Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrat4 Structured version   Visualization version   GIF version

Theorem cvrat4 39400
Description: A condition implying existence of an atom with the properties shown. Lemma 3.2.20 in [PtakPulmannova] p. 68. Also Lemma 9.2(delta) in [MaedaMaeda] p. 41. (atcvat4i 32429 analog.) (Contributed by NM, 30-Nov-2011.)
Hypotheses
Ref Expression
cvrat4.b 𝐵 = (Base‘𝐾)
cvrat4.l = (le‘𝐾)
cvrat4.j = (join‘𝐾)
cvrat4.z 0 = (0.‘𝐾)
cvrat4.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvrat4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋0𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   ,𝑟   𝐾,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑋,𝑟
Allowed substitution hint:   0 (𝑟)

Proof of Theorem cvrat4
StepHypRef Expression
1 hlatl 39316 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
21adantr 480 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ AtLat)
3 simpr1 1194 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑋𝐵)
4 cvrat4.b . . . . . . . . . . 11 𝐵 = (Base‘𝐾)
5 cvrat4.l . . . . . . . . . . 11 = (le‘𝐾)
6 cvrat4.z . . . . . . . . . . 11 0 = (0.‘𝐾)
7 cvrat4.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
84, 5, 6, 7atlex 39272 . . . . . . . . . 10 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑋0 ) → ∃𝑟𝐴 𝑟 𝑋)
983exp 1119 . . . . . . . . 9 (𝐾 ∈ AtLat → (𝑋𝐵 → (𝑋0 → ∃𝑟𝐴 𝑟 𝑋)))
102, 3, 9sylc 65 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋0 → ∃𝑟𝐴 𝑟 𝑋))
1110adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 = 𝑄) → (𝑋0 → ∃𝑟𝐴 𝑟 𝑋))
12 simpll 766 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → 𝐾 ∈ HL)
13 simplr3 1217 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → 𝑄𝐴)
14 simpr 484 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → 𝑟𝐴)
15 cvrat4.j . . . . . . . . . . . . . . 15 = (join‘𝐾)
165, 15, 7hlatlej1 39331 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑟𝐴) → 𝑄 (𝑄 𝑟))
1712, 13, 14, 16syl3anc 1371 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → 𝑄 (𝑄 𝑟))
18 breq1 5169 . . . . . . . . . . . . 13 (𝑃 = 𝑄 → (𝑃 (𝑄 𝑟) ↔ 𝑄 (𝑄 𝑟)))
1917, 18imbitrrid 246 . . . . . . . . . . . 12 (𝑃 = 𝑄 → (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → 𝑃 (𝑄 𝑟)))
2019expd 415 . . . . . . . . . . 11 (𝑃 = 𝑄 → ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑟𝐴𝑃 (𝑄 𝑟))))
2120impcom 407 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 = 𝑄) → (𝑟𝐴𝑃 (𝑄 𝑟)))
2221anim2d 611 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 = 𝑄) → ((𝑟 𝑋𝑟𝐴) → (𝑟 𝑋𝑃 (𝑄 𝑟))))
2322expcomd 416 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 = 𝑄) → (𝑟𝐴 → (𝑟 𝑋 → (𝑟 𝑋𝑃 (𝑄 𝑟)))))
2423reximdvai 3171 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 = 𝑄) → (∃𝑟𝐴 𝑟 𝑋 → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))
2511, 24syld 47 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 = 𝑄) → (𝑋0 → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))
2625ex 412 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 = 𝑄 → (𝑋0 → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))))
2726a1i 11 . . . 4 (𝑃 (𝑋 𝑄) → ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 = 𝑄 → (𝑋0 → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))))
2827com4l 92 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 = 𝑄 → (𝑋0 → (𝑃 (𝑋 𝑄) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))))
2928imp4a 422 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 = 𝑄 → ((𝑋0𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))))
30 hllat 39319 . . . . . . . . . . . . . 14 (𝐾 ∈ HL → 𝐾 ∈ Lat)
3130adantr 480 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ Lat)
32 simpr3 1196 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐴)
334, 7atbase 39245 . . . . . . . . . . . . . 14 (𝑄𝐴𝑄𝐵)
3432, 33syl 17 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐵)
354, 5, 15latleeqj2 18522 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵) → (𝑄 𝑋 ↔ (𝑋 𝑄) = 𝑋))
3631, 34, 3, 35syl3anc 1371 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄 𝑋 ↔ (𝑋 𝑄) = 𝑋))
3736biimpa 476 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑄 𝑋) → (𝑋 𝑄) = 𝑋)
3837breq2d 5178 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑄 𝑋) → (𝑃 (𝑋 𝑄) ↔ 𝑃 𝑋))
3938biimpa 476 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → 𝑃 𝑋)
4039expl 457 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑄 𝑋𝑃 (𝑋 𝑄)) → 𝑃 𝑋))
41 simpl 482 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ HL)
42 simpr2 1195 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃𝐴)
435, 15, 7hlatlej2 39332 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑃𝐴) → 𝑃 (𝑄 𝑃))
4441, 32, 42, 43syl3anc 1371 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃 (𝑄 𝑃))
4540, 44jctird 526 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑃 𝑋𝑃 (𝑄 𝑃))))
4645, 42jctild 525 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑃𝐴 ∧ (𝑃 𝑋𝑃 (𝑄 𝑃)))))
