![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lnr2i | Structured version Visualization version GIF version |
Description: Given an ideal in a left-Noetherian ring, there is a finite subset which generates it. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
Ref | Expression |
---|---|
lnr2i.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
lnr2i.n | ⊢ 𝑁 = (RSpan‘𝑅) |
Ref | Expression |
---|---|
lnr2i | ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁‘𝑔)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | lnr2i.u | . . . . . 6 ⊢ 𝑈 = (LIdeal‘𝑅) | |
3 | lnr2i.n | . . . . . 6 ⊢ 𝑁 = (RSpan‘𝑅) | |
4 | 1, 2, 3 | islnr2 43103 | . . . . 5 ⊢ (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ ∀𝑖 ∈ 𝑈 ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁‘𝑔))) |
5 | 4 | simprbi 496 | . . . 4 ⊢ (𝑅 ∈ LNoeR → ∀𝑖 ∈ 𝑈 ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁‘𝑔)) |
6 | eqeq1 2739 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (𝑖 = (𝑁‘𝑔) ↔ 𝐼 = (𝑁‘𝑔))) | |
7 | 6 | rexbidv 3177 | . . . . 5 ⊢ (𝑖 = 𝐼 → (∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁‘𝑔) ↔ ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔))) |
8 | 7 | rspcva 3620 | . . . 4 ⊢ ((𝐼 ∈ 𝑈 ∧ ∀𝑖 ∈ 𝑈 ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁‘𝑔)) → ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔)) |
9 | 5, 8 | sylan2 593 | . . 3 ⊢ ((𝐼 ∈ 𝑈 ∧ 𝑅 ∈ LNoeR) → ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔)) |
10 | 9 | ancoms 458 | . 2 ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈) → ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔)) |
11 | lnrring 43101 | . . . . . . . . . . . 12 ⊢ (𝑅 ∈ LNoeR → 𝑅 ∈ Ring) | |
12 | 3, 1 | rspssid 21264 | . . . . . . . . . . . 12 ⊢ ((𝑅 ∈ Ring ∧ 𝑔 ⊆ (Base‘𝑅)) → 𝑔 ⊆ (𝑁‘𝑔)) |
13 | 11, 12 | sylan 580 | . . . . . . . . . . 11 ⊢ ((𝑅 ∈ LNoeR ∧ 𝑔 ⊆ (Base‘𝑅)) → 𝑔 ⊆ (𝑁‘𝑔)) |
14 | 13 | ex 412 | . . . . . . . . . 10 ⊢ (𝑅 ∈ LNoeR → (𝑔 ⊆ (Base‘𝑅) → 𝑔 ⊆ (𝑁‘𝑔))) |
15 | vex 3482 | . . . . . . . . . . 11 ⊢ 𝑔 ∈ V | |
16 | 15 | elpw 4609 | . . . . . . . . . 10 ⊢ (𝑔 ∈ 𝒫 (Base‘𝑅) ↔ 𝑔 ⊆ (Base‘𝑅)) |
17 | 15 | elpw 4609 | . . . . . . . . . 10 ⊢ (𝑔 ∈ 𝒫 (𝑁‘𝑔) ↔ 𝑔 ⊆ (𝑁‘𝑔)) |
18 | 14, 16, 17 | 3imtr4g 296 | . . . . . . . . 9 ⊢ (𝑅 ∈ LNoeR → (𝑔 ∈ 𝒫 (Base‘𝑅) → 𝑔 ∈ 𝒫 (𝑁‘𝑔))) |
19 | 18 | anim1d 611 | . . . . . . . 8 ⊢ (𝑅 ∈ LNoeR → ((𝑔 ∈ 𝒫 (Base‘𝑅) ∧ 𝑔 ∈ Fin) → (𝑔 ∈ 𝒫 (𝑁‘𝑔) ∧ 𝑔 ∈ Fin))) |
