Step | Hyp | Ref
| Expression |
1 | | oldssno 33972 |
. . . . . . . . . . . 12
⊢ ( O
‘( bday ‘𝑋)) ⊆ No
|
2 | 1 | sseli 3913 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ( O ‘( bday ‘𝑋)) → 𝑥 ∈ No
) |
3 | 2 | 3ad2ant2 1132 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) ∧ 𝑥 ∈ ( O ‘(
bday ‘𝑋))
∧ 𝑥 <s 𝑋) → 𝑥 ∈ No
) |
4 | | simp1l1 1264 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) ∧ 𝑥 ∈ ( O ‘(
bday ‘𝑋))
∧ 𝑥 <s 𝑋) → 𝑋 ∈ No
) |
5 | | simp1l2 1265 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) ∧ 𝑥 ∈ ( O ‘(
bday ‘𝑋))
∧ 𝑥 <s 𝑋) → 𝑌 ∈ No
) |
6 | | simp3 1136 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) ∧ 𝑥 ∈ ( O ‘(
bday ‘𝑋))
∧ 𝑥 <s 𝑋) → 𝑥 <s 𝑋) |
7 | | simp1r 1196 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) ∧ 𝑥 ∈ ( O ‘(
bday ‘𝑋))
∧ 𝑥 <s 𝑋) → 𝑋 <s 𝑌) |
8 | 3, 4, 5, 6, 7 | slttrd 33889 |
. . . . . . . . 9
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) ∧ 𝑥 ∈ ( O ‘(
bday ‘𝑋))
∧ 𝑥 <s 𝑋) → 𝑥 <s 𝑌) |
9 | 8 | 3exp 1117 |
. . . . . . . 8
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( O ‘(
bday ‘𝑋))
→ (𝑥 <s 𝑋 → 𝑥 <s 𝑌))) |
10 | 9 | imdistand 570 |
. . . . . . 7
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) → ((𝑥 ∈ ( O ‘(
bday ‘𝑋))
∧ 𝑥 <s 𝑋) → (𝑥 ∈ ( O ‘(
bday ‘𝑋))
∧ 𝑥 <s 𝑌))) |
11 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (( bday ‘𝑋) = ( bday
‘𝑌) → ( O
‘( bday ‘𝑋)) = ( O ‘( bday
‘𝑌))) |
12 | 11 | 3ad2ant3 1133 |
. . . . . . . . . 10
⊢ ((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) → ( O ‘(
bday ‘𝑋)) = (
O ‘( bday ‘𝑌))) |
13 | 12 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) → ( O ‘(
bday ‘𝑋)) = (
O ‘( bday ‘𝑌))) |
14 | 13 | eleq2d 2824 |
. . . . . . . 8
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( O ‘(
bday ‘𝑋))
↔ 𝑥 ∈ ( O
‘( bday ‘𝑌)))) |
15 | 14 | anbi1d 629 |
. . . . . . 7
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) → ((𝑥 ∈ ( O ‘(
bday ‘𝑋))
∧ 𝑥 <s 𝑌) ↔ (𝑥 ∈ ( O ‘(
bday ‘𝑌))
∧ 𝑥 <s 𝑌))) |
16 | 10, 15 | sylibd 238 |
. . . . . 6
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) → ((𝑥 ∈ ( O ‘(
bday ‘𝑋))
∧ 𝑥 <s 𝑋) → (𝑥 ∈ ( O ‘(
bday ‘𝑌))
∧ 𝑥 <s 𝑌))) |
