝑌) ∖ ( L ‘𝑋)) → 𝑋 <s 𝑌))
118117exlimdv 1933 . . . . 5 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (∃𝑥 𝑥 ∈ (( L ‘𝑌) ∖ ( L ‘𝑋)) → 𝑋 <s 𝑌))
11984, 118biimtrid 242 . . . 4 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (¬ ( L ‘𝑌) ⊆ ( L ‘𝑋) → 𝑋 <s 𝑌))
120119adantld 490 . . 3 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → ((( L ‘𝑋) ⊆ ( L ‘𝑌) ∧ ¬ ( L ‘𝑌) ⊆ ( L ‘𝑋)) → 𝑋 <s 𝑌))
12180, 120biimtrid 242 . 2 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (( L ‘𝑋) ⊊ ( L ‘𝑌) → 𝑋 <s 𝑌))
12279, 121impbid 212 1 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (𝑋 <s 𝑌 ↔ ( L ‘𝑋) ⊊ ( L ‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  {crab 3405  cdif 3911  cun 3912  cin 3913  wss 3914  wpss 3915  c0 4296   class class class wbr 5107  cfv 6511  (class class class)co 7387   No csur 27551   <s cslt 27552   bday cbday 27553   ≤s csle 27656   <<s csslt 27692   |s cscut 27694   O cold 27751   L cleft 27753   R cright 27754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-1o 8434  df-2o 8435  df-no 27554  df-slt 27555  df-bday 27556  df-sle 27657  df-sslt 27693  df-scut 27695  df-made 27755  df-old 27756  df-left 27758  df-right 27759
This theorem is referenced by:  slelss  27820
  Copyright terms: Public domain W3C validator