![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reximdvai | Structured version Visualization version GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 14-Nov-2002.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 8-Jan-2020.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
Ref | Expression |
---|---|
reximdvai.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
reximdvai | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdvai.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
2 | 1 | imdistand 570 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐴 ∧ 𝜒))) |
3 | 2 | reximdv2 3170 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-rex 3077 |
This theorem is referenced by: reximdva 3174 reximdv 3176 reuind 3775 wefrc 5694 isomin 7373 isofrlem 7376 onfununi 8397 oaordex 8614 odi 8635 omass 8636 omeulem1 8638 noinfep 9729 rankwflemb 9862 infxpenlem 10082 coflim 10330 coftr 10342 zorn2lem7 10571 suplem1pr 11121 axpre-sup 11238 climbdd 15720 filufint 23949 cvati 32398 atcvat4i 32429 mdsymlem2 32436 mdsymlem3 32437 sumdmdii 32447 iccllysconn 35218 incsequz2 37709 lcvat 38986 hlrelat3 39369 cvrval3 39370 cvrval4N 39371 2atlt 39396 cvrat4 39400 atbtwnexOLDN 39404 atbtwnex 39405 athgt 39413 2llnmat 39481 lnjatN 39737 2lnat 39741 cdlemb 39751 lhpexle3lem 39968 cdlemf1 40518 cdlemf2 40519 cdlemf 40520 cdlemk26b-3 40862 dvh4dimlem 41400 cantnf2 43287 upbdrech 45220 limcperiod 45549 cncfshift 45795 cncfperiod 45800 |
Copyright terms: Public domain | W3C validator |