17 | | leftval 33974 |
. . . . . . . . 9
⊢ ( L
‘𝑋) = {𝑥 ∈ ( O ‘( bday ‘𝑋)) ∣ 𝑥 <s 𝑋} |
18 | 17 | a1i 11 |
. . . . . . . 8
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) → ( L ‘𝑋) = {𝑥 ∈ ( O ‘(
bday ‘𝑋))
∣ 𝑥 <s 𝑋}) |
19 | 18 | eleq2d 2824 |
. . . . . . 7
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( L ‘𝑋) ↔ 𝑥 ∈ {𝑥 ∈ ( O ‘(
bday ‘𝑋))
∣ 𝑥 <s 𝑋})) |
20 | | rabid 3304 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑥 ∈ ( O ‘(
bday ‘𝑋))
∣ 𝑥 <s 𝑋} ↔ (𝑥 ∈ ( O ‘(
bday ‘𝑋))
∧ 𝑥 <s 𝑋)) |
21 | 19, 20 | bitrdi 286 |
. . . . . 6
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( L ‘𝑋) ↔ (𝑥 ∈ ( O ‘(
bday ‘𝑋))
∧ 𝑥 <s 𝑋))) |
22 | | leftval 33974 |
. . . . . . . . 9
⊢ ( L
‘𝑌) = {𝑥 ∈ ( O ‘( bday ‘𝑌)) ∣ 𝑥 <s 𝑌} |
23 | 22 | a1i 11 |
. . . . . . . 8
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) → ( L ‘𝑌) = {𝑥 ∈ ( O ‘(
bday ‘𝑌))
∣ 𝑥 <s 𝑌}) |
24 | 23 | eleq2d 2824 |
. . . . . . 7
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( L ‘𝑌) ↔ 𝑥 ∈ {𝑥 ∈ ( O ‘(
bday ‘𝑌))
∣ 𝑥 <s 𝑌})) |
25 | | rabid 3304 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑥 ∈ ( O ‘(
bday ‘𝑌))
∣ 𝑥 <s 𝑌} ↔ (𝑥 ∈ ( O ‘(
bday ‘𝑌))
∧ 𝑥 <s 𝑌)) |
26 | 24, 25 | bitrdi 286 |
. . . . . 6
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( L ‘𝑌) ↔ (𝑥 ∈ ( O ‘(
bday ‘𝑌))
∧ 𝑥 <s 𝑌))) |
27 | 16, 21, 26 | 3imtr4d 293 |
. . . . 5
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) → (𝑥 ∈ ( L ‘𝑋) → 𝑥 ∈ ( L ‘𝑌))) |
28 | 27 | ssrdv 3923 |
. . . 4
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) → ( L ‘𝑋) ⊆ ( L ‘𝑌)) |
29 | | sltirr 33876 |
. . . . . . . . 9
⊢ (𝑌 ∈
No → ¬ 𝑌
<s 𝑌) |
30 | 29 | 3ad2ant2 1132 |
. . . . . . . 8
⊢ ((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) → ¬ 𝑌 <s 𝑌) |
31 | | breq1 5073 |
. . . . . . . . 9
⊢ (𝑋 = 𝑌 → (𝑋 <s 𝑌 ↔ 𝑌 <s 𝑌)) |
32 | 31 | notbid 317 |
. . . . . . . 8
⊢ (𝑋 = 𝑌 → (¬ 𝑋 <s 𝑌 ↔ ¬ 𝑌 <s 𝑌)) |
33 | 30, 32 | syl5ibrcom 246 |
. . . . . . 7
⊢ ((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) → (𝑋 = 𝑌 → ¬ 𝑋 <s 𝑌)) |
34 | 33 | con2d 134 |
. . . . . 6
⊢ ((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) → (𝑋 <s 𝑌 → ¬ 𝑋 = 𝑌)) |
