| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximdvai | Structured version Visualization version GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 14-Nov-2002.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 8-Jan-2020.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
| Ref | Expression |
|---|---|
| reximdvai.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| reximdvai | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdvai.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
| 2 | 1 | imdistand 570 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 3 | 2 | reximdv2 3144 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3055 |
| This theorem is referenced by: reximdva 3147 reximdv 3149 reuind 3727 wefrc 5635 isomin 7315 isofrlem 7318 onfununi 8313 oaordex 8525 odi 8546 omass 8547 omeulem1 8549 noinfep 9620 rankwflemb 9753 infxpenlem 9973 coflim 10221 coftr 10233 zorn2lem7 10462 suplem1pr 11012 axpre-sup 11129 climbdd 15645 filufint 23814 cvati 32302 atcvat4i 32333 mdsymlem2 32340 mdsymlem3 32341 sumdmdii 32351 iccllysconn 35244 incsequz2 37750 lcvat 39030 hlrelat3 39413 cvrval3 39414 cvrval4N 39415 2atlt 39440 cvrat4 39444 atbtwnexOLDN 39448 atbtwnex 39449 athgt 39457 2llnmat 39525 lnjatN 39781 2lnat 39785 cdlemb 39795 lhpexle3lem 40012 cdlemf1 40562 cdlemf2 40563 cdlemf 40564 cdlemk26b-3 40906 dvh4dimlem 41444 cantnf2 43321 relpfrlem 44950 upbdrech 45310 limcperiod 45633 cncfshift 45879 cncfperiod 45884 |
| Copyright terms: Public domain | W3C validator |