| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximdvai | Structured version Visualization version GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 14-Nov-2002.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 8-Jan-2020.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
| Ref | Expression |
|---|---|
| reximdvai.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| reximdvai | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdvai.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
| 2 | 1 | imdistand 570 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 3 | 2 | reximdv2 3139 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: reximdva 3142 reximdv 3144 reuind 3715 wefrc 5617 isomin 7278 isofrlem 7281 onfununi 8271 oaordex 8483 odi 8504 omass 8505 omeulem1 8507 noinfep 9575 rankwflemb 9708 infxpenlem 9926 coflim 10174 coftr 10186 zorn2lem7 10415 suplem1pr 10965 axpre-sup 11082 climbdd 15598 filufint 23824 cvati 32329 atcvat4i 32360 mdsymlem2 32367 mdsymlem3 32368 sumdmdii 32378 iccllysconn 35242 incsequz2 37748 lcvat 39028 hlrelat3 39411 cvrval3 39412 cvrval4N 39413 2atlt 39438 cvrat4 39442 atbtwnexOLDN 39446 atbtwnex 39447 athgt 39455 2llnmat 39523 lnjatN 39779 2lnat 39783 cdlemb 39793 lhpexle3lem 40010 cdlemf1 40560 cdlemf2 40561 cdlemf 40562 cdlemk26b-3 40904 dvh4dimlem 41442 cantnf2 43318 relpfrlem 44947 upbdrech 45307 limcperiod 45629 cncfshift 45875 cncfperiod 45880 |
| Copyright terms: Public domain | W3C validator |