Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sltlpss Structured version   Visualization version   GIF version

Theorem sltlpss 33773
Description: If two surreals share a birthday, then 𝑋 <s 𝑌 iff the left set of 𝑋 is a proper subset of the left set of 𝑌. (Contributed by Scott Fenton, 17-Sep-2024.)
Assertion
Ref Expression
sltlpss ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (𝑋 <s 𝑌 ↔ ( L ‘𝑋) ⊊ ( L ‘𝑌)))

Proof of Theorem sltlpss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oldssno 33731 . . . . . . . . . . . 12 ( O ‘( bday 𝑋)) ⊆ No
21sseli 3883 . . . . . . . . . . 11 (𝑥 ∈ ( O ‘( bday 𝑋)) → 𝑥 No )
323ad2ant2 1136 . . . . . . . . . 10 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ 𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) → 𝑥 No )
4 simp1l1 1268 . . . . . . . . . 10 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ 𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) → 𝑋 No )
5 simp1l2 1269 . . . . . . . . . 10 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ 𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) → 𝑌 No )
6 simp3 1140 . . . . . . . . . 10 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ 𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) → 𝑥 <s 𝑋)
7 simp1r 1200 . . . . . . . . . 10 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ 𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) → 𝑋 <s 𝑌)
83, 4, 5, 6, 7slttrd 33648 . . . . . . . . 9 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ 𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) → 𝑥 <s 𝑌)
983exp 1121 . . . . . . . 8 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( O ‘( bday 𝑋)) → (𝑥 <s 𝑋𝑥 <s 𝑌)))
109imdistand 574 . . . . . . 7 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ((𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) → (𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑌)))
11 fveq2 6695 . . . . . . . . . . 11 (( bday 𝑋) = ( bday 𝑌) → ( O ‘( bday 𝑋)) = ( O ‘( bday 𝑌)))
12113ad2ant3 1137 . . . . . . . . . 10 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → ( O ‘( bday 𝑋)) = ( O ‘( bday 𝑌)))
1312adantr 484 . . . . . . . . 9 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ( O ‘( bday 𝑋)) = ( O ‘( bday 𝑌)))
1413eleq2d 2816 . . . . . . . 8 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( O ‘( bday 𝑋)) ↔ 𝑥 ∈ ( O ‘( bday 𝑌))))
1514anbi1d 633 . . . . . . 7 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ((𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑌) ↔ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)))
1610, 15sylibd 242 . . . . . 6 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ((𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) → (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)))
17 leftval 33733 . . . . . . . . 9 ( L ‘𝑋) = {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋}
1817a1i 11 . . . . . . . 8 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ( L ‘𝑋) = {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋})
