Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrat4 Structured version   Visualization version   GIF version

Theorem cvrat4 39142
Description: A condition implying existence of an atom with the properties shown. Lemma 3.2.20 in [PtakPulmannova] p. 68. Also Lemma 9.2(delta) in [MaedaMaeda] p. 41. (atcvat4i 32330 analog.) (Contributed by NM, 30-Nov-2011.)
Hypotheses
Ref Expression
cvrat4.b 𝐵 = (Base‘𝐾)
cvrat4.l = (le‘𝐾)
cvrat4.j = (join‘𝐾)
cvrat4.z 0 = (0.‘𝐾)
cvrat4.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvrat4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋0𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   ,𝑟   𝐾,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑋,𝑟
Allowed substitution hint:   0 (𝑟)

Proof of Theorem cvrat4
StepHypRef Expression
1 hlatl 39058 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
21adantr 479 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ AtLat)
3 simpr1 1191 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑋𝐵)
4 cvrat4.b . . . . . . . . . . 11 𝐵 = (Base‘𝐾)
5 cvrat4.l . . . . . . . . . . 11 = (le‘𝐾)
6 cvrat4.z . . . . . . . . . . 11 0 = (0.‘𝐾)
7 cvrat4.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
84, 5, 6, 7atlex 39014 . . . . . . . . . 10 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑋0 ) → ∃𝑟𝐴 𝑟 𝑋)
983exp 1116 . . . . . . . . 9 (𝐾 ∈ AtLat → (𝑋𝐵 → (𝑋0 → ∃𝑟𝐴 𝑟 𝑋)))
102, 3, 9sylc 65 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋0 → ∃𝑟𝐴 𝑟 𝑋))
1110adantr 479 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 = 𝑄) → (𝑋0 → ∃𝑟𝐴 𝑟 𝑋))
12 simpll 765 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → 𝐾 ∈ HL)
13 simplr3 1214 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → 𝑄𝐴)
14 simpr 483 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → 𝑟𝐴)
15 cvrat4.j . . . . . . . . . . . . . . 15 = (join‘𝐾)
165, 15, 7hlatlej1 39073 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑟𝐴) → 𝑄 (𝑄 𝑟))
1712, 13, 14, 16syl3anc 1368 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → 𝑄 (𝑄 𝑟))
18 breq1 5156 . . . . . . . . . . . . 13 (𝑃 = 𝑄 → (𝑃 (𝑄 𝑟) ↔ 𝑄 (𝑄 𝑟)))
1917, 18imbitrrid 245 . . . . . . . . . . . 12 (𝑃 = 𝑄 → (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → 𝑃 (𝑄 𝑟)))
2019expd 414 . . . . . . . . . . 11 (𝑃 = 𝑄 → ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑟𝐴𝑃 (𝑄 𝑟))))
2120impcom 406 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 = 𝑄) → (𝑟𝐴𝑃 (𝑄 𝑟)))
2221anim2d 610 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 = 𝑄) → ((𝑟 𝑋𝑟𝐴) → (𝑟 𝑋𝑃 (𝑄 𝑟))))
2322expcomd 415 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 = 𝑄) → (𝑟𝐴 → (𝑟 𝑋 → (𝑟 𝑋𝑃 (𝑄 𝑟)))))
2423reximdvai 3155 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 = 𝑄) → (∃𝑟𝐴 𝑟 𝑋 → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))
2511, 24syld 47 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 = 𝑄) → (𝑋0 → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))
2625ex 411 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 = 𝑄 → (𝑋0 → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))))
2726a1i 11 . . . 4 (𝑃 (𝑋 𝑄) → ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 = 𝑄 → (𝑋0 → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))))
2827com4l 92 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 = 𝑄 → (𝑋0 → (𝑃 (𝑋 𝑄) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))))
2928imp4a 421 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 = 𝑄 → ((𝑋0𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))))
30 hllat 39061 . . . . . . . . . . . . . 14 (𝐾 ∈ HL → 𝐾 ∈ Lat)
3130adantr 479 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ Lat)
32 simpr3 1193 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐴)
334, 7atbase 38987 . . . . . . . . . . . . . 14 (𝑄𝐴𝑄𝐵)
3432, 33syl 17 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐵)
354, 5, 15latleeqj2 18477 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵) → (𝑄 𝑋 ↔ (𝑋 𝑄) = 𝑋))
3631, 34, 3, 35syl3anc 1368 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄 𝑋 ↔ (𝑋 𝑄) = 𝑋))
3736biimpa 475 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑄 𝑋) → (𝑋 𝑄) = 𝑋)
3837breq2d 5165 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑄 𝑋) → (𝑃 (𝑋 𝑄) ↔ 𝑃 𝑋))
3938biimpa 475 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → 𝑃 𝑋)
4039expl 456 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑄 𝑋𝑃 (𝑋 𝑄)) → 𝑃 𝑋))
41 simpl 481 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ HL)
42 simpr2 1192 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃𝐴)
435, 15, 7hlatlej2 39074 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑃𝐴) → 𝑃 (𝑄 𝑃))
4441, 32, 42, 43syl3anc 1368 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃 (𝑄 𝑃))
4540, 44jctird 525 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑃 𝑋𝑃 (𝑄 𝑃))))
4645, 42jctild 524 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑃𝐴 ∧ (𝑃 𝑋𝑃 (𝑄 𝑃)))))
4746impl 454 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → (𝑃𝐴 ∧ (𝑃 𝑋𝑃 (𝑄 𝑃))))
48 breq1 5156 . . . . . . 7 (𝑟 = 𝑃 → (𝑟 𝑋𝑃 𝑋))
