| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lnr2i | Structured version Visualization version GIF version | ||
| Description: Given an ideal in a left-Noetherian ring, there is a finite subset which generates it. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| Ref | Expression |
|---|---|
| lnr2i.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
| lnr2i.n | ⊢ 𝑁 = (RSpan‘𝑅) |
| Ref | Expression |
|---|---|
| lnr2i | ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁‘𝑔)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | lnr2i.u | . . . . . 6 ⊢ 𝑈 = (LIdeal‘𝑅) | |
| 3 | lnr2i.n | . . . . . 6 ⊢ 𝑁 = (RSpan‘𝑅) | |
| 4 | 1, 2, 3 | islnr2 43076 | . . . . 5 ⊢ (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ ∀𝑖 ∈ 𝑈 ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁‘𝑔))) |
| 5 | 4 | simprbi 496 | . . . 4 ⊢ (𝑅 ∈ LNoeR → ∀𝑖 ∈ 𝑈 ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁‘𝑔)) |
| 6 | eqeq1 2733 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (𝑖 = (𝑁‘𝑔) ↔ 𝐼 = (𝑁‘𝑔))) | |
| 7 | 6 | rexbidv 3157 | . . . . 5 ⊢ (𝑖 = 𝐼 → (∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁‘𝑔) ↔ ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔))) |
| 8 | 7 | rspcva 3583 | . . . 4 ⊢ ((𝐼 ∈ 𝑈 ∧ ∀𝑖 ∈ 𝑈 ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁‘𝑔)) → ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔)) |
| 9 | 5, 8 | sylan2 593 | . . 3 ⊢ ((𝐼 ∈ 𝑈 ∧ 𝑅 ∈ LNoeR) → ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔)) |
| 10 | 9 | ancoms 458 | . 2 ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈) → ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔)) |
| 11 | lnrring 43074 | . . . . . . . . . . . 12 ⊢ (𝑅 ∈ LNoeR → 𝑅 ∈ Ring) | |
| 12 | 3, 1 | rspssid 21122 | . . . . . . . . . . . 12 ⊢ ((𝑅 ∈ Ring ∧ 𝑔 ⊆ (Base‘𝑅)) → 𝑔 ⊆ (𝑁‘𝑔)) |
| 13 | 11, 12 | sylan 580 | . . . . . . . . . . 11 ⊢ ((𝑅 ∈ LNoeR ∧ 𝑔 ⊆ (Base‘𝑅)) → 𝑔 ⊆ (𝑁‘𝑔)) |
| 14 | 13 | ex 412 | . . . . . . . . . 10 ⊢ (𝑅 ∈ LNoeR → (𝑔 ⊆ (Base‘𝑅) → 𝑔 ⊆ (𝑁‘𝑔))) |
| 15 | vex 3448 | . . . . . . . . . . 11 ⊢ 𝑔 ∈ V | |
| 16 | 15 | elpw 4563 | . . . . . . . . . 10 ⊢ (𝑔 ∈ 𝒫 (Base‘𝑅) ↔ 𝑔 ⊆ (Base‘𝑅)) |
| 17 | 15 | elpw 4563 | . . . . . . . . . 10 ⊢ (𝑔 ∈ 𝒫 (𝑁‘𝑔) ↔ 𝑔 ⊆ (𝑁‘𝑔)) |
| 18 | 14, 16, 17 | 3imtr4g 296 | . . . . . . . . 9 ⊢ (𝑅 ∈ LNoeR → (𝑔 ∈ 𝒫 (Base‘𝑅) → 𝑔 ∈ 𝒫 (𝑁‘𝑔))) |
| 19 | 18 | anim1d 611 | . . . . . . . 8 ⊢ (𝑅 ∈ LNoeR → ((𝑔 ∈ 𝒫 (Base‘𝑅) ∧ 𝑔 ∈ Fin) → (𝑔 ∈ 𝒫 (𝑁‘𝑔) ∧ 𝑔 ∈ Fin))) |
| 20 | elin 3927 | . . . . . . . 8 ⊢ (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) ↔ (𝑔 ∈ 𝒫 (Base‘𝑅) ∧ 𝑔 ∈ Fin)) | |
| 21 | elin 3927 | . . . . . . . 8 ⊢ (𝑔 ∈ (𝒫 (𝑁‘𝑔) ∩ Fin) ↔ (𝑔 ∈ 𝒫 (𝑁‘𝑔) ∧ 𝑔 ∈ Fin)) | |
| 22 | 19, 20, 21 | 3imtr4g 296 | . . . . . . 7 ⊢ (𝑅 ∈ LNoeR → (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 (𝑁‘𝑔) ∩ Fin))) |
| 23 | pweq 4573 | . . . . . . . . . 10 ⊢ (𝐼 = (𝑁‘𝑔) → 𝒫 𝐼 = 𝒫 (𝑁‘𝑔)) | |
| 24 | 23 | ineq1d 4178 | . . . . . . . . 9 ⊢ (𝐼 = (𝑁‘𝑔) → (𝒫 𝐼 ∩ Fin) = (𝒫 (𝑁‘𝑔) ∩ Fin)) |
| 25 | 24 | eleq2d 2814 | . . . . . . . 8 ⊢ (𝐼 = (𝑁‘𝑔) → (𝑔 ∈ (𝒫 𝐼 ∩ Fin) ↔ 𝑔 ∈ (𝒫 (𝑁‘𝑔) ∩ Fin))) |
| 26 | 25 | imbi2d 340 | . . . . . . 7 ⊢ (𝐼 = (𝑁‘𝑔) → ((𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 𝐼 ∩ Fin)) ↔ (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 (𝑁‘𝑔) ∩ Fin)))) |
| 27 | 22, 26 | syl5ibrcom 247 | . . . . . 6 ⊢ (𝑅 ∈ LNoeR → (𝐼 = (𝑁‘𝑔) → (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 𝐼 ∩ Fin)))) |
| 28 | 27 | imdistand 570 | . . . . 5 ⊢ (𝑅 ∈ LNoeR → ((𝐼 = (𝑁‘𝑔) ∧ 𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)) → (𝐼 = (𝑁‘𝑔) ∧ 𝑔 ∈ (𝒫 𝐼 ∩ Fin)))) |
| 29 | ancom 460 | . . . . 5 ⊢ ((𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) ∧ 𝐼 = (𝑁‘𝑔)) ↔ (𝐼 = (𝑁‘𝑔) ∧ 𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin))) | |
| 30 | ancom 460 | . . . . 5 ⊢ ((𝑔 ∈ (𝒫 𝐼 ∩ Fin) ∧ 𝐼 = (𝑁‘𝑔)) ↔ (𝐼 = (𝑁‘𝑔) ∧ 𝑔 ∈ (𝒫 𝐼 ∩ Fin))) | |
| 31 | 28, 29, 30 | 3imtr4g 296 | . . . 4 ⊢ (𝑅 ∈ LNoeR → ((𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) ∧ 𝐼 = (𝑁‘𝑔)) → (𝑔 ∈ (𝒫 𝐼 ∩ Fin) ∧ 𝐼 = (𝑁‘𝑔)))) |
| 32 | 31 | reximdv2 3143 | . . 3 ⊢ (𝑅 ∈ LNoeR → (∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁‘𝑔))) |
| 33 | 32 | adantr 480 | . 2 ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈) → (∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁‘𝑔) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁‘𝑔))) |
| 34 | 10, 33 | mpd 15 | 1 ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁‘𝑔)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∩ cin 3910 ⊆ wss 3911 𝒫 cpw 4559 ‘cfv 6499 Fincfn 8895 Basecbs 17155 Ringcrg 20118 LIdealclidl 21092 RSpancrsp 21093 LNoeRclnr 43071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-mgp 20026 df-ur 20067 df-ring 20120 df-subrg 20455 df-lmod 20744 df-lss 20814 df-lsp 20854 df-sra 21056 df-rgmod 21057 df-lidl 21094 df-rsp 21095 df-lfig 43030 df-lnm 43038 df-lnr 43072 |
| This theorem is referenced by: hbtlem6 43091 |
| Copyright terms: Public domain | W3C validator |