MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem1 Structured version   Visualization version   GIF version

Theorem unblem1 9295
Description: Lemma for unbnn 9299. After removing the successor of an element from an unbounded set of natural numbers, the intersection of the result belongs to the original unbounded set. (Contributed by NM, 3-Dec-2003.)
Assertion
Ref Expression
unblem1 (((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → (𝐵 ∖ suc 𝐴) ∈ 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem unblem1
StepHypRef Expression
1 omsson 7859 . . . . . 6 ω ⊆ On
2 sstr 3991 . . . . . 6 ((𝐵 ⊆ ω ∧ ω ⊆ On) → 𝐵 ⊆ On)
31, 2mpan2 690 . . . . 5 (𝐵 ⊆ ω → 𝐵 ⊆ On)
43ssdifssd 4143 . . . 4 (𝐵 ⊆ ω → (𝐵 ∖ suc 𝐴) ⊆ On)
54ad2antrr 725 . . 3 (((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → (𝐵 ∖ suc 𝐴) ⊆ On)
6 ssel 3976 . . . . . 6 (𝐵 ⊆ ω → (𝐴𝐵𝐴 ∈ ω))
7 peano2b 7872 . . . . . 6 (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)
86, 7imbitrdi 250 . . . . 5 (𝐵 ⊆ ω → (𝐴𝐵 → suc 𝐴 ∈ ω))
9 eleq1 2822 . . . . . . . 8 (𝑥 = suc 𝐴 → (𝑥𝑦 ↔ suc 𝐴𝑦))
109rexbidv 3179 . . . . . . 7 (𝑥 = suc 𝐴 → (∃𝑦𝐵 𝑥𝑦 ↔ ∃𝑦𝐵 suc 𝐴𝑦))
1110rspccva 3612 . . . . . 6 ((∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦 ∧ suc 𝐴 ∈ ω) → ∃𝑦𝐵 suc 𝐴𝑦)
12 ssel 3976 . . . . . . . . . . 11 (𝐵 ⊆ ω → (𝑦𝐵𝑦 ∈ ω))
13 nnord 7863 . . . . . . . . . . . 12 (𝑦 ∈ ω → Ord 𝑦)
14 ordn2lp 6385 . . . . . . . . . . . . . 14 (Ord 𝑦 → ¬ (𝑦 ∈ suc 𝐴 ∧ suc 𝐴𝑦))
15 imnan 401 . . . . . . . . . . . . . 14 ((𝑦 ∈ suc 𝐴 → ¬ suc 𝐴𝑦) ↔ ¬ (𝑦 ∈ suc 𝐴 ∧ suc 𝐴𝑦))
1614, 15sylibr 233 . . . . . . . . . . . . 13 (Ord 𝑦 → (𝑦 ∈ suc 𝐴 → ¬ suc 𝐴𝑦))
1716con2d 134 . . . . . . . . . . . 12 (Ord 𝑦 → (suc 𝐴𝑦 → ¬ 𝑦 ∈ suc 𝐴))
1813, 17syl 17 . . . . . . . . . . 11 (𝑦 ∈ ω → (suc 𝐴𝑦 → ¬ 𝑦 ∈ suc 𝐴))
1912, 18syl6 35 . . . . . . . . . 10 (𝐵 ⊆ ω → (𝑦𝐵 → (suc 𝐴𝑦 → ¬ 𝑦 ∈ suc 𝐴)))
2019imdistand 572 . . . . . . . . 9 (𝐵 ⊆ ω → ((𝑦𝐵 ∧ suc 𝐴𝑦) → (𝑦𝐵 ∧ ¬ 𝑦 ∈ suc 𝐴)))
21 eldif 3959 . . . . . . . . . 10 (𝑦 ∈ (𝐵 ∖ suc 𝐴) ↔ (𝑦𝐵 ∧ ¬ 𝑦 ∈ suc 𝐴))
22 ne0i 4335 . . . . . . . . . 10 (𝑦 ∈ (𝐵 ∖ suc 𝐴) → (𝐵 ∖ suc 𝐴) ≠ ∅)
2321, 22sylbir 234 . . . . . . . . 9 ((𝑦𝐵 ∧ ¬ 𝑦 ∈ suc 𝐴) → (𝐵 ∖ suc 𝐴) ≠ ∅)
2420, 23syl6 35 . . . . . . . 8 (𝐵 ⊆ ω → ((𝑦𝐵 ∧ suc 𝐴𝑦) → (𝐵 ∖ suc 𝐴) ≠ ∅))
2524expd 417 . . . . . . 7 (𝐵 ⊆ ω → (𝑦𝐵 → (suc 𝐴𝑦 → (𝐵 ∖ suc 𝐴) ≠ ∅)))
2625rexlimdv 3154 . . . . . 6 (𝐵 ⊆ ω → (∃𝑦𝐵 suc 𝐴𝑦 → (𝐵 ∖ suc 𝐴) ≠ ∅))
2711, 26syl5 34 . . . . 5 (𝐵 ⊆ ω → ((∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦 ∧ suc 𝐴 ∈ ω) → (𝐵 ∖ suc 𝐴) ≠ ∅))
288, 27sylan2d 606 . . . 4 (𝐵 ⊆ ω → ((∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦𝐴𝐵) → (𝐵 ∖ suc 𝐴) ≠ ∅))
2928impl 457 . . 3 (((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → (𝐵 ∖ suc 𝐴) ≠ ∅)
30 onint 7778 . . 3 (((𝐵 ∖ suc 𝐴) ⊆ On ∧ (𝐵 ∖ suc 𝐴) ≠ ∅) → (𝐵 ∖ suc 𝐴) ∈ (𝐵 ∖ suc 𝐴))
315, 29, 30syl2anc 585 . 2 (((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → (𝐵 ∖ suc 𝐴) ∈ (𝐵 ∖ suc 𝐴))
3231eldifad 3961 1 (((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → (𝐵 ∖ suc 𝐴) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  cdif 3946  wss 3949  c0 4323   cint 4951  Ord word 6364  Oncon0 6365  suc csuc 6367  ωcom 7855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-om 7856
This theorem is referenced by:  unblem2  9296  unblem3  9297
  Copyright terms: Public domain W3C validator