| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximdvai | Structured version Visualization version GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 14-Nov-2002.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 8-Jan-2020.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
| Ref | Expression |
|---|---|
| reximdvai.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| reximdvai | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdvai.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
| 2 | 1 | imdistand 570 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 3 | 2 | reximdv2 3143 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: reximdva 3146 reximdv 3148 reuind 3724 wefrc 5632 isomin 7312 isofrlem 7315 onfununi 8310 oaordex 8522 odi 8543 omass 8544 omeulem1 8546 noinfep 9613 rankwflemb 9746 infxpenlem 9966 coflim 10214 coftr 10226 zorn2lem7 10455 suplem1pr 11005 axpre-sup 11122 climbdd 15638 filufint 23807 cvati 32295 atcvat4i 32326 mdsymlem2 32333 mdsymlem3 32334 sumdmdii 32344 iccllysconn 35237 incsequz2 37743 lcvat 39023 hlrelat3 39406 cvrval3 39407 cvrval4N 39408 2atlt 39433 cvrat4 39437 atbtwnexOLDN 39441 atbtwnex 39442 athgt 39450 2llnmat 39518 lnjatN 39774 2lnat 39778 cdlemb 39788 lhpexle3lem 40005 cdlemf1 40555 cdlemf2 40556 cdlemf 40557 cdlemk26b-3 40899 dvh4dimlem 41437 cantnf2 43314 relpfrlem 44943 upbdrech 45303 limcperiod 45626 cncfshift 45872 cncfperiod 45877 |
| Copyright terms: Public domain | W3C validator |