![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reximdvai | Structured version Visualization version GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 14-Nov-2002.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 8-Jan-2020.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
Ref | Expression |
---|---|
reximdvai.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
reximdvai | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdvai.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
2 | 1 | imdistand 570 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐴 ∧ 𝜒))) |
3 | 2 | reximdv2 3162 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∃wrex 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-rex 3069 |
This theorem is referenced by: reximdva 3166 reximdv 3168 reuind 3762 wefrc 5683 isomin 7357 isofrlem 7360 onfununi 8380 oaordex 8595 odi 8616 omass 8617 omeulem1 8619 noinfep 9698 rankwflemb 9831 infxpenlem 10051 coflim 10299 coftr 10311 zorn2lem7 10540 suplem1pr 11090 axpre-sup 11207 climbdd 15705 filufint 23944 cvati 32395 atcvat4i 32426 mdsymlem2 32433 mdsymlem3 32434 sumdmdii 32444 iccllysconn 35235 incsequz2 37736 lcvat 39012 hlrelat3 39395 cvrval3 39396 cvrval4N 39397 2atlt 39422 cvrat4 39426 atbtwnexOLDN 39430 atbtwnex 39431 athgt 39439 2llnmat 39507 lnjatN 39763 2lnat 39767 cdlemb 39777 lhpexle3lem 39994 cdlemf1 40544 cdlemf2 40545 cdlemf 40546 cdlemk26b-3 40888 dvh4dimlem 41426 cantnf2 43315 upbdrech 45256 limcperiod 45584 cncfshift 45830 cncfperiod 45835 |
Copyright terms: Public domain | W3C validator |