20 | elin 3979 | . . . . . . . 8 ⊢ (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) ↔ (𝑔 ∈ 𝒫 (Base‘𝑅) ∧ 𝑔 ∈ Fin)) | |
21 | elin 3979 | . . . . . . . 8 ⊢ (𝑔 ∈ (𝒫 (𝑁‘𝑔) ∩ Fin) ↔ (𝑔 ∈ 𝒫 (𝑁‘𝑔) ∧ 𝑔 ∈ Fin)) | |
22 | 19, 20, 21 | 3imtr4g 296 | . . . . . . 7 ⊢ (𝑅 ∈ LNoeR → (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 (𝑁‘𝑔) ∩ Fin))) |
23 | pweq 4619 | . . . . . . . . . 10 ⊢ (𝐼 = (𝑁‘𝑔) → 𝒫 𝐼 = 𝒫 (𝑁‘𝑔)) | |
24 | 23 | ineq1d 4227 | . . . . . . . . 9 ⊢ (𝐼 = (𝑁‘𝑔) → (𝒫 𝐼 ∩ Fin) = (𝒫 (𝑁‘𝑔) ∩ Fin)) |
25 | 24 | eleq2d 2825 | . . . . . . . 8 ⊢ (𝐼 = (𝑁‘𝑔) → (𝑔 ∈ (𝒫 𝐼 ∩ Fin) ↔ 𝑔 ∈ (𝒫 (𝑁‘𝑔) ∩ Fin))) |
26 | 25 | imbi2d 340 | . . . . . . 7 ⊢ (𝐼 = (𝑁‘𝑔) → ((𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 𝐼 ∩ Fin)) ↔ (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 (𝑁‘𝑔) ∩ Fin)))) |
27 | 22, 26 | syl5ibrcom 247 | . . . . . 6 ⊢ (𝑅 ∈ LNoeR → (𝐼 = (𝑁‘𝑔) → (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 𝐼 ∩ Fin)))) |
28 | 27 | imdistand 570 | . . . . 5 ⊢ (𝑅 ∈ LNoeR → ((𝐼 = (𝑁‘𝑔) ∧ 𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)) → (𝐼 = (𝑁‘𝑔) ∧ 𝑔 ∈ (𝒫 𝐼 ∩ Fin)))) |
29 | ancom 460 | . . . . 5 ⊢ ((𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) ∧ 𝐼 = (𝑁‘𝑔)) ↔ (𝐼 = (𝑁‘𝑔) ∧ 𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin))) | |
30 | ancom 460 | . . . . 5 ⊢ ((𝑔 ∈ (𝒫 𝐼 ∩ Fin) ∧ 𝐼 = (𝑁‘𝑔)) ↔ (𝐼 = (𝑁‘𝑔) ∧ 𝑔 ∈ (𝒫 𝐼 ∩ Fin))) | |
31 | 28, 29, 30 | 3imtr4g 296 | . . . 4 ⊢ (𝑅 ∈ LNoeR → ((𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) ∧ 𝐼 = (𝑁‘𝑔)) → (𝑔 ∈ (𝒫 𝐼 ∩ Fin) ∧ 𝐼 = (𝑁‘𝑔)))) |
32 | 31 | reximdv2 3162 | . . 3 ⊢ (𝑅 ∈ LNoeR → (∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁‘𝑔))) |
33 | 32 | adantr 480 | . 2 ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈) → (∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁‘𝑔))) |
34 | 10, 33 | mpd 15 | 1 ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁‘𝑔)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ∩ cin 3962 ⊆ wss 3963 𝒫 cpw 4605 ‘cfv 6563 Fincfn 8984 Basecbs 17245 Ringcrg 20251 LIdealclidl 21234 RSpancrsp 21235 LNoeRclnr 43098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-mgp 20153 df-ur 20200 df-ring 20253 df-subrg 20587 df-lmod 20877 df-lss 20948 df-lsp 20988 df-sra 21190 df-rgmod 21191 df-lidl 21236 df-rsp 21237 df-lfig 43057 df-lnm 43065 df-lnr 43099 |
This theorem is referenced by: hbtlem6 43118 |
Copyright terms: Public domain | W3C validator |