49 oveq2 7432 . . . . . . . 8 (𝑟 = 𝑃 → (𝑄 𝑟) = (𝑄 𝑃))
5049breq2d 5165 . . . . . . 7 (𝑟 = 𝑃 → (𝑃 (𝑄 𝑟) ↔ 𝑃 (𝑄 𝑃)))
5148, 50anbi12d 630 . . . . . 6 (𝑟 = 𝑃 → ((𝑟 𝑋𝑃 (𝑄 𝑟)) ↔ (𝑃 𝑋𝑃 (𝑄 𝑃))))
5251rspcev 3608 . . . . 5 ((𝑃𝐴 ∧ (𝑃 𝑋𝑃 (𝑄 𝑃))) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))
5347, 52syl 17 . . . 4 ((((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))
5453adantrl 714 . . 3 ((((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑄 𝑋) ∧ (𝑋0𝑃 (𝑋 𝑄))) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))
5554exp31 418 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄 𝑋 → ((𝑋0𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))))
56 simpr 483 . . 3 ((𝑋0𝑃 (𝑋 𝑄)) → 𝑃 (𝑋 𝑄))
57 ioran 981 . . . . 5 (¬ (𝑃 = 𝑄𝑄 𝑋) ↔ (¬ 𝑃 = 𝑄 ∧ ¬ 𝑄 𝑋))
58 df-ne 2931 . . . . . 6 (𝑃𝑄 ↔ ¬ 𝑃 = 𝑄)
5958anbi1i 622 . . . . 5 ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ↔ (¬ 𝑃 = 𝑄 ∧ ¬ 𝑄 𝑋))
6057, 59bitr4i 277 . . . 4 (¬ (𝑃 = 𝑄𝑄 𝑋) ↔ (𝑃𝑄 ∧ ¬ 𝑄 𝑋))
61 eqid 2726 . . . . . . . . . 10 (meet‘𝐾) = (meet‘𝐾)
624, 5, 15, 61, 7cvrat3 39141 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 ∧ ¬ 𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴))
63623expd 1350 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃𝑄 → (¬ 𝑄 𝑋 → (𝑃 (𝑋 𝑄) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴))))
6463imp4c 422 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴))
654, 7atbase 38987 . . . . . . . . . . . . 13 (𝑃𝐴𝑃𝐵)
6642, 65syl 17 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃𝐵)
674, 15latjcl 18464 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
6831, 66, 34, 67syl3anc 1368 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 𝑄) ∈ 𝐵)
694, 5, 61latmle1 18489 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋)
7031, 3, 68, 69syl3anc 1368 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋)
7170adantr 479 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → (𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋)
72 simpll 765 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → 𝐾 ∈ HL)
7363imp44 427 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴)
74 simplr2 1213 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → 𝑃𝐴)
7534adantr 479 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → 𝑄𝐵)
7673, 74, 753jca 1125 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵))
7772, 76jca 510 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → (𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)))
784, 5, 61, 6, 7atnle 39015 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ AtLat ∧ 𝑄𝐴𝑋𝐵) → (¬ 𝑄 𝑋 ↔ (𝑄(meet‘𝐾)𝑋) = 0 ))
792, 32, 3, 78syl3anc 1368 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (¬ 𝑄 𝑋 ↔ (𝑄(meet‘𝐾)𝑋) = 0 ))
804, 61latmcom 18488 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵) → (𝑄(meet‘𝐾)𝑋) = (𝑋(meet‘𝐾)𝑄))
8131, 34, 3, 80syl3anc 1368 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄(meet‘𝐾)𝑋) = (𝑋(meet‘𝐾)𝑄))
8281eqeq1d 2728 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑄(meet‘𝐾)𝑋) = 0 ↔ (𝑋(meet‘𝐾)𝑄) = 0 ))
8379, 82bitrd 278 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (¬ 𝑄 𝑋 ↔ (𝑋(meet‘𝐾)𝑄) = 0 ))
844, 61latmcl 18465 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵)
8531, 3, 68, 84syl3anc 1368 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵)
8685, 3, 343jca 1125 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵𝑋𝐵𝑄𝐵))
8731, 86jca 510 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝐾 ∈ Lat ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵𝑋𝐵𝑄𝐵)))
884, 5, 61latmlem2 18495 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵𝑋𝐵𝑄𝐵)) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋 → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) (𝑄(meet‘𝐾)𝑋)))
8987, 70, 88sylc 65 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) (𝑄(meet‘𝐾)𝑋))
9089, 81breqtrd 5179 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) (𝑋(meet‘𝐾)𝑄))
91 breq2 5157 . . . . . . . . . . . . . . . 16 ((𝑋(meet‘𝐾)𝑄) = 0 → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) (𝑋(meet‘𝐾)𝑄) ↔ (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) 0 ))
9290, 91syl5ibcom 244 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋(meet‘𝐾)𝑄) = 0 → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) 0 ))
93 hlop 39060 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ HL → 𝐾 ∈ OP)
9493adantr 479 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ OP)
954, 61latmcl 18465 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) ∈ 𝐵)
9631, 34, 85, 95syl3anc 1368 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) ∈ 𝐵)
974, 5, 6ople0 38885 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ OP ∧ (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) ∈ 𝐵) → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) 0 ↔ (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 ))
9894, 96, 97syl2anc 582 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) 0 ↔ (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 ))
