| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximdvai | Structured version Visualization version GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 14-Nov-2002.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 8-Jan-2020.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
| Ref | Expression |
|---|---|
| reximdvai.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| reximdvai | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdvai.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
| 2 | 1 | imdistand 570 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 3 | 2 | reximdv2 3142 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-rex 3057 |
| This theorem is referenced by: reximdva 3145 reximdv 3147 reuind 3707 wefrc 5605 isomin 7266 isofrlem 7269 onfununi 8256 oaordex 8468 odi 8489 omass 8490 omeulem1 8492 noinfep 9545 rankwflemb 9681 infxpenlem 9899 coflim 10147 coftr 10159 zorn2lem7 10388 suplem1pr 10938 axpre-sup 11055 climbdd 15574 filufint 23830 cvati 32338 atcvat4i 32369 mdsymlem2 32376 mdsymlem3 32377 sumdmdii 32387 iccllysconn 35286 incsequz2 37789 lcvat 39069 hlrelat3 39451 cvrval3 39452 cvrval4N 39453 2atlt 39478 cvrat4 39482 atbtwnexOLDN 39486 atbtwnex 39487 athgt 39495 2llnmat 39563 lnjatN 39819 2lnat 39823 cdlemb 39833 lhpexle3lem 40050 cdlemf1 40600 cdlemf2 40601 cdlemf 40602 cdlemk26b-3 40944 dvh4dimlem 41482 cantnf2 43358 relpfrlem 44986 upbdrech 45346 limcperiod 45668 cncfshift 45912 cncfperiod 45917 |
| Copyright terms: Public domain | W3C validator |