4746impl 455 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → (𝑃𝐴 ∧ (𝑃 𝑋𝑃 (𝑄 𝑃))))
48 breq1 5169 . . . . . . 7 (𝑟 = 𝑃 → (𝑟 𝑋𝑃 𝑋))
49 oveq2 7456 . . . . . . . 8 (𝑟 = 𝑃 → (𝑄 𝑟) = (𝑄 𝑃))
5049breq2d 5178 . . . . . . 7 (𝑟 = 𝑃 → (𝑃 (𝑄 𝑟) ↔ 𝑃 (𝑄 𝑃)))
5148, 50anbi12d 631 . . . . . 6 (𝑟 = 𝑃 → ((𝑟 𝑋𝑃 (𝑄 𝑟)) ↔ (𝑃 𝑋𝑃 (𝑄 𝑃))))
5251rspcev 3635 . . . . 5 ((𝑃𝐴 ∧ (𝑃 𝑋𝑃 (𝑄 𝑃))) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))
5347, 52syl 17 . . . 4 ((((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))
5453adantrl 715 . . 3 ((((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑄 𝑋) ∧ (𝑋0𝑃 (𝑋 𝑄))) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))
5554exp31 419 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄 𝑋 → ((𝑋0𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))))
56 simpr 484 . . 3 ((𝑋0𝑃 (𝑋 𝑄)) → 𝑃 (𝑋 𝑄))
57 ioran 984 . . . . 5 (¬ (𝑃 = 𝑄𝑄 𝑋) ↔ (¬ 𝑃 = 𝑄 ∧ ¬ 𝑄 𝑋))
58 df-ne 2947 . . . . . 6 (𝑃𝑄 ↔ ¬ 𝑃 = 𝑄)
5958anbi1i 623 . . . . 5 ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ↔ (¬ 𝑃 = 𝑄 ∧ ¬ 𝑄 𝑋))
6057, 59bitr4i 278 . . . 4 (¬ (𝑃 = 𝑄𝑄 𝑋) ↔ (𝑃𝑄 ∧ ¬ 𝑄 𝑋))
61 eqid 2740 . . . . . . . . . 10 (meet‘𝐾) = (meet‘𝐾)
624, 5, 15, 61, 7cvrat3 39399 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 ∧ ¬ 𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴))
63623expd 1353 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃𝑄 → (¬ 𝑄 𝑋 → (𝑃 (𝑋 𝑄) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴))))
6463imp4c 423 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴))
654, 7atbase 39245 . . . . . . . . . . . . 13 (𝑃𝐴𝑃𝐵)
6642, 65syl 17 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃𝐵)
674, 15latjcl 18509 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
6831, 66, 34, 67syl3anc 1371 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 𝑄) ∈ 𝐵)
694, 5, 61latmle1 18534 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋)
7031, 3, 68, 69syl3anc 1371 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋)
7170adantr 480 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → (𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋)
72 simpll 766 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → 𝐾 ∈ HL)
7363imp44 428 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴)
74 simplr2 1216 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → 𝑃𝐴)
7534adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → 𝑄𝐵)
7673, 74, 753jca 1128 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵))
7772, 76jca 511 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → (𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)))
784, 5, 61, 6, 7atnle 39273 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ AtLat ∧ 𝑄𝐴𝑋𝐵) → (¬ 𝑄 𝑋 ↔ (𝑄(meet‘𝐾)𝑋) = 0 ))
792, 32, 3, 78syl3anc 1371 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (¬ 𝑄 𝑋 ↔ (𝑄(meet‘𝐾)𝑋) = 0 ))
804, 61latmcom 18533 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵) → (𝑄(meet‘𝐾)𝑋) = (𝑋(meet‘𝐾)𝑄))
8131, 34, 3, 80syl3anc 1371 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄(meet‘𝐾)𝑋) = (𝑋(meet‘𝐾)𝑄))
8281eqeq1d 2742 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑄(meet‘𝐾)𝑋) = 0 ↔ (𝑋(meet‘𝐾)𝑄) = 0 ))
8379, 82bitrd 279 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (¬ 𝑄 𝑋 ↔ (𝑋(meet‘𝐾)𝑄) = 0 ))
844, 61latmcl 18510 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵)
8531, 3, 68, 84syl3anc 1371 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵)
8685, 3, 343jca 1128 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵𝑋𝐵𝑄𝐵))
8731, 86jca 511 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝐾 ∈ Lat ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵𝑋𝐵𝑄𝐵)))
884, 5, 61latmlem2 18540 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵𝑋𝐵𝑄𝐵)) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋 → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) (𝑄(meet‘𝐾)𝑋)))
8987, 70, 88sylc 65 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) (𝑄(meet‘𝐾)𝑋))
9089, 81breqtrd 5192 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) (𝑋(meet‘𝐾)𝑄))
91 breq2 5170 . . . . . . . . . . . . . . . 16 ((𝑋(meet‘𝐾)𝑄) = 0 → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) (𝑋(meet‘𝐾)𝑄) ↔ (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) 0 ))
9290, 91syl5ibcom 245 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋(meet‘𝐾)𝑄) = 0 → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) 0 ))
93 hlop 39318 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ HL → 𝐾 ∈ OP)
9493adantr 480 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ OP)
954, 61latmcl 18510 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) ∈ 𝐵)
9631, 34, 85, 95syl3anc 1371 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) ∈ 𝐵)
974, 5, 6ople0 39143 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ OP ∧ (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) ∈ 𝐵) → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) 0 ↔ (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 ))