1918eleq2d 2816 . . . . . . 7 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( L ‘𝑋) ↔ 𝑥 ∈ {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋}))
20 rabid 3280 . . . . . . 7 (𝑥 ∈ {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋} ↔ (𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋))
2119, 20bitrdi 290 . . . . . 6 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( L ‘𝑋) ↔ (𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋)))
22 leftval 33733 . . . . . . . . 9 ( L ‘𝑌) = {𝑥 ∈ ( O ‘( bday 𝑌)) ∣ 𝑥 <s 𝑌}
2322a1i 11 . . . . . . . 8 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ( L ‘𝑌) = {𝑥 ∈ ( O ‘( bday 𝑌)) ∣ 𝑥 <s 𝑌})
2423eleq2d 2816 . . . . . . 7 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( L ‘𝑌) ↔ 𝑥 ∈ {𝑥 ∈ ( O ‘( bday 𝑌)) ∣ 𝑥 <s 𝑌}))
25 rabid 3280 . . . . . . 7 (𝑥 ∈ {𝑥 ∈ ( O ‘( bday 𝑌)) ∣ 𝑥 <s 𝑌} ↔ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌))
2624, 25bitrdi 290 . . . . . 6 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( L ‘𝑌) ↔ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)))
2716, 21, 263imtr4d 297 . . . . 5 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( L ‘𝑋) → 𝑥 ∈ ( L ‘𝑌)))
2827ssrdv 3893 . . . 4 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ( L ‘𝑋) ⊆ ( L ‘𝑌))
29 sltirr 33635 . . . . . . . . 9 (𝑌 No → ¬ 𝑌 <s 𝑌)
30293ad2ant2 1136 . . . . . . . 8 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → ¬ 𝑌 <s 𝑌)
31 breq1 5042 . . . . . . . . 9 (𝑋 = 𝑌 → (𝑋 <s 𝑌𝑌 <s 𝑌))
3231notbid 321 . . . . . . . 8 (𝑋 = 𝑌 → (¬ 𝑋 <s 𝑌 ↔ ¬ 𝑌 <s 𝑌))
3330, 32syl5ibrcom 250 . . . . . . 7 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (𝑋 = 𝑌 → ¬ 𝑋 <s 𝑌))
3433con2d 136 . . . . . 6 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (𝑋 <s 𝑌 → ¬ 𝑋 = 𝑌))
3534imp 410 . . . . 5 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ¬ 𝑋 = 𝑌)
36 simpr 488 . . . . . . 7 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → ( L ‘𝑋) = ( L ‘𝑌))
37 lruneq 33772 . . . . . . . . . . 11 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (( L ‘𝑋) ∪ ( R ‘𝑋)) = (( L ‘𝑌) ∪ ( R ‘𝑌)))
3837adantr 484 . . . . . . . . . 10 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → (( L ‘𝑋) ∪ ( R ‘𝑋)) = (( L ‘𝑌) ∪ ( R ‘𝑌)))
3938adantr 484 . . . . . . . . 9 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( L ‘𝑋) ∪ ( R ‘𝑋)) = (( L ‘𝑌) ∪ ( R ‘𝑌)))
4039, 36difeq12d 4024 . . . . . . . 8 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → ((( L ‘𝑋) ∪ ( R ‘𝑋)) ∖ ( L ‘𝑋)) = ((( L ‘𝑌) ∪ ( R ‘𝑌)) ∖ ( L ‘𝑌)))
41 difundir 4181 . . . . . . . . . 10 ((( L ‘𝑋) ∪ ( R ‘𝑋)) ∖ ( L ‘𝑋)) = ((( L ‘𝑋) ∖ ( L ‘𝑋)) ∪ (( R ‘𝑋) ∖ ( L ‘𝑋)))
42 difid 4271 . . . . . . . . . . 11 (( L ‘𝑋) ∖ ( L ‘𝑋)) = ∅
4342uneq1i 4059 . . . . . . . . . 10 ((( L ‘𝑋) ∖ ( L ‘𝑋)) ∪ (( R ‘𝑋) ∖ ( L ‘𝑋))) = (∅ ∪ (( R ‘𝑋) ∖ ( L ‘𝑋)))
44 0un 4293 . . . . . . . . . 10 (∅ ∪ (( R ‘𝑋) ∖ ( L ‘𝑋))) = (( R ‘𝑋) ∖ ( L ‘𝑋))
4541, 43, 443eqtri 2763 . . . . . . . . 9 ((( L ‘𝑋) ∪ ( R ‘𝑋)) ∖ ( L ‘𝑋)) = (( R ‘𝑋) ∖ ( L ‘𝑋))
46 incom 4101 . . . . . . . . . . 11 (( L ‘𝑋) ∩ ( R ‘𝑋)) = (( R ‘𝑋) ∩ ( L ‘𝑋))