35 | 34 | imp 406 |
. . . . 5
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) → ¬ 𝑋 = 𝑌) |
36 | | simpr 484 |
. . . . . . 7
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → ( L ‘𝑋) = ( L ‘𝑌)) |
37 | | lruneq 34013 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) → (( L ‘𝑋) ∪ ( R ‘𝑋)) = (( L ‘𝑌) ∪ ( R ‘𝑌))) |
38 | 37 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) → (( L ‘𝑋) ∪ ( R ‘𝑋)) = (( L ‘𝑌) ∪ ( R ‘𝑌))) |
39 | 38 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( L ‘𝑋) ∪ ( R ‘𝑋)) = (( L ‘𝑌) ∪ ( R ‘𝑌))) |
40 | 39, 36 | difeq12d 4054 |
. . . . . . . 8
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → ((( L ‘𝑋) ∪ ( R ‘𝑋)) ∖ ( L ‘𝑋)) = ((( L ‘𝑌) ∪ ( R ‘𝑌)) ∖ ( L ‘𝑌))) |
41 | | difundir 4211 |
. . . . . . . . . 10
⊢ ((( L
‘𝑋) ∪ ( R
‘𝑋)) ∖ ( L
‘𝑋)) = ((( L
‘𝑋) ∖ ( L
‘𝑋)) ∪ (( R
‘𝑋) ∖ ( L
‘𝑋))) |
42 | | difid 4301 |
. . . . . . . . . . 11
⊢ (( L
‘𝑋) ∖ ( L
‘𝑋)) =
∅ |
43 | 42 | uneq1i 4089 |
. . . . . . . . . 10
⊢ ((( L
‘𝑋) ∖ ( L
‘𝑋)) ∪ (( R
‘𝑋) ∖ ( L
‘𝑋))) = (∅
∪ (( R ‘𝑋)
∖ ( L ‘𝑋))) |
44 | | 0un 4323 |
. . . . . . . . . 10
⊢ (∅
∪ (( R ‘𝑋)
∖ ( L ‘𝑋))) =
(( R ‘𝑋) ∖ ( L
‘𝑋)) |
45 | 41, 43, 44 | 3eqtri 2770 |
. . . . . . . . 9
⊢ ((( L
‘𝑋) ∪ ( R
‘𝑋)) ∖ ( L
‘𝑋)) = (( R
‘𝑋) ∖ ( L
‘𝑋)) |
46 | | incom 4131 |
. . . . . . . . . . 11
⊢ (( L
‘𝑋) ∩ ( R
‘𝑋)) = (( R
‘𝑋) ∩ ( L
‘𝑋)) |
47 | | simpll1 1210 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → 𝑋 ∈ No
) |
48 | | lltropt 33983 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈
No → ( L ‘𝑋) <<s ( R ‘𝑋)) |
49 | | ssltdisj 33942 |
. . . . . . . . . . . 12
⊢ (( L
‘𝑋) <<s ( R
‘𝑋) → (( L
‘𝑋) ∩ ( R
‘𝑋)) =
∅) |
50 | 47, 48, 49 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( L ‘𝑋) ∩ ( R ‘𝑋)) = ∅) |
51 | 46, 50 | eqtr3id 2793 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( R ‘𝑋) ∩ ( L ‘𝑋)) = ∅) |
52 | | disjdif2 4410 |
. . . . . . . . . 10
⊢ ((( R
‘𝑋) ∩ ( L
‘𝑋)) = ∅ →
(( R ‘𝑋) ∖ ( L
‘𝑋)) = ( R
‘𝑋)) |
53 | 51, 52 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( R ‘𝑋) ∖ ( L ‘𝑋)) = ( R ‘𝑋)) |
54 | 45, 53 | syl5eq 2791 |
. . . . . . . 8
