Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lnr2i | Structured version Visualization version GIF version |
Description: Given an ideal in a left-Noetherian ring, there is a finite subset which generates it. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
Ref | Expression |
---|---|
lnr2i.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
lnr2i.n | ⊢ 𝑁 = (RSpan‘𝑅) |
Ref | Expression |
---|---|
lnr2i | ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁‘𝑔)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | lnr2i.u | . . . . . 6 ⊢ 𝑈 = (LIdeal‘𝑅) | |
3 | lnr2i.n | . . . . . 6 ⊢ 𝑁 = (RSpan‘𝑅) | |
4 | 1, 2, 3 | islnr2 40642 | . . . . 5 ⊢ (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ ∀𝑖 ∈ 𝑈 ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁‘𝑔))) |
5 | 4 | simprbi 500 | . . . 4 ⊢ (𝑅 ∈ LNoeR → ∀𝑖 ∈ 𝑈 ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁‘𝑔)) |
6 | eqeq1 2741 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (𝑖 = (𝑁‘𝑔) ↔ 𝐼 = (𝑁‘𝑔))) | |
7 | 6 | rexbidv 3216 | . . . . 5 ⊢ (𝑖 = 𝐼 → (∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁‘𝑔) ↔ ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔))) |
8 | 7 | rspcva 3535 | . . . 4 ⊢ ((𝐼 ∈ 𝑈 ∧ ∀𝑖 ∈ 𝑈 ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁‘𝑔)) → ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔)) |
9 | 5, 8 | sylan2 596 | . . 3 ⊢ ((𝐼 ∈ 𝑈 ∧ 𝑅 ∈ LNoeR) → ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔)) |
10 | 9 | ancoms 462 | . 2 ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈) → ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔)) |
11 | lnrring 40640 | . . . . . . . . . . . 12 ⊢ (𝑅 ∈ LNoeR → 𝑅 ∈ Ring) | |
12 | 3, 1 | rspssid 20261 | . . . . . . . . . . . 12 ⊢ ((𝑅 ∈ Ring ∧ 𝑔 ⊆ (Base‘𝑅)) → 𝑔 ⊆ (𝑁‘𝑔)) |
13 | 11, 12 | sylan 583 | . . . . . . . . . . 11 ⊢ ((𝑅 ∈ LNoeR ∧ 𝑔 ⊆ (Base‘𝑅)) → 𝑔 ⊆ (𝑁‘𝑔)) |
14 | 13 | ex 416 | . . . . . . . . . 10 ⊢ (𝑅 ∈ LNoeR → (𝑔 ⊆ (Base‘𝑅) → 𝑔 ⊆ (𝑁‘𝑔))) |
15 | vex 3412 | . . . . . . . . . . 11 ⊢ 𝑔 ∈ V | |
16 | 15 | elpw 4517 | . . . . . . . . . 10 ⊢ (𝑔 ∈ 𝒫 (Base‘𝑅) ↔ 𝑔 ⊆ (Base‘𝑅)) |
17 | 15 | elpw 4517 | . . . . . . . . . 10 ⊢ (𝑔 ∈ 𝒫 (𝑁‘𝑔) ↔ 𝑔 ⊆ (𝑁‘𝑔)) |
18 | 14, 16, 17 | 3imtr4g 299 | . . . . . . . . 9 ⊢ (𝑅 ∈ LNoeR → (𝑔 ∈ 𝒫 (Base‘𝑅) → 𝑔 ∈ 𝒫 (𝑁‘𝑔))) |
19 | 18 | anim1d 614 | . . . . . . . 8 ⊢ (𝑅 ∈ LNoeR → ((𝑔 ∈ 𝒫 (Base‘𝑅) ∧ 𝑔 ∈ Fin) → (𝑔 ∈ 𝒫 (𝑁‘𝑔) ∧ 𝑔 ∈ Fin))) |
20 | elin 3882 | . . . . . . . 8 ⊢ (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) ↔ (𝑔 ∈ 𝒫 (Base‘𝑅) ∧ 𝑔 ∈ Fin)) | |
