Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lnr2i | Structured version Visualization version GIF version |
Description: Given an ideal in a left-Noetherian ring, there is a finite subset which generates it. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
Ref | Expression |
---|---|
lnr2i.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
lnr2i.n | ⊢ 𝑁 = (RSpan‘𝑅) |
Ref | Expression |
---|---|
lnr2i | ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁‘𝑔)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | lnr2i.u | . . . . . 6 ⊢ 𝑈 = (LIdeal‘𝑅) | |
3 | lnr2i.n | . . . . . 6 ⊢ 𝑁 = (RSpan‘𝑅) | |
4 | 1, 2, 3 | islnr2 40939 | . . . . 5 ⊢ (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ ∀𝑖 ∈ 𝑈 ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁‘𝑔))) |
5 | 4 | simprbi 497 | . . . 4 ⊢ (𝑅 ∈ LNoeR → ∀𝑖 ∈ 𝑈 ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁‘𝑔)) |
6 | eqeq1 2742 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (𝑖 = (𝑁‘𝑔) ↔ 𝐼 = (𝑁‘𝑔))) | |
7 | 6 | rexbidv 3226 | . . . . 5 ⊢ (𝑖 = 𝐼 → (∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁‘𝑔) ↔ ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔))) |
8 | 7 | rspcva 3559 | . . . 4 ⊢ ((𝐼 ∈ 𝑈 ∧ ∀𝑖 ∈ 𝑈 ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁‘𝑔)) → ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔)) |
9 | 5, 8 | sylan2 593 | . . 3 ⊢ ((𝐼 ∈ 𝑈 ∧ 𝑅 ∈ LNoeR) → ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔)) |
10 | 9 | ancoms 459 | . 2 ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈) → ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔)) |
11 | lnrring 40937 | . . . . . . . . . . . 12 ⊢ (𝑅 ∈ LNoeR → 𝑅 ∈ Ring) | |
12 | 3, 1 | rspssid 20494 | . . . . . . . . . . . 12 ⊢ ((𝑅 ∈ Ring ∧ 𝑔 ⊆ (Base‘𝑅)) → 𝑔 ⊆ (𝑁‘𝑔)) |
13 | 11, 12 | sylan 580 | . . . . . . . . . . 11 ⊢ ((𝑅 ∈ LNoeR ∧ 𝑔 ⊆ (Base‘𝑅)) → 𝑔 ⊆ (𝑁‘𝑔)) |
14 | 13 | ex 413 | . . . . . . . . . 10 ⊢ (𝑅 ∈ LNoeR → (𝑔 ⊆ (Base‘𝑅) → 𝑔 ⊆ (𝑁‘𝑔))) |
15 | vex 3436 | . . . . . . . . . . 11 ⊢ 𝑔 ∈ V | |
16 | 15 | elpw 4537 | . . . . . . . . . 10 ⊢ (𝑔 ∈ 𝒫 (Base‘𝑅) ↔ 𝑔 ⊆ (Base‘𝑅)) |
17 | 15 | elpw 4537 | . . . . . . . . . 10 ⊢ (𝑔 ∈ 𝒫 (𝑁‘𝑔) ↔ 𝑔 ⊆ (𝑁‘𝑔)) |
18 | 14, 16, 17 | 3imtr4g 296 | . . . . . . . . 9 ⊢ (𝑅 ∈ LNoeR → (𝑔 ∈ 𝒫 (Base‘𝑅) → 𝑔 ∈ 𝒫 (𝑁‘𝑔))) |
19 | 18 | anim1d 611 | . . . . . . . 8 ⊢ (𝑅 ∈ LNoeR → ((𝑔 ∈ 𝒫 (Base‘𝑅) ∧ 𝑔 ∈ Fin) → (𝑔 ∈ 𝒫 (𝑁‘𝑔) ∧ 𝑔 ∈ Fin))) |
