![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reximdvai | Structured version Visualization version GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 14-Nov-2002.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 8-Jan-2020.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
Ref | Expression |
---|---|
reximdvai.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
reximdvai | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdvai.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
2 | 1 | imdistand 570 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐴 ∧ 𝜒))) |
3 | 2 | reximdv2 3163 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∃wrex 3069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-rex 3070 |
This theorem is referenced by: reximdva 3167 reximdv 3169 reuind 3749 wefrc 5670 isomin 7337 isofrlem 7340 onfununi 8345 oaordex 8562 odi 8583 omass 8584 omeulem1 8586 noinfep 9659 rankwflemb 9792 infxpenlem 10012 coflim 10260 coftr 10272 zorn2lem7 10501 suplem1pr 11051 axpre-sup 11168 climbdd 15623 filufint 23645 cvati 31887 atcvat4i 31918 mdsymlem2 31925 mdsymlem3 31926 sumdmdii 31936 iccllysconn 34540 incsequz2 36921 lcvat 38204 hlrelat3 38587 cvrval3 38588 cvrval4N 38589 2atlt 38614 cvrat4 38618 atbtwnexOLDN 38622 atbtwnex 38623 athgt 38631 2llnmat 38699 lnjatN 38955 2lnat 38959 cdlemb 38969 lhpexle3lem 39186 cdlemf1 39736 cdlemf2 39737 cdlemf 39738 cdlemk26b-3 40080 dvh4dimlem 40618 cantnf2 42378 upbdrech 44314 limcperiod 44643 cncfshift 44889 cncfperiod 44894 |
Copyright terms: Public domain | W3C validator |