| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximdvai | Structured version Visualization version GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 14-Nov-2002.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 8-Jan-2020.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
| Ref | Expression |
|---|---|
| reximdvai.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| reximdvai | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdvai.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
| 2 | 1 | imdistand 570 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 3 | 2 | reximdv2 3150 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3061 |
| This theorem is referenced by: reximdva 3153 reximdv 3155 reuind 3736 wefrc 5648 isomin 7330 isofrlem 7333 onfununi 8355 oaordex 8570 odi 8591 omass 8592 omeulem1 8594 noinfep 9674 rankwflemb 9807 infxpenlem 10027 coflim 10275 coftr 10287 zorn2lem7 10516 suplem1pr 11066 axpre-sup 11183 climbdd 15688 filufint 23858 cvati 32347 atcvat4i 32378 mdsymlem2 32385 mdsymlem3 32386 sumdmdii 32396 iccllysconn 35272 incsequz2 37773 lcvat 39048 hlrelat3 39431 cvrval3 39432 cvrval4N 39433 2atlt 39458 cvrat4 39462 atbtwnexOLDN 39466 atbtwnex 39467 athgt 39475 2llnmat 39543 lnjatN 39799 2lnat 39803 cdlemb 39813 lhpexle3lem 40030 cdlemf1 40580 cdlemf2 40581 cdlemf 40582 cdlemk26b-3 40924 dvh4dimlem 41462 cantnf2 43349 relpfrlem 44978 upbdrech 45334 limcperiod 45657 cncfshift 45903 cncfperiod 45908 |
| Copyright terms: Public domain | W3C validator |