47 simpll1 1214 . . . . . . . . . . . 12 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → 𝑋 No )
48 lltropt 33742 . . . . . . . . . . . 12 (𝑋 No → ( L ‘𝑋) <<s ( R ‘𝑋))
49 ssltdisj 33701 . . . . . . . . . . . 12 (( L ‘𝑋) <<s ( R ‘𝑋) → (( L ‘𝑋) ∩ ( R ‘𝑋)) = ∅)
5047, 48, 493syl 18 . . . . . . . . . . 11 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( L ‘𝑋) ∩ ( R ‘𝑋)) = ∅)
5146, 50eqtr3id 2785 . . . . . . . . . 10 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( R ‘𝑋) ∩ ( L ‘𝑋)) = ∅)
52 disjdif2 4380 . . . . . . . . . 10 ((( R ‘𝑋) ∩ ( L ‘𝑋)) = ∅ → (( R ‘𝑋) ∖ ( L ‘𝑋)) = ( R ‘𝑋))
5351, 52syl 17 . . . . . . . . 9 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( R ‘𝑋) ∖ ( L ‘𝑋)) = ( R ‘𝑋))
5445, 53syl5eq 2783 . . . . . . . 8 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → ((( L ‘𝑋) ∪ ( R ‘𝑋)) ∖ ( L ‘𝑋)) = ( R ‘𝑋))
55 difundir 4181 . . . . . . . . . 10 ((( L ‘𝑌) ∪ ( R ‘𝑌)) ∖ ( L ‘𝑌)) = ((( L ‘𝑌) ∖ ( L ‘𝑌)) ∪ (( R ‘𝑌) ∖ ( L ‘𝑌)))
56 difid 4271 . . . . . . . . . . 11 (( L ‘𝑌) ∖ ( L ‘𝑌)) = ∅
5756uneq1i 4059 . . . . . . . . . 10 ((( L ‘𝑌) ∖ ( L ‘𝑌)) ∪ (( R ‘𝑌) ∖ ( L ‘𝑌))) = (∅ ∪ (( R ‘𝑌) ∖ ( L ‘𝑌)))
58 0un 4293 . . . . . . . . . 10 (∅ ∪ (( R ‘𝑌) ∖ ( L ‘𝑌))) = (( R ‘𝑌) ∖ ( L ‘𝑌))
5955, 57, 583eqtri 2763 . . . . . . . . 9 ((( L ‘𝑌) ∪ ( R ‘𝑌)) ∖ ( L ‘𝑌)) = (( R ‘𝑌) ∖ ( L ‘𝑌))
60 incom 4101 . . . . . . . . . . 11 (( L ‘𝑌) ∩ ( R ‘𝑌)) = (( R ‘𝑌) ∩ ( L ‘𝑌))
61 simpll2 1215 . . . . . . . . . . . 12 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → 𝑌 No )
62 lltropt 33742 . . . . . . . . . . . 12 (𝑌 No → ( L ‘𝑌) <<s ( R ‘𝑌))
63 ssltdisj 33701 . . . . . . . . . . . 12 (( L ‘𝑌) <<s ( R ‘𝑌) → (( L ‘𝑌) ∩ ( R ‘𝑌)) = ∅)
6461, 62, 633syl 18 . . . . . . . . . . 11 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( L ‘𝑌) ∩ ( R ‘𝑌)) = ∅)
6560, 64eqtr3id 2785 . . . . . . . . . 10 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( R ‘𝑌) ∩ ( L ‘𝑌)) = ∅)
66 disjdif2 4380 . . . . . . . . . 10 ((( R ‘𝑌) ∩ ( L ‘𝑌)) = ∅ → (( R ‘𝑌) ∖ ( L ‘𝑌)) = ( R ‘𝑌))
6765, 66syl 17 . . . . . . . . 9 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( R ‘𝑌) ∖ ( L ‘𝑌)) = ( R ‘𝑌))
6859, 67syl5eq 2783 . . . . . . . 8 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → ((( L ‘𝑌) ∪ ( R ‘𝑌)) ∖ ( L ‘𝑌)) = ( R ‘𝑌))
6940, 54, 683eqtr3d 2779 . . . . . . 7 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → ( R ‘𝑋) = ( R ‘𝑌))
7036, 69oveq12d 7209 . . . . . 6 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( L ‘𝑋) |s ( R ‘𝑋)) = (( L ‘𝑌) |s ( R ‘𝑌)))
71 lrcut 33769 . . . . . . 7 (𝑋 No → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋)
7247, 71syl 17 . . . . . 6 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋)
73 lrcut 33769 . . . . . . 7 (𝑌 No → (( L ‘𝑌) |s ( R ‘𝑌)) = 𝑌)
7461, 73syl 17 . . . . . 6 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( L ‘𝑌) |s ( R ‘𝑌)) = 𝑌)
7570, 72, 743eqtr3d 2779 . . . . 5 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → 𝑋 = 𝑌)
7635, 75mtand 816 . . . 4 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ¬ ( L ‘𝑋) = ( L ‘𝑌))
