![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reximdvai | Structured version Visualization version GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 14-Nov-2002.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 8-Jan-2020.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
Ref | Expression |
---|---|
reximdvai.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
reximdvai | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdvai.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
2 | 1 | imdistand 571 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐴 ∧ 𝜒))) |
3 | 2 | reximdv2 3164 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-rex 3071 |
This theorem is referenced by: reximdva 3168 reximdv 3170 reuind 3749 wefrc 5670 isomin 7336 isofrlem 7339 onfununi 8343 oaordex 8560 odi 8581 omass 8582 omeulem1 8584 noinfep 9657 rankwflemb 9790 infxpenlem 10010 coflim 10258 coftr 10270 zorn2lem7 10499 suplem1pr 11049 axpre-sup 11166 climbdd 15620 filufint 23431 cvati 31657 atcvat4i 31688 mdsymlem2 31695 mdsymlem3 31696 sumdmdii 31706 iccllysconn 34310 incsequz2 36703 lcvat 37986 hlrelat3 38369 cvrval3 38370 cvrval4N 38371 2atlt 38396 cvrat4 38400 atbtwnexOLDN 38404 atbtwnex 38405 athgt 38413 2llnmat 38481 lnjatN 38737 2lnat 38741 cdlemb 38751 lhpexle3lem 38968 cdlemf1 39518 cdlemf2 39519 cdlemf 39520 cdlemk26b-3 39862 dvh4dimlem 40400 cantnf2 42157 upbdrech 44094 limcperiod 44423 cncfshift 44669 cncfperiod 44674 |
Copyright terms: Public domain | W3C validator |