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → ((( L ‘𝑋) ∪ ( R ‘𝑋)) ∖ ( L ‘𝑋)) = ( R ‘𝑋)) |
55 | | difundir 4211 |
. . . . . . . . . 10
⊢ ((( L
‘𝑌) ∪ ( R
‘𝑌)) ∖ ( L
‘𝑌)) = ((( L
‘𝑌) ∖ ( L
‘𝑌)) ∪ (( R
‘𝑌) ∖ ( L
‘𝑌))) |
56 | | difid 4301 |
. . . . . . . . . . 11
⊢ (( L
‘𝑌) ∖ ( L
‘𝑌)) =
∅ |
57 | 56 | uneq1i 4089 |
. . . . . . . . . 10
⊢ ((( L
‘𝑌) ∖ ( L
‘𝑌)) ∪ (( R
‘𝑌) ∖ ( L
‘𝑌))) = (∅
∪ (( R ‘𝑌)
∖ ( L ‘𝑌))) |
58 | | 0un 4323 |
. . . . . . . . . 10
⊢ (∅
∪ (( R ‘𝑌)
∖ ( L ‘𝑌))) =
(( R ‘𝑌) ∖ ( L
‘𝑌)) |
59 | 55, 57, 58 | 3eqtri 2770 |
. . . . . . . . 9
⊢ ((( L
‘𝑌) ∪ ( R
‘𝑌)) ∖ ( L
‘𝑌)) = (( R
‘𝑌) ∖ ( L
‘𝑌)) |
60 | | incom 4131 |
. . . . . . . . . . 11
⊢ (( L
‘𝑌) ∩ ( R
‘𝑌)) = (( R
‘𝑌) ∩ ( L
‘𝑌)) |
61 | | simpll2 1211 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → 𝑌 ∈ No
) |
62 | | lltropt 33983 |
. . . . . . . . . . . 12
⊢ (𝑌 ∈
No → ( L ‘𝑌) <<s ( R ‘𝑌)) |
63 | | ssltdisj 33942 |
. . . . . . . . . . . 12
⊢ (( L
‘𝑌) <<s ( R
‘𝑌) → (( L
‘𝑌) ∩ ( R
‘𝑌)) =
∅) |
64 | 61, 62, 63 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( L ‘𝑌) ∩ ( R ‘𝑌)) = ∅) |
65 | 60, 64 | eqtr3id 2793 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( R ‘𝑌) ∩ ( L ‘𝑌)) = ∅) |
66 | | disjdif2 4410 |
. . . . . . . . . 10
⊢ ((( R
‘𝑌) ∩ ( L
‘𝑌)) = ∅ →
(( R ‘𝑌) ∖ ( L
‘𝑌)) = ( R
‘𝑌)) |
67 | 65, 66 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( R ‘𝑌) ∖ ( L ‘𝑌)) = ( R ‘𝑌)) |
68 | 59, 67 | syl5eq 2791 |
. . . . . . . 8
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → ((( L ‘𝑌) ∪ ( R ‘𝑌)) ∖ ( L ‘𝑌)) = ( R ‘𝑌)) |
69 | 40, 54, 68 | 3eqtr3d 2786 |
. . . . . . 7
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → ( R ‘𝑋) = ( R ‘𝑌)) |
70 | 36, 69 | oveq12d 7273 |
. . . . . 6
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( L ‘𝑋) |s ( R ‘𝑋)) = (( L ‘𝑌) |s ( R ‘𝑌))) |
71 | | lrcut 34010 |
. . . . . . 7
⊢ (𝑋 ∈
No → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋) |
72 | 47, 71 | syl 17 |
. . . . . 6
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( L ‘𝑋) |s ( R ‘𝑋)) = 𝑋) |
73 | | lrcut 34010 |
. . . . . . 7
⊢ (𝑌 ∈
No → (( L ‘𝑌) |s ( R ‘𝑌)) = 𝑌) |
74 | 61, 73 | syl 17 |
. . . . . 6