20 | elin 3903 | . . . . . . . 8 ⊢ (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) ↔ (𝑔 ∈ 𝒫 (Base‘𝑅) ∧ 𝑔 ∈ Fin)) | |
21 | elin 3903 | . . . . . . . 8 ⊢ (𝑔 ∈ (𝒫 (𝑁‘𝑔) ∩ Fin) ↔ (𝑔 ∈ 𝒫 (𝑁‘𝑔) ∧ 𝑔 ∈ Fin)) | |
22 | 19, 20, 21 | 3imtr4g 296 | . . . . . . 7 ⊢ (𝑅 ∈ LNoeR → (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 (𝑁‘𝑔) ∩ Fin))) |
23 | pweq 4549 | . . . . . . . . . 10 ⊢ (𝐼 = (𝑁‘𝑔) → 𝒫 𝐼 = 𝒫 (𝑁‘𝑔)) | |
24 | 23 | ineq1d 4145 | . . . . . . . . 9 ⊢ (𝐼 = (𝑁‘𝑔) → (𝒫 𝐼 ∩ Fin) = (𝒫 (𝑁‘𝑔) ∩ Fin)) |
25 | 24 | eleq2d 2824 | . . . . . . . 8 ⊢ (𝐼 = (𝑁‘𝑔) → (𝑔 ∈ (𝒫 𝐼 ∩ Fin) ↔ 𝑔 ∈ (𝒫 (𝑁‘𝑔) ∩ Fin))) |
26 | 25 | imbi2d 341 | . . . . . . 7 ⊢ (𝐼 = (𝑁‘𝑔) → ((𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 𝐼 ∩ Fin)) ↔ (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 (𝑁‘𝑔) ∩ Fin)))) |
27 | 22, 26 | syl5ibrcom 246 | . . . . . 6 ⊢ (𝑅 ∈ LNoeR → (𝐼 = (𝑁‘𝑔) → (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 𝐼 ∩ Fin)))) |
28 | 27 | imdistand 571 | . . . . 5 ⊢ (𝑅 ∈ LNoeR → ((𝐼 = (𝑁‘𝑔) ∧ 𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)) → (𝐼 = (𝑁‘𝑔) ∧ 𝑔 ∈ (𝒫 𝐼 ∩ Fin)))) |
29 | ancom 461 | . . . . 5 ⊢ ((𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) ∧ 𝐼 = (𝑁‘𝑔)) ↔ (𝐼 = (𝑁‘𝑔) ∧ 𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin))) | |
30 | ancom 461 | . . . . 5 ⊢ ((𝑔 ∈ (𝒫 𝐼 ∩ Fin) ∧ 𝐼 = (𝑁‘𝑔)) ↔ (𝐼 = (𝑁‘𝑔) ∧ 𝑔 ∈ (𝒫 𝐼 ∩ Fin))) | |
31 | 28, 29, 30 | 3imtr4g 296 | . . . 4 ⊢ (𝑅 ∈ LNoeR → ((𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) ∧ 𝐼 = (𝑁‘𝑔)) → (𝑔 ∈ (𝒫 𝐼 ∩ Fin) ∧ 𝐼 = (𝑁‘𝑔)))) |
32 | 31 | reximdv2 3199 | . . 3 ⊢ (𝑅 ∈ LNoeR → (∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁‘𝑔))) |
33 | 32 | adantr 481 | . 2 ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈) → (∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁‘𝑔))) |
34 | 10, 33 | mpd 15 | 1 ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁‘𝑔)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 ‘cfv 6433 Fincfn 8733 Basecbs 16912 Ringcrg 19783 LIdealclidl 20432 RSpancrsp 20433 LNoeRclnr 40934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-mgp 19721 df-ur 19738 df-ring 19785 df-subrg 20022 df-lmod 20125 df-lss 20194 df-lsp 20234 df-sra 20434 df-rgmod 20435 df-lidl 20436 df-rsp 20437 df-lfig 40893 df-lnm 40901 df-lnr 40935 |
This theorem is referenced by: hbtlem6 40954 |
Copyright terms: Public domain | W3C validator |