9894, 96, 97syl2anc 583 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) 0 ↔ (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 ))
9992, 98sylibd 239 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋(meet‘𝐾)𝑄) = 0 → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 ))
10083, 99sylbid 240 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (¬ 𝑄 𝑋 → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 ))
101100imp 406 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ¬ 𝑄 𝑋) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 )
102101adantrl 715 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑄 𝑋)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 )
103102adantrr 716 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 )
1044, 5, 61latmle2 18535 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑃 𝑄))
10531, 3, 68, 104syl3anc 1371 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑃 𝑄))
1064, 15latjcom 18517 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) = (𝑄 𝑃))
10731, 66, 34, 106syl3anc 1371 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 𝑄) = (𝑄 𝑃))
108105, 107breqtrd 5192 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑄 𝑃))
109108adantr 480 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → (𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑄 𝑃))
11030adantr 480 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → 𝐾 ∈ Lat)
111 simpr3 1196 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → 𝑄𝐵)
112 simpr1 1194 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴)
1134, 7atbase 39245 . . . . . . . . . . . . . 14 ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴 → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵)
114112, 113syl 17 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵)
1154, 61latmcom 18533 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = ((𝑋(meet‘𝐾)(𝑃 𝑄))(meet‘𝐾)𝑄))
116110, 111, 114, 115syl3anc 1371 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = ((𝑋(meet‘𝐾)(𝑃 𝑄))(meet‘𝐾)𝑄))
117116eqeq1d 2742 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 ↔ ((𝑋(meet‘𝐾)(𝑃 𝑄))(meet‘𝐾)𝑄) = 0 ))
1184, 5, 15, 61, 6, 7hlexch3 39348 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵) ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄))(meet‘𝐾)𝑄) = 0 ) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑄 𝑃) → 𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄)))))
1191183expia 1121 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → (((𝑋(meet‘𝐾)(𝑃 𝑄))(meet‘𝐾)𝑄) = 0 → ((𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑄 𝑃) → 𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))))
120117, 119sylbid 240 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 → ((𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑄 𝑃) → 𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))))
12177, 103, 109, 120syl3c 66 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → 𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))
12271, 121jca 511 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄)))))
123122ex 412 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))))
12464, 123jcad 512 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴 ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄)))))))
125 breq1 5169 . . . . . . . 8 (𝑟 = (𝑋(meet‘𝐾)(𝑃 𝑄)) → (𝑟 𝑋 ↔ (𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋))
126 oveq2 7456 . . . . . . . . 9 (𝑟 = (𝑋(meet‘𝐾)(𝑃 𝑄)) → (𝑄 𝑟) = (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))
127126breq2d 5178 . . . . . . . 8 (𝑟 = (𝑋(meet‘𝐾)(𝑃 𝑄)) → (𝑃 (𝑄 𝑟) ↔ 𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄)))))
128125, 127anbi12d 631 . . . . . . 7 (𝑟 = (𝑋(meet‘𝐾)(𝑃 𝑄)) → ((𝑟 𝑋𝑃 (𝑄 𝑟)) ↔ ((𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))))
129128rspcev 3635 . . . . . 6 (((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴 ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))
130124, 129syl6 35 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))
131130expd 415 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) → (𝑃 (𝑋 𝑄) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))))
13260, 131biimtrid 242 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (¬ (𝑃 = 𝑄𝑄 𝑋) → (𝑃 (𝑋 𝑄) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))))
13356, 132syl7 74 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (¬ (𝑃 = 𝑄𝑄 𝑋) → ((𝑋0𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))))
13429, 55, 133ecase3d 1034 1 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋0𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  meetcmee 18382  0.cp0 18493  Latclat 18501  OPcops 39128  Atomscatm 39219  AtLatcal 39220  HLchlt 39306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307
This theorem is referenced by:  cvrat42  39401  ps-2  39435
  Copyright terms: Public domain W3C validator