Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reximdvai | Structured version Visualization version GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 14-Nov-2002.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 8-Jan-2020.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
Ref | Expression |
---|---|
reximdvai.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
reximdvai | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdvai.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
2 | 1 | imdistand 571 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐴 ∧ 𝜒))) |
3 | 2 | reximdv2 3199 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-rex 3070 |
This theorem is referenced by: reximdv 3202 reximdva 3203 reuind 3688 wefrc 5583 isomin 7208 isofrlem 7211 onfununi 8172 oaordex 8389 odi 8410 omass 8411 omeulem1 8413 noinfep 9418 rankwflemb 9551 infxpenlem 9769 coflim 10017 coftr 10029 zorn2lem7 10258 suplem1pr 10808 axpre-sup 10925 climbdd 15383 filufint 23071 cvati 30728 atcvat4i 30759 mdsymlem2 30766 mdsymlem3 30767 sumdmdii 30777 iccllysconn 33212 incsequz2 35907 lcvat 37044 hlrelat3 37426 cvrval3 37427 cvrval4N 37428 2atlt 37453 cvrat4 37457 atbtwnexOLDN 37461 atbtwnex 37462 athgt 37470 2llnmat 37538 lnjatN 37794 2lnat 37798 cdlemb 37808 lhpexle3lem 38025 cdlemf1 38575 cdlemf2 38576 cdlemf 38577 cdlemk26b-3 38919 dvh4dimlem 39457 upbdrech 42844 limcperiod 43169 cncfshift 43415 cncfperiod 43420 |
Copyright terms: Public domain | W3C validator |