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → (( L ‘𝑌) |s ( R ‘𝑌)) = 𝑌) |
75 | 70, 72, 74 | 3eqtr3d 2786 |
. . . . 5
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) ∧ ( L ‘𝑋) = ( L ‘𝑌)) → 𝑋 = 𝑌) |
76 | 35, 75 | mtand 812 |
. . . 4
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) → ¬ ( L ‘𝑋) = ( L ‘𝑌)) |
77 | | dfpss2 4016 |
. . . 4
⊢ (( L
‘𝑋) ⊊ ( L
‘𝑌) ↔ (( L
‘𝑋) ⊆ ( L
‘𝑌) ∧ ¬ ( L
‘𝑋) = ( L
‘𝑌))) |
78 | 28, 76, 77 | sylanbrc 582 |
. . 3
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ 𝑋 <s 𝑌) → ( L ‘𝑋) ⊊ ( L ‘𝑌)) |
79 | 78 | ex 412 |
. 2
⊢ ((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) → (𝑋 <s 𝑌 → ( L ‘𝑋) ⊊ ( L ‘𝑌))) |
80 | | dfpss3 4017 |
. . 3
⊢ (( L
‘𝑋) ⊊ ( L
‘𝑌) ↔ (( L
‘𝑋) ⊆ ( L
‘𝑌) ∧ ¬ ( L
‘𝑌) ⊆ ( L
‘𝑋))) |
81 | | ssdif0 4294 |
. . . . . . 7
⊢ (( L
‘𝑌) ⊆ ( L
‘𝑋) ↔ (( L
‘𝑌) ∖ ( L
‘𝑋)) =
∅) |
82 | 81 | necon3bbii 2990 |
. . . . . 6
⊢ (¬ (
L ‘𝑌) ⊆ ( L
‘𝑋) ↔ (( L
‘𝑌) ∖ ( L
‘𝑋)) ≠
∅) |
83 | | n0 4277 |
. . . . . 6
⊢ ((( L
‘𝑌) ∖ ( L
‘𝑋)) ≠ ∅
↔ ∃𝑥 𝑥 ∈ (( L ‘𝑌) ∖ ( L ‘𝑋))) |
84 | 82, 83 | bitri 274 |
. . . . 5
⊢ (¬ (
L ‘𝑌) ⊆ ( L
‘𝑋) ↔
∃𝑥 𝑥 ∈ (( L ‘𝑌) ∖ ( L ‘𝑋))) |
85 | | eldif 3893 |
. . . . . . 7
⊢ (𝑥 ∈ (( L ‘𝑌) ∖ ( L ‘𝑋)) ↔ (𝑥 ∈ ( L ‘𝑌) ∧ ¬ 𝑥 ∈ ( L ‘𝑋))) |
86 | 22 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑌 ∈
No → ( L ‘𝑌) = {𝑥 ∈ ( O ‘(
bday ‘𝑌))
∣ 𝑥 <s 𝑌}) |
87 | 86 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝑌 ∈
No → (𝑥 ∈
( L ‘𝑌) ↔ 𝑥 ∈ {𝑥 ∈ ( O ‘(
bday ‘𝑌))
∣ 𝑥 <s 𝑌})) |
88 | 87, 25 | bitrdi 286 |
. . . . . . . . . 10
⊢ (𝑌 ∈
No → (𝑥 ∈
( L ‘𝑌) ↔ (𝑥 ∈ ( O ‘( bday ‘𝑌)) ∧ 𝑥 <s 𝑌))) |
89 | 17 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈
No → ( L ‘𝑋) = {𝑥 ∈ ( O ‘(
bday ‘𝑋))
∣ 𝑥 <s 𝑋}) |
90 | 89 | eleq2d 2824 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈
No → (𝑥 ∈
( L ‘𝑋) ↔ 𝑥 ∈ {𝑥 ∈ ( O ‘(
bday ‘𝑋))
∣ 𝑥 <s 𝑋})) |
91 | 90, 20 | bitrdi 286 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈
No → (𝑥 ∈
( L ‘𝑋) ↔ (𝑥 ∈ ( O ‘( bday ‘𝑋)) ∧ 𝑥 <s 𝑋))) |
92 | 91 | notbid 317 |
. . . . . . . . . . 11
⊢ (𝑋 ∈
No → (¬ 𝑥
∈ ( L ‘𝑋) ↔
¬ (𝑥 ∈ ( O
‘( bday ‘𝑋)) ∧ 𝑥 <s 𝑋))) |
93 | | ianor 978 |