21 | elin 3882 | . . . . . . . 8 ⊢ (𝑔 ∈ (𝒫 (𝑁‘𝑔) ∩ Fin) ↔ (𝑔 ∈ 𝒫 (𝑁‘𝑔) ∧ 𝑔 ∈ Fin)) | |
22 | 19, 20, 21 | 3imtr4g 299 | . . . . . . 7 ⊢ (𝑅 ∈ LNoeR → (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 (𝑁‘𝑔) ∩ Fin))) |
23 | pweq 4529 | . . . . . . . . . 10 ⊢ (𝐼 = (𝑁‘𝑔) → 𝒫 𝐼 = 𝒫 (𝑁‘𝑔)) | |
24 | 23 | ineq1d 4126 | . . . . . . . . 9 ⊢ (𝐼 = (𝑁‘𝑔) → (𝒫 𝐼 ∩ Fin) = (𝒫 (𝑁‘𝑔) ∩ Fin)) |
25 | 24 | eleq2d 2823 | . . . . . . . 8 ⊢ (𝐼 = (𝑁‘𝑔) → (𝑔 ∈ (𝒫 𝐼 ∩ Fin) ↔ 𝑔 ∈ (𝒫 (𝑁‘𝑔) ∩ Fin))) |
26 | 25 | imbi2d 344 | . . . . . . 7 ⊢ (𝐼 = (𝑁‘𝑔) → ((𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 𝐼 ∩ Fin)) ↔ (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 (𝑁‘𝑔) ∩ Fin)))) |
27 | 22, 26 | syl5ibrcom 250 | . . . . . 6 ⊢ (𝑅 ∈ LNoeR → (𝐼 = (𝑁‘𝑔) → (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 𝐼 ∩ Fin)))) |
28 | 27 | imdistand 574 | . . . . 5 ⊢ (𝑅 ∈ LNoeR → ((𝐼 = (𝑁‘𝑔) ∧ 𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)) → (𝐼 = (𝑁‘𝑔) ∧ 𝑔 ∈ (𝒫 𝐼 ∩ Fin)))) |
29 | ancom 464 | . . . . 5 ⊢ ((𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) ∧ 𝐼 = (𝑁‘𝑔)) ↔ (𝐼 = (𝑁‘𝑔) ∧ 𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin))) | |
30 | ancom 464 | . . . . 5 ⊢ ((𝑔 ∈ (𝒫 𝐼 ∩ Fin) ∧ 𝐼 = (𝑁‘𝑔)) ↔ (𝐼 = (𝑁‘𝑔) ∧ 𝑔 ∈ (𝒫 𝐼 ∩ Fin))) | |
31 | 28, 29, 30 | 3imtr4g 299 | . . . 4 ⊢ (𝑅 ∈ LNoeR → ((𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) ∧ 𝐼 = (𝑁‘𝑔)) → (𝑔 ∈ (𝒫 𝐼 ∩ Fin) ∧ 𝐼 = (𝑁‘𝑔)))) |
32 | 31 | reximdv2 3190 | . . 3 ⊢ (𝑅 ∈ LNoeR → (∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁‘𝑔))) |
33 | 32 | adantr 484 | . 2 ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈) → (∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁‘𝑔))) |
34 | 10, 33 | mpd 15 | 1 ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁‘𝑔)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ∃wrex 3062 ∩ cin 3865 ⊆ wss 3866 𝒫 cpw 4513 ‘cfv 6380 Fincfn 8626 Basecbs 16760 Ringcrg 19562 LIdealclidl 20207 RSpancrsp 20208 LNoeRclnr 40637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-sca 16818 df-vsca 16819 df-ip 16820 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-minusg 18369 df-sbg 18370 df-subg 18540 df-mgp 19505 df-ur 19517 df-ring 19564 df-subrg 19798 df-lmod 19901 df-lss 19969 df-lsp 20009 df-sra 20209 df-rgmod 20210 df-lidl 20211 df-rsp 20212 df-lfig 40596 df-lnm 40604 df-lnr 40638 |
This theorem is referenced by: hbtlem6 40657 |
Copyright terms: Public domain | W3C validator |