| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximdvai | Structured version Visualization version GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 14-Nov-2002.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 8-Jan-2020.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
| Ref | Expression |
|---|---|
| reximdvai.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| reximdvai | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdvai.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
| 2 | 1 | imdistand 570 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 3 | 2 | reximdv2 3143 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∃wrex 3057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-rex 3058 |
| This theorem is referenced by: reximdva 3146 reximdv 3148 reuind 3708 wefrc 5615 isomin 7280 isofrlem 7283 onfununi 8270 oaordex 8482 odi 8503 omass 8504 omeulem1 8506 noinfep 9561 rankwflemb 9697 infxpenlem 9915 coflim 10163 coftr 10175 zorn2lem7 10404 suplem1pr 10954 axpre-sup 11071 climbdd 15586 filufint 23855 cvati 32367 atcvat4i 32398 mdsymlem2 32405 mdsymlem3 32406 sumdmdii 32416 iccllysconn 35366 incsequz2 37862 lcvat 39202 hlrelat3 39584 cvrval3 39585 cvrval4N 39586 2atlt 39611 cvrat4 39615 atbtwnexOLDN 39619 atbtwnex 39620 athgt 39628 2llnmat 39696 lnjatN 39952 2lnat 39956 cdlemb 39966 lhpexle3lem 40183 cdlemf1 40733 cdlemf2 40734 cdlemf 40735 cdlemk26b-3 41077 dvh4dimlem 41615 cantnf2 43482 relpfrlem 45110 upbdrech 45469 limcperiod 45790 cncfshift 46034 cncfperiod 46039 chnsubseqword 47038 |
| Copyright terms: Public domain | W3C validator |