9992, 98sylibd 238 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋(meet‘𝐾)𝑄) = 0 → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 ))
10083, 99sylbid 239 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (¬ 𝑄 𝑋 → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 ))
101100imp 405 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ¬ 𝑄 𝑋) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 )
102101adantrl 714 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑄 𝑋)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 )
103102adantrr 715 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 )
1044, 5, 61latmle2 18490 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑃 𝑄))
10531, 3, 68, 104syl3anc 1368 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑃 𝑄))
1064, 15latjcom 18472 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) = (𝑄 𝑃))
10731, 66, 34, 106syl3anc 1368 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 𝑄) = (𝑄 𝑃))
108105, 107breqtrd 5179 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑄 𝑃))
109108adantr 479 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → (𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑄 𝑃))
11030adantr 479 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → 𝐾 ∈ Lat)
111 simpr3 1193 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → 𝑄𝐵)
112 simpr1 1191 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴)
1134, 7atbase 38987 . . . . . . . . . . . . . 14 ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴 → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵)
114112, 113syl 17 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵)
1154, 61latmcom 18488 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = ((𝑋(meet‘𝐾)(𝑃 𝑄))(meet‘𝐾)𝑄))
116110, 111, 114, 115syl3anc 1368 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = ((𝑋(meet‘𝐾)(𝑃 𝑄))(meet‘𝐾)𝑄))
117116eqeq1d 2728 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 ↔ ((𝑋(meet‘𝐾)(𝑃 𝑄))(meet‘𝐾)𝑄) = 0 ))
1184, 5, 15, 61, 6, 7hlexch3 39090 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵) ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄))(meet‘𝐾)𝑄) = 0 ) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑄 𝑃) → 𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄)))))
1191183expia 1118 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → (((𝑋(meet‘𝐾)(𝑃 𝑄))(meet‘𝐾)𝑄) = 0 → ((𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑄 𝑃) → 𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))))
120117, 119sylbid 239 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 → ((𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑄 𝑃) → 𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))))
12177, 103, 109, 120syl3c 66 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → 𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))
12271, 121jca 510 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄)))))
123122ex 411 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))))
12464, 123jcad 511 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴 ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄)))))))
125 breq1 5156 . . . . . . . 8 (𝑟 = (𝑋(meet‘𝐾)(𝑃 𝑄)) → (𝑟 𝑋 ↔ (𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋))
126 oveq2 7432 . . . . . . . . 9 (𝑟 = (𝑋(meet‘𝐾)(𝑃 𝑄)) → (𝑄 𝑟) = (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))
127126breq2d 5165 . . . . . . . 8 (𝑟 = (𝑋(meet‘𝐾)(𝑃 𝑄)) → (𝑃 (𝑄 𝑟) ↔ 𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄)))))
128125, 127anbi12d 630 . . . . . . 7 (𝑟 = (𝑋(meet‘𝐾)(𝑃 𝑄)) → ((𝑟 𝑋𝑃 (𝑄 𝑟)) ↔ ((𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))))
129128rspcev 3608 . . . . . 6 (((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴 ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))
130124, 129syl6 35 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))
131130expd 414 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) → (𝑃 (𝑋 𝑄) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))))
13260, 131biimtrid 241 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (¬ (𝑃 = 𝑄𝑄 𝑋) → (𝑃 (𝑋 𝑄) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))))
13356, 132syl7 74 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (¬ (𝑃 = 𝑄𝑄 𝑋) → ((𝑋0𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))))
13429, 55, 133ecase3d 1031 1 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋0𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wrex 3060   class class class wbr 5153  cfv 6554  (class class class)co 7424  Basecbs 17213  lecple 17273  joincjn 18336  meetcmee 18337  0.cp0 18448  Latclat 18456  OPcops 38870  Atomscatm 38961  AtLatcal 38962  HLchlt 39048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-proset 18320  df-poset 18338  df-plt 18355  df-lub 18371  df-glb 18372  df-join 18373  df-meet 18374  df-p0 18450  df-lat 18457  df-clat 18524  df-oposet 38874  df-ol 38876  df-oml 38877  df-covers 38964  df-ats 38965  df-atl 38996  df-cvlat 39020  df-hlat 39049
This theorem is referenced by:  cvrat42  39143  ps-2  39177
  Copyright terms: Public domain W3C validator