77 dfpss2 3986 . . . 4 (( L ‘𝑋) ⊊ ( L ‘𝑌) ↔ (( L ‘𝑋) ⊆ ( L ‘𝑌) ∧ ¬ ( L ‘𝑋) = ( L ‘𝑌)))
7828, 76, 77sylanbrc 586 . . 3 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ( L ‘𝑋) ⊊ ( L ‘𝑌))
7978ex 416 . 2 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (𝑋 <s 𝑌 → ( L ‘𝑋) ⊊ ( L ‘𝑌)))
80 dfpss3 3987 . . 3 (( L ‘𝑋) ⊊ ( L ‘𝑌) ↔ (( L ‘𝑋) ⊆ ( L ‘𝑌) ∧ ¬ ( L ‘𝑌) ⊆ ( L ‘𝑋)))
81 ssdif0 4264 . . . . . . 7 (( L ‘𝑌) ⊆ ( L ‘𝑋) ↔ (( L ‘𝑌) ∖ ( L ‘𝑋)) = ∅)
8281necon3bbii 2979 . . . . . 6 (¬ ( L ‘𝑌) ⊆ ( L ‘𝑋) ↔ (( L ‘𝑌) ∖ ( L ‘𝑋)) ≠ ∅)
83 n0 4247 . . . . . 6 ((( L ‘𝑌) ∖ ( L ‘𝑋)) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (( L ‘𝑌) ∖ ( L ‘𝑋)))
8482, 83bitri 278 . . . . 5 (¬ ( L ‘𝑌) ⊆ ( L ‘𝑋) ↔ ∃𝑥 𝑥 ∈ (( L ‘𝑌) ∖ ( L ‘𝑋)))
85 eldif 3863 . . . . . . 7 (𝑥 ∈ (( L ‘𝑌) ∖ ( L ‘𝑋)) ↔ (𝑥 ∈ ( L ‘𝑌) ∧ ¬ 𝑥 ∈ ( L ‘𝑋)))
8622a1i 11 . . . . . . . . . . . 12 (𝑌 No → ( L ‘𝑌) = {𝑥 ∈ ( O ‘( bday 𝑌)) ∣ 𝑥 <s 𝑌})
8786eleq2d 2816 . . . . . . . . . . 11 (𝑌 No → (𝑥 ∈ ( L ‘𝑌) ↔ 𝑥 ∈ {𝑥 ∈ ( O ‘( bday 𝑌)) ∣ 𝑥 <s 𝑌}))
8887, 25bitrdi 290 . . . . . . . . . 10 (𝑌 No → (𝑥 ∈ ( L ‘𝑌) ↔ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)))
8917a1i 11 . . . . . . . . . . . . . 14 (𝑋 No → ( L ‘𝑋) = {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋})
9089eleq2d 2816 . . . . . . . . . . . . 13 (𝑋 No → (𝑥 ∈ ( L ‘𝑋) ↔ 𝑥 ∈ {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋}))
9190, 20bitrdi 290 . . . . . . . . . . . 12 (𝑋 No → (𝑥 ∈ ( L ‘𝑋) ↔ (𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋)))
9291notbid 321 . . . . . . . . . . 11 (𝑋 No → (¬ 𝑥 ∈ ( L ‘𝑋) ↔ ¬ (𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋)))
93 ianor 982 . . . . . . . . . . 11 (¬ (𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋) ↔ (¬ 𝑥 ∈ ( O ‘( bday 𝑋)) ∨ ¬ 𝑥 <s 𝑋))
9492, 93bitrdi 290 . . . . . . . . . 10 (𝑋 No → (¬ 𝑥 ∈ ( L ‘𝑋) ↔ (¬ 𝑥 ∈ ( O ‘( bday 𝑋)) ∨ ¬ 𝑥 <s 𝑋)))
9588, 94bi2anan9r 640 . . . . . . . . 9 ((𝑋 No 𝑌 No ) → ((𝑥 ∈ ( L ‘𝑌) ∧ ¬ 𝑥 ∈ ( L ‘𝑋)) ↔ ((𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌) ∧ (¬ 𝑥 ∈ ( O ‘( bday 𝑋)) ∨ ¬ 𝑥 <s 𝑋))))
96953adant3 1134 . . . . . . . 8 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → ((𝑥 ∈ ( L ‘𝑌) ∧ ¬ 𝑥 ∈ ( L ‘𝑋)) ↔ ((𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌) ∧ (¬ 𝑥 ∈ ( O ‘( bday 𝑋)) ∨ ¬ 𝑥 <s 𝑋))))
97 simprl 771 . . . . . . . . . . . 12 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → 𝑥 ∈ ( O ‘( bday 𝑌)))
98 simpl3 1195 . . . . . . . . . . . . 13 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → ( bday 𝑋) = ( bday 𝑌))
9998fveq2d 6699 . . . . . . . . . . . 12 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → ( O ‘( bday 𝑋)) = ( O ‘( bday 𝑌)))
10097, 99eleqtrrd 2834 . . . . . . . . . . 11 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → 𝑥 ∈ ( O ‘( bday 𝑋)))
101100pm2.24d 154 . . . . . . . . . 10 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → (¬ 𝑥 ∈ ( O ‘( bday 𝑋)) → 𝑋 <s 𝑌))
102 simpll1 1214 . . . . . . . . . . . 12 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) ∧ ¬ 𝑥 <s 𝑋) → 𝑋 No )
103 oldssno 33731 . . . . . . . . . . . . . 14 ( O ‘( bday 𝑌)) ⊆ No
