MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem1 Structured version   Visualization version   GIF version

Theorem unblem1 9215
Description: Lemma for unbnn 9219. After removing the successor of an element from an unbounded set of natural numbers, the intersection of the result belongs to the original unbounded set. (Contributed by NM, 3-Dec-2003.)
Assertion
Ref Expression
unblem1 (((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → (𝐵 ∖ suc 𝐴) ∈ 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem unblem1
StepHypRef Expression
1 omsson 7826 . . . . . 6 ω ⊆ On
2 sstr 3952 . . . . . 6 ((𝐵 ⊆ ω ∧ ω ⊆ On) → 𝐵 ⊆ On)
31, 2mpan2 691 . . . . 5 (𝐵 ⊆ ω → 𝐵 ⊆ On)
43ssdifssd 4106 . . . 4 (𝐵 ⊆ ω → (𝐵 ∖ suc 𝐴) ⊆ On)
54ad2antrr 726 . . 3 (((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → (𝐵 ∖ suc 𝐴) ⊆ On)
6 ssel 3937 . . . . . 6 (𝐵 ⊆ ω → (𝐴𝐵𝐴 ∈ ω))
7 peano2b 7839 . . . . . 6 (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)
86, 7imbitrdi 251 . . . . 5 (𝐵 ⊆ ω → (𝐴𝐵 → suc 𝐴 ∈ ω))
9 eleq1 2816 . . . . . . . 8 (𝑥 = suc 𝐴 → (𝑥𝑦 ↔ suc 𝐴𝑦))
109rexbidv 3157 . . . . . . 7 (𝑥 = suc 𝐴 → (∃𝑦𝐵 𝑥𝑦 ↔ ∃𝑦𝐵 suc 𝐴𝑦))
1110rspccva 3584 . . . . . 6 ((∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦 ∧ suc 𝐴 ∈ ω) → ∃𝑦𝐵 suc 𝐴𝑦)
12 ssel 3937 . . . . . . . . . . 11 (𝐵 ⊆ ω → (𝑦𝐵𝑦 ∈ ω))
13 nnord 7830 . . . . . . . . . . . 12 (𝑦 ∈ ω → Ord 𝑦)
14 ordn2lp 6340 . . . . . . . . . . . . . 14 (Ord 𝑦 → ¬ (𝑦 ∈ suc 𝐴 ∧ suc 𝐴𝑦))
15 imnan 399 . . . . . . . . . . . . . 14 ((𝑦 ∈ suc 𝐴 → ¬ suc 𝐴𝑦) ↔ ¬ (𝑦 ∈ suc 𝐴 ∧ suc 𝐴𝑦))
1614, 15sylibr 234 . . . . . . . . . . . . 13 (Ord 𝑦 → (𝑦 ∈ suc 𝐴 → ¬ suc 𝐴𝑦))
1716con2d 134 . . . . . . . . . . . 12 (Ord 𝑦 → (suc 𝐴𝑦 → ¬ 𝑦 ∈ suc 𝐴))
1813, 17syl 17 . . . . . . . . . . 11 (𝑦 ∈ ω → (suc 𝐴𝑦 → ¬ 𝑦 ∈ suc 𝐴))
1912, 18syl6 35 . . . . . . . . . 10 (𝐵 ⊆ ω → (𝑦𝐵 → (suc 𝐴𝑦 → ¬ 𝑦 ∈ suc 𝐴)))
2019imdistand 570 . . . . . . . . 9 (𝐵 ⊆ ω → ((𝑦𝐵 ∧ suc 𝐴𝑦) → (𝑦𝐵 ∧ ¬ 𝑦 ∈ suc 𝐴)))
21 eldif 3921 . . . . . . . . . 10 (𝑦 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝑦𝐵 ∧ ¬ 𝑦 ∈ suc 𝐴))
22 ne0i 4300 . . . . . . . . . 10 (𝑦 ∈ (𝐵 ∖ suc 𝐴) → (𝐵 ∖ suc 𝐴) ≠ ∅)
2321, 22sylbir 235 . . . . . . . . 9 ((𝑦𝐵 ∧ ¬ 𝑦 ∈ suc 𝐴) → (𝐵 ∖ suc 𝐴) ≠ ∅)
2420, 23syl6 35 . . . . . . . 8 (𝐵 ⊆ ω → ((𝑦𝐵 ∧ suc 𝐴𝑦) → (𝐵 ∖ suc 𝐴) ≠ ∅))
2524expd 415 . . . . . . 7 (𝐵 ⊆ ω → (𝑦𝐵 → (suc 𝐴𝑦 → (𝐵 ∖ suc 𝐴) ≠ ∅)))
2625rexlimdv 3132 . . . . . 6 (𝐵 ⊆ ω → (∃𝑦𝐵 suc 𝐴𝑦 → (𝐵 ∖ suc 𝐴) ≠ ∅))
2711, 26syl5 34 . . . . 5 (𝐵 ⊆ ω → ((∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦 ∧ suc 𝐴 ∈ ω) → (𝐵 ∖ suc 𝐴) ≠ ∅))
288, 27sylan2d 605 . . . 4 (𝐵 ⊆ ω → ((∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦𝐴𝐵) → (𝐵 ∖ suc 𝐴) ≠ ∅))
2928impl 455 . . 3 (((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → (𝐵 ∖ suc 𝐴) ≠ ∅)
30 onint 7746 . . 3 (((𝐵 ∖ suc 𝐴) ⊆ On ∧ (𝐵 ∖ suc 𝐴) ≠ ∅) → (𝐵 ∖ suc 𝐴) ∈ (𝐵 ∖ suc 𝐴))
315, 29, 30syl2anc 584 . 2 (((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → (𝐵 ∖ suc 𝐴) ∈ (𝐵 ∖ suc 𝐴))
3231eldifad 3923 1 (((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → (𝐵 ∖ suc 𝐴) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3908  wss 3911  c0 4292   cint 4906  Ord word 6319  Oncon0 6320  suc csuc 6322  ωcom 7822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-om 7823
This theorem is referenced by:  unblem2  9216  unblem3  9217
  Copyright terms: Public domain W3C validator