MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem1 Structured version   Visualization version   GIF version

Theorem unblem1 9291
Description: Lemma for unbnn 9295. After removing the successor of an element from an unbounded set of natural numbers, the intersection of the result belongs to the original unbounded set. (Contributed by NM, 3-Dec-2003.)
Assertion
Ref Expression
unblem1 (((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → (𝐵 ∖ suc 𝐴) ∈ 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem unblem1
StepHypRef Expression
1 omsson 7855 . . . . . 6 ω ⊆ On
2 sstr 3989 . . . . . 6 ((𝐵 ⊆ ω ∧ ω ⊆ On) → 𝐵 ⊆ On)
31, 2mpan2 689 . . . . 5 (𝐵 ⊆ ω → 𝐵 ⊆ On)
43ssdifssd 4141 . . . 4 (𝐵 ⊆ ω → (𝐵 ∖ suc 𝐴) ⊆ On)
54ad2antrr 724 . . 3 (((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → (𝐵 ∖ suc 𝐴) ⊆ On)
6 ssel 3974 . . . . . 6 (𝐵 ⊆ ω → (𝐴𝐵𝐴 ∈ ω))
7 peano2b 7868 . . . . . 6 (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)
86, 7imbitrdi 250 . . . . 5 (𝐵 ⊆ ω → (𝐴𝐵 → suc 𝐴 ∈ ω))
9 eleq1 2821 . . . . . . . 8 (𝑥 = suc 𝐴 → (𝑥𝑦 ↔ suc 𝐴𝑦))
109rexbidv 3178 . . . . . . 7 (𝑥 = suc 𝐴 → (∃𝑦𝐵 𝑥𝑦 ↔ ∃𝑦𝐵 suc 𝐴𝑦))
1110rspccva 3611 . . . . . 6 ((∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦 ∧ suc 𝐴 ∈ ω) → ∃𝑦𝐵 suc 𝐴𝑦)
12 ssel 3974 . . . . . . . . . . 11 (𝐵 ⊆ ω → (𝑦𝐵𝑦 ∈ ω))
13 nnord 7859 . . . . . . . . . . . 12 (𝑦 ∈ ω → Ord 𝑦)
14 ordn2lp 6381 . . . . . . . . . . . . . 14 (Ord 𝑦 → ¬ (𝑦 ∈ suc 𝐴 ∧ suc 𝐴𝑦))
15 imnan 400 . . . . . . . . . . . . . 14 ((𝑦 ∈ suc 𝐴 → ¬ suc 𝐴𝑦) ↔ ¬ (𝑦 ∈ suc 𝐴 ∧ suc 𝐴𝑦))
1614, 15sylibr 233 . . . . . . . . . . . . 13 (Ord 𝑦 → (𝑦 ∈ suc 𝐴 → ¬ suc 𝐴𝑦))
1716con2d 134 . . . . . . . . . . . 12 (Ord 𝑦 → (suc 𝐴𝑦 → ¬ 𝑦 ∈ suc 𝐴))
1813, 17syl 17 . . . . . . . . . . 11 (𝑦 ∈ ω → (suc 𝐴𝑦 → ¬ 𝑦 ∈ suc 𝐴))
1912, 18syl6 35 . . . . . . . . . 10 (𝐵 ⊆ ω → (𝑦𝐵 → (suc 𝐴𝑦 → ¬ 𝑦 ∈ suc 𝐴)))
2019imdistand 571 . . . . . . . . 9 (𝐵 ⊆ ω → ((𝑦𝐵 ∧ suc 𝐴𝑦) → (𝑦𝐵 ∧ ¬ 𝑦 ∈ suc 𝐴)))
21 eldif 3957 . . . . . . . . . 10 (𝑦 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝑦𝐵 ∧ ¬ 𝑦 ∈ suc 𝐴))
22 ne0i 4333 . . . . . . . . . 10 (𝑦 ∈ (𝐵 ∖ suc 𝐴) → (𝐵 ∖ suc 𝐴) ≠ ∅)
2321, 22sylbir 234 . . . . . . . . 9 ((𝑦𝐵 ∧ ¬ 𝑦 ∈ suc 𝐴) → (𝐵 ∖ suc 𝐴) ≠ ∅)
2420, 23syl6 35 . . . . . . . 8 (𝐵 ⊆ ω → ((𝑦𝐵 ∧ suc 𝐴𝑦) → (𝐵 ∖ suc 𝐴) ≠ ∅))
2524expd 416 . . . . . . 7 (𝐵 ⊆ ω → (𝑦𝐵 → (suc 𝐴𝑦 → (𝐵 ∖ suc 𝐴) ≠ ∅)))
2625rexlimdv 3153 . . . . . 6 (𝐵 ⊆ ω → (∃𝑦𝐵 suc 𝐴𝑦 → (𝐵 ∖ suc 𝐴) ≠ ∅))
2711, 26syl5 34 . . . . 5 (𝐵 ⊆ ω → ((∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦 ∧ suc 𝐴 ∈ ω) → (𝐵 ∖ suc 𝐴) ≠ ∅))
288, 27sylan2d 605 . . . 4 (𝐵 ⊆ ω → ((∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦𝐴𝐵) → (𝐵 ∖ suc 𝐴) ≠ ∅))
2928impl 456 . . 3 (((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → (𝐵 ∖ suc 𝐴) ≠ ∅)
30 onint 7774 . . 3 (((𝐵 ∖ suc 𝐴) ⊆ On ∧ (𝐵 ∖ suc 𝐴) ≠ ∅) → (𝐵 ∖ suc 𝐴) ∈ (𝐵 ∖ suc 𝐴))
315, 29, 30syl2anc 584 . 2 (((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → (𝐵 ∖ suc 𝐴) ∈ (𝐵 ∖ suc 𝐴))
3231eldifad 3959 1 (((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → (𝐵 ∖ suc 𝐴) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  cdif 3944  wss 3947  c0 4321   cint 4949  Ord word 6360  Oncon0 6361  suc csuc 6363  ωcom 7851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-om 7852
This theorem is referenced by:  unblem2  9292  unblem3  9293
  Copyright terms: Public domain W3C validator