Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reximdvai | Structured version Visualization version GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 14-Nov-2002.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 8-Jan-2020.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
Ref | Expression |
---|---|
reximdvai.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
reximdvai | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdvai.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
2 | 1 | imdistand 571 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐴 ∧ 𝜒))) |
3 | 2 | reximdv2 3201 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 ∃wrex 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-rex 3072 |
This theorem is referenced by: reximdv 3204 reximdva 3205 reuind 3692 wefrc 5584 isomin 7204 isofrlem 7207 onfununi 8163 oaordex 8374 odi 8395 omass 8396 omeulem1 8398 noinfep 9396 dftrpred3g 9481 rankwflemb 9552 infxpenlem 9770 coflim 10018 coftr 10030 zorn2lem7 10259 suplem1pr 10809 axpre-sup 10926 climbdd 15381 filufint 23069 cvati 30724 atcvat4i 30755 mdsymlem2 30762 mdsymlem3 30763 sumdmdii 30773 iccllysconn 33208 incsequz2 35903 lcvat 37040 hlrelat3 37422 cvrval3 37423 cvrval4N 37424 2atlt 37449 cvrat4 37453 atbtwnexOLDN 37457 atbtwnex 37458 athgt 37466 2llnmat 37534 lnjatN 37790 2lnat 37794 cdlemb 37804 lhpexle3lem 38021 cdlemf1 38571 cdlemf2 38572 cdlemf 38573 cdlemk26b-3 38915 dvh4dimlem 39453 upbdrech 42815 limcperiod 43140 cncfshift 43386 cncfperiod 43391 |
Copyright terms: Public domain | W3C validator |