| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximdvai | Structured version Visualization version GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 14-Nov-2002.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 8-Jan-2020.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
| Ref | Expression |
|---|---|
| reximdvai.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| reximdvai | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdvai.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
| 2 | 1 | imdistand 570 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 3 | 2 | reximdv2 3143 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: reximdva 3146 reximdv 3148 reuind 3721 wefrc 5625 isomin 7294 isofrlem 7297 onfununi 8287 oaordex 8499 odi 8520 omass 8521 omeulem1 8523 noinfep 9589 rankwflemb 9722 infxpenlem 9942 coflim 10190 coftr 10202 zorn2lem7 10431 suplem1pr 10981 axpre-sup 11098 climbdd 15614 filufint 23783 cvati 32268 atcvat4i 32299 mdsymlem2 32306 mdsymlem3 32307 sumdmdii 32317 iccllysconn 35210 incsequz2 37716 lcvat 38996 hlrelat3 39379 cvrval3 39380 cvrval4N 39381 2atlt 39406 cvrat4 39410 atbtwnexOLDN 39414 atbtwnex 39415 athgt 39423 2llnmat 39491 lnjatN 39747 2lnat 39751 cdlemb 39761 lhpexle3lem 39978 cdlemf1 40528 cdlemf2 40529 cdlemf 40530 cdlemk26b-3 40872 dvh4dimlem 41410 cantnf2 43287 relpfrlem 44916 upbdrech 45276 limcperiod 45599 cncfshift 45845 cncfperiod 45850 |
| Copyright terms: Public domain | W3C validator |