104103, 97sseldi 3885 . . . . . . . . . . . . 13 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → 𝑥 No )
105104adantr 484 . . . . . . . . . . . 12 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) ∧ ¬ 𝑥 <s 𝑋) → 𝑥 No )
106 simpll2 1215 . . . . . . . . . . . 12 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) ∧ ¬ 𝑥 <s 𝑋) → 𝑌 No )
107 simpl1 1193 . . . . . . . . . . . . . 14 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → 𝑋 No )
108 slenlt 33641 . . . . . . . . . . . . . 14 ((𝑋 No 𝑥 No ) → (𝑋 ≤s 𝑥 ↔ ¬ 𝑥 <s 𝑋))
109107, 104, 108syl2anc 587 . . . . . . . . . . . . 13 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → (𝑋 ≤s 𝑥 ↔ ¬ 𝑥 <s 𝑋))
110109biimpar 481 . . . . . . . . . . . 12 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) ∧ ¬ 𝑥 <s 𝑋) → 𝑋 ≤s 𝑥)
111 simplrr 778 . . . . . . . . . . . 12 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) ∧ ¬ 𝑥 <s 𝑋) → 𝑥 <s 𝑌)
112102, 105, 106, 110, 111slelttrd 33650 . . . . . . . . . . 11 ((((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) ∧ ¬ 𝑥 <s 𝑋) → 𝑋 <s 𝑌)
113112ex 416 . . . . . . . . . 10 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → (¬ 𝑥 <s 𝑋𝑋 <s 𝑌))
114101, 113jaod 859 . . . . . . . . 9 (((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ (𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌)) → ((¬ 𝑥 ∈ ( O ‘( bday 𝑋)) ∨ ¬ 𝑥 <s 𝑋) → 𝑋 <s 𝑌))
115114expimpd 457 . . . . . . . 8 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (((𝑥 ∈ ( O ‘( bday 𝑌)) ∧ 𝑥 <s 𝑌) ∧ (¬ 𝑥 ∈ ( O ‘( bday 𝑋)) ∨ ¬ 𝑥 <s 𝑋)) → 𝑋 <s 𝑌))
11696, 115sylbid 243 . . . . . . 7 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → ((𝑥 ∈ ( L ‘𝑌) ∧ ¬ 𝑥 ∈ ( L ‘𝑋)) → 𝑋 <s 𝑌))
11785, 116syl5bi 245 . . . . . 6 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (𝑥 ∈ (( L ‘𝑌) ∖ ( L ‘𝑋)) → 𝑋 <s 𝑌))
118117exlimdv 1941 . . . . 5 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (∃𝑥 𝑥 ∈ (( L ‘𝑌) ∖ ( L ‘𝑋)) → 𝑋 <s 𝑌))
11984, 118syl5bi 245 . . . 4 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (¬ ( L ‘𝑌) ⊆ ( L ‘𝑋) → 𝑋 <s 𝑌))
120119adantld 494 . . 3 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → ((( L ‘𝑋) ⊆ ( L ‘𝑌) ∧ ¬ ( L ‘𝑌) ⊆ ( L ‘𝑋)) → 𝑋 <s 𝑌))
12180, 120syl5bi 245 . 2 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (( L ‘𝑋) ⊊ ( L ‘𝑌) → 𝑋 <s 𝑌))
12279, 121impbid 215 1 ((𝑋 No 𝑌 No ∧ ( bday 𝑋) = ( bday 𝑌)) → (𝑋 <s 𝑌 ↔ ( L ‘𝑋) ⊊ ( L ‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wex 1787  wcel 2112  wne 2932  {crab 3055  cdif 3850  cun 3851  cin 3852  wss 3853  wpss 3854  c0 4223   class class class wbr 5039  cfv 6358  (class class class)co 7191   No csur 33529   <s cslt 33530   bday cbday 33531   ≤s csle 33633   <<s csslt 33661   |s cscut 33663   O cold 33713   L cleft 33715   R cright 33716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-wrecs 8025  df-recs 8086  df-1o 8180  df-2o 8181  df-no 33532  df-slt 33533  df-bday 33534  df-sle 33634  df-sslt 33662  df-scut 33664  df-made 33717  df-old 33718  df-left 33720  df-right 33721
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator