Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnr2i Structured version   Visualization version   GIF version

Theorem lnr2i 43089
Description: Given an ideal in a left-Noetherian ring, there is a finite subset which generates it. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Hypotheses
Ref Expression
lnr2i.u 𝑈 = (LIdeal‘𝑅)
lnr2i.n 𝑁 = (RSpan‘𝑅)
Assertion
Ref Expression
lnr2i ((𝑅 ∈ LNoeR ∧ 𝐼𝑈) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁𝑔))
Distinct variable groups:   𝑔,𝐼   𝑔,𝑁   𝑅,𝑔   𝑈,𝑔

Proof of Theorem lnr2i
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2 lnr2i.u . . . . . 6 𝑈 = (LIdeal‘𝑅)
3 lnr2i.n . . . . . 6 𝑁 = (RSpan‘𝑅)
41, 2, 3islnr2 43087 . . . . 5 (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ ∀𝑖𝑈𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁𝑔)))
54simprbi 496 . . . 4 (𝑅 ∈ LNoeR → ∀𝑖𝑈𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁𝑔))
6 eqeq1 2733 . . . . . 6 (𝑖 = 𝐼 → (𝑖 = (𝑁𝑔) ↔ 𝐼 = (𝑁𝑔)))
76rexbidv 3153 . . . . 5 (𝑖 = 𝐼 → (∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁𝑔) ↔ ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁𝑔)))
87rspcva 3575 . . . 4 ((𝐼𝑈 ∧ ∀𝑖𝑈𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁𝑔)) → ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁𝑔))
95, 8sylan2 593 . . 3 ((𝐼𝑈𝑅 ∈ LNoeR) → ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁𝑔))
109ancoms 458 . 2 ((𝑅 ∈ LNoeR ∧ 𝐼𝑈) → ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁𝑔))
11 lnrring 43085 . . . . . . . . . . . 12 (𝑅 ∈ LNoeR → 𝑅 ∈ Ring)
123, 1rspssid 21143 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑔 ⊆ (Base‘𝑅)) → 𝑔 ⊆ (𝑁𝑔))
1311, 12sylan 580 . . . . . . . . . . 11 ((𝑅 ∈ LNoeR ∧ 𝑔 ⊆ (Base‘𝑅)) → 𝑔 ⊆ (𝑁𝑔))
1413ex 412 . . . . . . . . . 10 (𝑅 ∈ LNoeR → (𝑔 ⊆ (Base‘𝑅) → 𝑔 ⊆ (𝑁𝑔)))
15 vex 3440 . . . . . . . . . . 11 𝑔 ∈ V
1615elpw 4555 . . . . . . . . . 10 (𝑔 ∈ 𝒫 (Base‘𝑅) ↔ 𝑔 ⊆ (Base‘𝑅))
1715elpw 4555 . . . . . . . . . 10 (𝑔 ∈ 𝒫 (𝑁𝑔) ↔ 𝑔 ⊆ (𝑁𝑔))
1814, 16, 173imtr4g 296 . . . . . . . . 9 (𝑅 ∈ LNoeR → (𝑔 ∈ 𝒫 (Base‘𝑅) → 𝑔 ∈ 𝒫 (𝑁𝑔)))
1918anim1d 611 . . . . . . . 8 (𝑅 ∈ LNoeR → ((𝑔 ∈ 𝒫 (Base‘𝑅) ∧ 𝑔 ∈ Fin) → (𝑔 ∈ 𝒫 (𝑁𝑔) ∧ 𝑔 ∈ Fin)))
20 elin 3919 . . . . . . . 8 (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) ↔ (𝑔 ∈ 𝒫 (Base‘𝑅) ∧ 𝑔 ∈ Fin))
21 elin 3919 . . . . . . . 8 (𝑔 ∈ (𝒫 (𝑁𝑔) ∩ Fin) ↔ (𝑔 ∈ 𝒫 (𝑁𝑔) ∧ 𝑔 ∈ Fin))
2219, 20, 213imtr4g 296 . . . . . . 7 (𝑅 ∈ LNoeR → (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 (𝑁𝑔) ∩ Fin)))
23 pweq 4565 . . . . . . . . . 10 (𝐼 = (𝑁𝑔) → 𝒫 𝐼 = 𝒫 (𝑁𝑔))
2423ineq1d 4170 . . . . . . . . 9 (𝐼 = (𝑁𝑔) → (𝒫 𝐼 ∩ Fin) = (𝒫 (𝑁𝑔) ∩ Fin))
2524eleq2d 2814 . . . . . . . 8 (𝐼 = (𝑁𝑔) → (𝑔 ∈ (𝒫 𝐼 ∩ Fin) ↔ 𝑔 ∈ (𝒫 (𝑁𝑔) ∩ Fin)))
2625imbi2d 340 . . . . . . 7 (𝐼 = (𝑁𝑔) → ((𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 𝐼 ∩ Fin)) ↔ (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 (𝑁𝑔) ∩ Fin))))
2722, 26syl5ibrcom 247 . . . . . 6 (𝑅 ∈ LNoeR → (𝐼 = (𝑁𝑔) → (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 𝐼 ∩ Fin))))
2827imdistand 570 . . . . 5 (𝑅 ∈ LNoeR → ((𝐼 = (𝑁𝑔) ∧ 𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)) → (𝐼 = (𝑁𝑔) ∧ 𝑔 ∈ (𝒫 𝐼 ∩ Fin))))
29 ancom 460 . . . . 5 ((𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) ∧ 𝐼 = (𝑁𝑔)) ↔ (𝐼 = (𝑁𝑔) ∧ 𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)))
30 ancom 460 . . . . 5 ((𝑔 ∈ (𝒫 𝐼 ∩ Fin) ∧ 𝐼 = (𝑁𝑔)) ↔ (𝐼 = (𝑁𝑔) ∧ 𝑔 ∈ (𝒫 𝐼 ∩ Fin)))
3128, 29, 303imtr4g 296 . . . 4 (𝑅 ∈ LNoeR → ((𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) ∧ 𝐼 = (𝑁𝑔)) → (𝑔 ∈ (𝒫 𝐼 ∩ Fin) ∧ 𝐼 = (𝑁𝑔))))
3231reximdv2 3139 . . 3 (𝑅 ∈ LNoeR → (∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁𝑔) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁𝑔)))
3332adantr 480 . 2 ((𝑅 ∈ LNoeR ∧ 𝐼𝑈) → (∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁𝑔) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁𝑔)))
3410, 33mpd 15 1 ((𝑅 ∈ LNoeR ∧ 𝐼𝑈) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁𝑔))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cin 3902  wss 3903  𝒫 cpw 4551  cfv 6482  Fincfn 8872  Basecbs 17120  Ringcrg 20118  LIdealclidl 21113  RSpancrsp 21114  LNoeRclnr 43082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-mgp 20026  df-ur 20067  df-ring 20120  df-subrg 20455  df-lmod 20765  df-lss 20835  df-lsp 20875  df-sra 21077  df-rgmod 21078  df-lidl 21115  df-rsp 21116  df-lfig 43041  df-lnm 43049  df-lnr 43083
This theorem is referenced by:  hbtlem6  43102
  Copyright terms: Public domain W3C validator