![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lnr2i | Structured version Visualization version GIF version |
Description: Given an ideal in a left-Noetherian ring, there is a finite subset which generates it. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
Ref | Expression |
---|---|
lnr2i.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
lnr2i.n | ⊢ 𝑁 = (RSpan‘𝑅) |
Ref | Expression |
---|---|
lnr2i | ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁‘𝑔)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2793 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | lnr2i.u | . . . . . 6 ⊢ 𝑈 = (LIdeal‘𝑅) | |
3 | lnr2i.n | . . . . . 6 ⊢ 𝑁 = (RSpan‘𝑅) | |
4 | 1, 2, 3 | islnr2 39150 | . . . . 5 ⊢ (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ ∀𝑖 ∈ 𝑈 ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁‘𝑔))) |
5 | 4 | simprbi 497 | . . . 4 ⊢ (𝑅 ∈ LNoeR → ∀𝑖 ∈ 𝑈 ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁‘𝑔)) |
6 | eqeq1 2797 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (𝑖 = (𝑁‘𝑔) ↔ 𝐼 = (𝑁‘𝑔))) | |
7 | 6 | rexbidv 3257 | . . . . 5 ⊢ (𝑖 = 𝐼 → (∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁‘𝑔) ↔ ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔))) |
8 | 7 | rspcva 3552 | . . . 4 ⊢ ((𝐼 ∈ 𝑈 ∧ ∀𝑖 ∈ 𝑈 ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁‘𝑔)) → ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔)) |
9 | 5, 8 | sylan2 592 | . . 3 ⊢ ((𝐼 ∈ 𝑈 ∧ 𝑅 ∈ LNoeR) → ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔)) |
10 | 9 | ancoms 459 | . 2 ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈) → ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔)) |
11 | lnrring 39148 | . . . . . . . . . . . 12 ⊢ (𝑅 ∈ LNoeR → 𝑅 ∈ Ring) | |
12 | 3, 1 | rspssid 19673 | . . . . . . . . . . . 12 ⊢ ((𝑅 ∈ Ring ∧ 𝑔 ⊆ (Base‘𝑅)) → 𝑔 ⊆ (𝑁‘𝑔)) |
13 | 11, 12 | sylan 580 | . . . . . . . . . . 11 ⊢ ((𝑅 ∈ LNoeR ∧ 𝑔 ⊆ (Base‘𝑅)) → 𝑔 ⊆ (𝑁‘𝑔)) |
14 | 13 | ex 413 | . . . . . . . . . 10 ⊢ (𝑅 ∈ LNoeR → (𝑔 ⊆ (Base‘𝑅) → 𝑔 ⊆ (𝑁‘𝑔))) |
15 | vex 3435 | . . . . . . . . . . 11 ⊢ 𝑔 ∈ V | |
16 | 15 | elpw 4453 | . . . . . . . . . 10 ⊢ (𝑔 ∈ 𝒫 (Base‘𝑅) ↔ 𝑔 ⊆ (Base‘𝑅)) |
17 | 15 | elpw 4453 | . . . . . . . . . 10 ⊢ (𝑔 ∈ 𝒫 (𝑁‘𝑔) ↔ 𝑔 ⊆ (𝑁‘𝑔)) |
18 | 14, 16, 17 | 3imtr4g 297 | . . . . . . . . 9 ⊢ (𝑅 ∈ LNoeR → (𝑔 ∈ 𝒫 (Base‘𝑅) → 𝑔 ∈ 𝒫 (𝑁‘𝑔))) |
19 | 18 | anim1d 610 | . . . . . . . 8 ⊢ (𝑅 ∈ LNoeR → ((𝑔 ∈ 𝒫 (Base‘𝑅) ∧ 𝑔 ∈ Fin) → (𝑔 ∈ 𝒫 (𝑁‘𝑔) ∧ 𝑔 ∈ Fin))) |
20 | elin 4085 | . . . . . . . 8 ⊢ (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) ↔ (𝑔 ∈ 𝒫 (Base‘𝑅) ∧ 𝑔 ∈ Fin)) | |
21 | elin 4085 | . . . . . . . 8 ⊢ (𝑔 ∈ (𝒫 (𝑁‘𝑔) ∩ Fin) ↔ (𝑔 ∈ 𝒫 (𝑁‘𝑔) ∧ 𝑔 ∈ Fin)) | |
22 | 19, 20, 21 | 3imtr4g 297 | . . . . . . 7 ⊢ (𝑅 ∈ LNoeR → (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 (𝑁‘𝑔) ∩ Fin))) |
23 | pweq 4450 | . . . . . . . . . 10 ⊢ (𝐼 = (𝑁‘𝑔) → 𝒫 𝐼 = 𝒫 (𝑁‘𝑔)) | |