. . . . . . . . . . 11
⊢ (¬
(𝑥 ∈ ( O ‘( bday ‘𝑋)) ∧ 𝑥 <s 𝑋) ↔ (¬ 𝑥 ∈ ( O ‘(
bday ‘𝑋)) ∨
¬ 𝑥 <s 𝑋)) |
94 | 92, 93 | bitrdi 286 |
. . . . . . . . . 10
⊢ (𝑋 ∈
No → (¬ 𝑥
∈ ( L ‘𝑋) ↔
(¬ 𝑥 ∈ ( O
‘( bday ‘𝑋)) ∨ ¬ 𝑥 <s 𝑋))) |
95 | 88, 94 | bi2anan9r 636 |
. . . . . . . . 9
⊢ ((𝑋 ∈
No ∧ 𝑌 ∈
No ) → ((𝑥 ∈ ( L ‘𝑌) ∧ ¬ 𝑥 ∈ ( L ‘𝑋)) ↔ ((𝑥 ∈ ( O ‘(
bday ‘𝑌))
∧ 𝑥 <s 𝑌) ∧ (¬ 𝑥 ∈ ( O ‘( bday ‘𝑋)) ∨ ¬ 𝑥 <s 𝑋)))) |
96 | 95 | 3adant3 1130 |
. . . . . . . 8
⊢ ((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) → ((𝑥 ∈ ( L ‘𝑌) ∧ ¬ 𝑥 ∈ ( L ‘𝑋)) ↔ ((𝑥 ∈ ( O ‘(
bday ‘𝑌))
∧ 𝑥 <s 𝑌) ∧ (¬ 𝑥 ∈ ( O ‘( bday ‘𝑋)) ∨ ¬ 𝑥 <s 𝑋)))) |
97 | | simprl 767 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ (𝑥 ∈ ( O ‘(
bday ‘𝑌))
∧ 𝑥 <s 𝑌)) → 𝑥 ∈ ( O ‘(
bday ‘𝑌))) |
98 | | simpl3 1191 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ (𝑥 ∈ ( O ‘(
bday ‘𝑌))
∧ 𝑥 <s 𝑌)) → ( bday ‘𝑋) = ( bday
‘𝑌)) |
99 | 98 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ (𝑥 ∈ ( O ‘(
bday ‘𝑌))
∧ 𝑥 <s 𝑌)) → ( O ‘( bday ‘𝑋)) = ( O ‘( bday
‘𝑌))) |
100 | 97, 99 | eleqtrrd 2842 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ (𝑥 ∈ ( O ‘(
bday ‘𝑌))
∧ 𝑥 <s 𝑌)) → 𝑥 ∈ ( O ‘(
bday ‘𝑋))) |
101 | 100 | pm2.24d 151 |
. . . . . . . . . 10
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ (𝑥 ∈ ( O ‘(
bday ‘𝑌))
∧ 𝑥 <s 𝑌)) → (¬ 𝑥 ∈ ( O ‘( bday ‘𝑋)) → 𝑋 <s 𝑌)) |
102 | | simpll1 1210 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ (𝑥 ∈ ( O ‘(
bday ‘𝑌))
∧ 𝑥 <s 𝑌)) ∧ ¬ 𝑥 <s 𝑋) → 𝑋 ∈ No
) |
103 | | oldssno 33972 |
. . . . . . . . . . . . . 14
⊢ ( O
‘( bday ‘𝑌)) ⊆ No
|
104 | 103, 97 | sselid 3915 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ (𝑥 ∈ ( O ‘(
bday ‘𝑌))
∧ 𝑥 <s 𝑌)) → 𝑥 ∈ No
) |
105 | 104 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ (𝑥 ∈ ( O ‘(
bday ‘𝑌))
∧ 𝑥 <s 𝑌)) ∧ ¬ 𝑥 <s 𝑋) → 𝑥 ∈ No
) |
106 | | simpll2 1211 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ (𝑥 ∈ ( O ‘(
bday ‘𝑌))
∧ 𝑥 <s 𝑌)) ∧ ¬ 𝑥 <s 𝑋) → 𝑌 ∈ No
) |
107 | | simpl1 1189 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ (𝑥 ∈ ( O ‘(
bday ‘𝑌))
∧ 𝑥 <s 𝑌)) → 𝑋 ∈ No
) |
108 | | slenlt 33882 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈
No ∧ 𝑥 ∈
No ) → (𝑋 ≤s 𝑥 ↔ ¬ 𝑥 <s 𝑋)) |
109 | 107, 104,
108 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ (𝑥 ∈ ( O ‘(
bday ‘𝑌))
∧ 𝑥 <s 𝑌)) → (𝑋 ≤s 𝑥 ↔ ¬ 𝑥 <s 𝑋)) |
110 | 109 | biimpar 477 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ (𝑥 ∈ ( O ‘(
bday ‘𝑌))
∧ 𝑥 <s 𝑌)) ∧ ¬ 𝑥 <s 𝑋) → 𝑋 ≤s 𝑥) |
111 | | simplrr 774 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ (𝑥 ∈ ( O ‘(
bday ‘𝑌))
∧ 𝑥 <s 𝑌)) ∧ ¬ 𝑥 <s 𝑋) → 𝑥 <s 𝑌) |
112 | 102, 105,
106, 110, 111 | slelttrd 33891 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ (𝑥 ∈ ( O ‘(
bday ‘𝑌))
∧ 𝑥 <s 𝑌)) ∧ ¬ 𝑥 <s 𝑋) → 𝑋 <s 𝑌) |
113 | 112 | ex 412 |
. . . . . . . . . 10
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ (𝑥 ∈ ( O ‘(
bday ‘𝑌))
∧ 𝑥 <s 𝑌)) → (¬ 𝑥 <s 𝑋 → 𝑋 <s 𝑌)) |
114 | 101, 113 | jaod 855 |
. . . . . . . . 9
⊢ (((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) ∧ (𝑥 ∈ ( O ‘(
bday ‘𝑌))
∧ 𝑥 <s 𝑌)) → ((¬ 𝑥 ∈ ( O ‘( bday ‘𝑋)) ∨ ¬ 𝑥 <s 𝑋) → 𝑋 <s 𝑌)) |
115 | 114 | expimpd 453 |
. . . . . . . 8
⊢ ((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) → (((𝑥 ∈ ( O ‘(
bday ‘𝑌))
∧ 𝑥 <s 𝑌) ∧ (¬ 𝑥 ∈ ( O ‘( bday ‘𝑋)) ∨ ¬ 𝑥 <s 𝑋)) → 𝑋 <s 𝑌)) |
116 | 96, 115 | sylbid 239 |
. . . . . . 7
⊢ ((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) → ((𝑥 ∈ ( L ‘𝑌) ∧ ¬ 𝑥 ∈ ( L ‘𝑋)) → 𝑋 <s 𝑌)) |
117 | 85, 116 | syl5bi 241 |
. . . . . 6
⊢ ((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) → (𝑥 ∈ (( L ‘𝑌) ∖ ( L ‘𝑋)) → 𝑋 <s 𝑌)) |
118 | 117 | exlimdv 1937 |
. . . . 5
⊢ ((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) → (∃𝑥 𝑥 ∈ (( L ‘𝑌) ∖ ( L ‘𝑋)) → 𝑋 <s 𝑌)) |
119 | 84, 118 | syl5bi 241 |
. . . 4
⊢ ((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) → (¬ ( L ‘𝑌) ⊆ ( L ‘𝑋) → 𝑋 <s 𝑌)) |
120 | 119 | adantld 490 |
. . 3
⊢ ((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) → ((( L ‘𝑋) ⊆ ( L ‘𝑌) ∧ ¬ ( L ‘𝑌) ⊆ ( L ‘𝑋)) → 𝑋 <s 𝑌)) |
121 | 80, 120 | syl5bi 241 |
. 2
⊢ ((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) → (( L ‘𝑋) ⊊ ( L ‘𝑌) → 𝑋 <s 𝑌)) |
122 | 79, 121 | impbid 211 |
1
⊢ ((𝑋 ∈
No ∧ 𝑌 ∈
No ∧ ( bday
‘𝑋) = ( bday ‘𝑌)) → (𝑋 <s 𝑌 ↔ ( L ‘𝑋) ⊊ ( L ‘𝑌))) |