Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reximdvai | Structured version Visualization version GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 14-Nov-2002.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 8-Jan-2020.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
Ref | Expression |
---|---|
reximdvai.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
reximdvai | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdvai.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
2 | 1 | imdistand 570 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐴 ∧ 𝜒))) |
3 | 2 | reximdv2 3198 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-rex 3069 |
This theorem is referenced by: reximdv 3201 reximdva 3202 reuind 3683 wefrc 5574 isomin 7188 isofrlem 7191 onfununi 8143 oaordex 8351 odi 8372 omass 8373 omeulem1 8375 noinfep 9348 dftrpred3g 9412 rankwflemb 9482 infxpenlem 9700 coflim 9948 coftr 9960 zorn2lem7 10189 suplem1pr 10739 axpre-sup 10856 climbdd 15311 filufint 22979 cvati 30629 atcvat4i 30660 mdsymlem2 30667 mdsymlem3 30668 sumdmdii 30678 iccllysconn 33112 incsequz2 35834 lcvat 36971 hlrelat3 37353 cvrval3 37354 cvrval4N 37355 2atlt 37380 cvrat4 37384 atbtwnexOLDN 37388 atbtwnex 37389 athgt 37397 2llnmat 37465 lnjatN 37721 2lnat 37725 cdlemb 37735 lhpexle3lem 37952 cdlemf1 38502 cdlemf2 38503 cdlemf 38504 cdlemk26b-3 38846 dvh4dimlem 39384 upbdrech 42734 limcperiod 43059 cncfshift 43305 cncfperiod 43310 |
Copyright terms: Public domain | W3C validator |