24 | 23 | ineq1d 4103 | . . . . . . . . 9 ⊢ (𝐼 = (𝑁‘𝑔) → (𝒫 𝐼 ∩ Fin) = (𝒫 (𝑁‘𝑔) ∩ Fin)) |
25 | 24 | eleq2d 2866 | . . . . . . . 8 ⊢ (𝐼 = (𝑁‘𝑔) → (𝑔 ∈ (𝒫 𝐼 ∩ Fin) ↔ 𝑔 ∈ (𝒫 (𝑁‘𝑔) ∩ Fin))) |
26 | 25 | imbi2d 342 | . . . . . . 7 ⊢ (𝐼 = (𝑁‘𝑔) → ((𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 𝐼 ∩ Fin)) ↔ (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 (𝑁‘𝑔) ∩ Fin)))) |
27 | 22, 26 | syl5ibrcom 248 | . . . . . 6 ⊢ (𝑅 ∈ LNoeR → (𝐼 = (𝑁‘𝑔) → (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 𝐼 ∩ Fin)))) |
28 | 27 | imdistand 571 | . . . . 5 ⊢ (𝑅 ∈ LNoeR → ((𝐼 = (𝑁‘𝑔) ∧ 𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)) → (𝐼 = (𝑁‘𝑔) ∧ 𝑔 ∈ (𝒫 𝐼 ∩ Fin)))) |
29 | ancom 461 | . . . . 5 ⊢ ((𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) ∧ 𝐼 = (𝑁‘𝑔)) ↔ (𝐼 = (𝑁‘𝑔) ∧ 𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin))) | |
30 | ancom 461 | . . . . 5 ⊢ ((𝑔 ∈ (𝒫 𝐼 ∩ Fin) ∧ 𝐼 = (𝑁‘𝑔)) ↔ (𝐼 = (𝑁‘𝑔) ∧ 𝑔 ∈ (𝒫 𝐼 ∩ Fin))) | |
31 | 28, 29, 30 | 3imtr4g 297 | . . . 4 ⊢ (𝑅 ∈ LNoeR → ((𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) ∧ 𝐼 = (𝑁‘𝑔)) → (𝑔 ∈ (𝒫 𝐼 ∩ Fin) ∧ 𝐼 = (𝑁‘𝑔)))) |
32 | 31 | reximdv2 3231 | . . 3 ⊢ (𝑅 ∈ LNoeR → (∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁‘𝑔))) |
33 | 32 | adantr 481 | . 2 ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈) → (∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁‘𝑔))) |
34 | 10, 33 | mpd 15 | 1 ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁‘𝑔)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1520 ∈ wcel 2079 ∀wral 3103 ∃wrex 3104 ∩ cin 3853 ⊆ wss 3854 𝒫 cpw 4447 ‘cfv 6217 Fincfn 8347 Basecbs 16300 Ringcrg 18975 LIdealclidl 19620 RSpancrsp 19621 LNoeRclnr 39145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-rep 5075 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-cnex 10428 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 ax-pre-mulgt0 10449 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rmo 3111 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-int 4777 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-om 7428 df-1st 7536 df-2nd 7537 df-wrecs 7789 df-recs 7851 df-rdg 7889 df-er 8130 df-en 8348 df-dom 8349 df-sdom 8350 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 df-sub 10708 df-neg 10709 df-nn 11476 df-2 11537 df-3 11538 df-4 11539 df-5 11540 df-6 11541 df-7 11542 df-8 11543 df-ndx 16303 df-slot 16304 df-base 16306 df-sets 16307 df-ress 16308 df-plusg 16395 df-mulr 16396 df-sca 16398 df-vsca 16399 df-ip 16400 df-0g 16532 df-mgm 17669 df-sgrp 17711 df-mnd 17722 df-grp 17852 df-minusg 17853 df-sbg 17854 df-subg 18018 df-mgp 18918 df-ur 18930 df-ring 18977 df-subrg 19211 df-lmod 19314 df-lss 19382 df-lsp 19422 df-sra 19622 df-rgmod 19623 df-lidl 19624 df-rsp 19625 df-lfig 39104 df-lnm 39112 df-lnr 39146 |
This theorem is referenced by: hbtlem6 39165 |
Copyright terms: Public domain | W3C validator |