MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem1 Structured version   Visualization version   GIF version

Theorem unblem1 9246
Description: Lemma for unbnn 9250. After removing the successor of an element from an unbounded set of natural numbers, the intersection of the result belongs to the original unbounded set. (Contributed by NM, 3-Dec-2003.)
Assertion
Ref Expression
unblem1 (((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → (𝐵 ∖ suc 𝐴) ∈ 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem unblem1
StepHypRef Expression
1 omsson 7849 . . . . . 6 ω ⊆ On
2 sstr 3958 . . . . . 6 ((𝐵 ⊆ ω ∧ ω ⊆ On) → 𝐵 ⊆ On)
31, 2mpan2 691 . . . . 5 (𝐵 ⊆ ω → 𝐵 ⊆ On)
43ssdifssd 4113 . . . 4 (𝐵 ⊆ ω → (𝐵 ∖ suc 𝐴) ⊆ On)
54ad2antrr 726 . . 3 (((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → (𝐵 ∖ suc 𝐴) ⊆ On)
6 ssel 3943 . . . . . 6 (𝐵 ⊆ ω → (𝐴𝐵𝐴 ∈ ω))
7 peano2b 7862 . . . . . 6 (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)
86, 7imbitrdi 251 . . . . 5 (𝐵 ⊆ ω → (𝐴𝐵 → suc 𝐴 ∈ ω))
9 eleq1 2817 . . . . . . . 8 (𝑥 = suc 𝐴 → (𝑥𝑦 ↔ suc 𝐴𝑦))
109rexbidv 3158 . . . . . . 7 (𝑥 = suc 𝐴 → (∃𝑦𝐵 𝑥𝑦 ↔ ∃𝑦𝐵 suc 𝐴𝑦))
1110rspccva 3590 . . . . . 6 ((∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦 ∧ suc 𝐴 ∈ ω) → ∃𝑦𝐵 suc 𝐴𝑦)
12 ssel 3943 . . . . . . . . . . 11 (𝐵 ⊆ ω → (𝑦𝐵𝑦 ∈ ω))
13 nnord 7853 . . . . . . . . . . . 12 (𝑦 ∈ ω → Ord 𝑦)
14 ordn2lp 6355 . . . . . . . . . . . . . 14 (Ord 𝑦 → ¬ (𝑦 ∈ suc 𝐴 ∧ suc 𝐴𝑦))
15 imnan 399 . . . . . . . . . . . . . 14 ((𝑦 ∈ suc 𝐴 → ¬ suc 𝐴𝑦) ↔ ¬ (𝑦 ∈ suc 𝐴 ∧ suc 𝐴𝑦))
1614, 15sylibr 234 . . . . . . . . . . . . 13 (Ord 𝑦 → (𝑦 ∈ suc 𝐴 → ¬ suc 𝐴𝑦))
1716con2d 134 . . . . . . . . . . . 12 (Ord 𝑦 → (suc 𝐴𝑦 → ¬ 𝑦 ∈ suc 𝐴))
1813, 17syl 17 . . . . . . . . . . 11 (𝑦 ∈ ω → (suc 𝐴𝑦 → ¬ 𝑦 ∈ suc 𝐴))
1912, 18syl6 35 . . . . . . . . . 10 (𝐵 ⊆ ω → (𝑦𝐵 → (suc 𝐴𝑦 → ¬ 𝑦 ∈ suc 𝐴)))
2019imdistand 570 . . . . . . . . 9 (𝐵 ⊆ ω → ((𝑦𝐵 ∧ suc 𝐴𝑦) → (𝑦𝐵 ∧ ¬ 𝑦 ∈ suc 𝐴)))
21 eldif 3927 . . . . . . . . . 10 (𝑦 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝑦𝐵 ∧ ¬ 𝑦 ∈ suc 𝐴))
22 ne0i 4307 . . . . . . . . . 10 (𝑦 ∈ (𝐵 ∖ suc 𝐴) → (𝐵 ∖ suc 𝐴) ≠ ∅)
2321, 22sylbir 235 . . . . . . . . 9 ((𝑦𝐵 ∧ ¬ 𝑦 ∈ suc 𝐴) → (𝐵 ∖ suc 𝐴) ≠ ∅)
2420, 23syl6 35 . . . . . . . 8 (𝐵 ⊆ ω → ((𝑦𝐵 ∧ suc 𝐴𝑦) → (𝐵 ∖ suc 𝐴) ≠ ∅))
2524expd 415 . . . . . . 7 (𝐵 ⊆ ω → (𝑦𝐵 → (suc 𝐴𝑦 → (𝐵 ∖ suc 𝐴) ≠ ∅)))
2625rexlimdv 3133 . . . . . 6 (𝐵 ⊆ ω → (∃𝑦𝐵 suc 𝐴𝑦 → (𝐵 ∖ suc 𝐴) ≠ ∅))
2711, 26syl5 34 . . . . 5 (𝐵 ⊆ ω → ((∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦 ∧ suc 𝐴 ∈ ω) → (𝐵 ∖ suc 𝐴) ≠ ∅))
288, 27sylan2d 605 . . . 4 (𝐵 ⊆ ω → ((∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦𝐴𝐵) → (𝐵 ∖ suc 𝐴) ≠ ∅))
2928impl 455 . . 3 (((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → (𝐵 ∖ suc 𝐴) ≠ ∅)
30 onint 7769 . . 3 (((𝐵 ∖ suc 𝐴) ⊆ On ∧ (𝐵 ∖ suc 𝐴) ≠ ∅) → (𝐵 ∖ suc 𝐴) ∈ (𝐵 ∖ suc 𝐴))
315, 29, 30syl2anc 584 . 2 (((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → (𝐵 ∖ suc 𝐴) ∈ (𝐵 ∖ suc 𝐴))
3231eldifad 3929 1 (((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → (𝐵 ∖ suc 𝐴) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  cdif 3914  wss 3917  c0 4299   cint 4913  Ord word 6334  Oncon0 6335  suc csuc 6337  ωcom 7845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-om 7846
This theorem is referenced by:  unblem2  9247  unblem3  9248
  Copyright terms: Public domain W3C validator