Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrat4 Structured version   Visualization version   GIF version

Theorem cvrat4 36594
Description: A condition implying existence of an atom with the properties shown. Lemma 3.2.20 in [PtakPulmannova] p. 68. Also Lemma 9.2(delta) in [MaedaMaeda] p. 41. (atcvat4i 30174 analog.) (Contributed by NM, 30-Nov-2011.)
Hypotheses
Ref Expression
cvrat4.b 𝐵 = (Base‘𝐾)
cvrat4.l = (le‘𝐾)
cvrat4.j = (join‘𝐾)
cvrat4.z 0 = (0.‘𝐾)
cvrat4.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvrat4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋0𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   ,𝑟   𝐾,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑋,𝑟
Allowed substitution hint:   0 (𝑟)

Proof of Theorem cvrat4
StepHypRef Expression
1 hlatl 36511 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
21adantr 483 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ AtLat)
3 simpr1 1190 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑋𝐵)
4 cvrat4.b . . . . . . . . . . 11 𝐵 = (Base‘𝐾)
5 cvrat4.l . . . . . . . . . . 11 = (le‘𝐾)
6 cvrat4.z . . . . . . . . . . 11 0 = (0.‘𝐾)
7 cvrat4.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
84, 5, 6, 7atlex 36467 . . . . . . . . . 10 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑋0 ) → ∃𝑟𝐴 𝑟 𝑋)
983exp 1115 . . . . . . . . 9 (𝐾 ∈ AtLat → (𝑋𝐵 → (𝑋0 → ∃𝑟𝐴 𝑟 𝑋)))
102, 3, 9sylc 65 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋0 → ∃𝑟𝐴 𝑟 𝑋))
1110adantr 483 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 = 𝑄) → (𝑋0 → ∃𝑟𝐴 𝑟 𝑋))
12 simpll 765 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → 𝐾 ∈ HL)
13 simplr3 1213 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → 𝑄𝐴)
14 simpr 487 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → 𝑟𝐴)
15 cvrat4.j . . . . . . . . . . . . . . 15 = (join‘𝐾)
165, 15, 7hlatlej1 36526 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑟𝐴) → 𝑄 (𝑄 𝑟))
1712, 13, 14, 16syl3anc 1367 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → 𝑄 (𝑄 𝑟))
18 breq1 5069 . . . . . . . . . . . . 13 (𝑃 = 𝑄 → (𝑃 (𝑄 𝑟) ↔ 𝑄 (𝑄 𝑟)))
1917, 18syl5ibr 248 . . . . . . . . . . . 12 (𝑃 = 𝑄 → (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → 𝑃 (𝑄 𝑟)))
2019expd 418 . . . . . . . . . . 11 (𝑃 = 𝑄 → ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑟𝐴𝑃 (𝑄 𝑟))))
2120impcom 410 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 = 𝑄) → (𝑟𝐴𝑃 (𝑄 𝑟)))
2221anim2d 613 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 = 𝑄) → ((𝑟 𝑋𝑟𝐴) → (𝑟 𝑋𝑃 (𝑄 𝑟))))
2322expcomd 419 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 = 𝑄) → (𝑟𝐴 → (𝑟 𝑋 → (𝑟 𝑋𝑃 (𝑄 𝑟)))))
2423reximdvai 3272 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 = 𝑄) → (∃𝑟𝐴 𝑟 𝑋 → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))
2511, 24syld 47 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 = 𝑄) → (𝑋0 → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))
2625ex 415 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 = 𝑄 → (𝑋0 → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))))
2726a1i 11 . . . 4 (𝑃 (𝑋 𝑄) → ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 = 𝑄 → (𝑋0 → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))))
2827com4l 92 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 = 𝑄 → (𝑋0 → (𝑃 (𝑋 𝑄) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))))
2928imp4a 425 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 = 𝑄 → ((𝑋0𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))))
30 hllat 36514 . . . . . . . . . . . . . 14 (𝐾 ∈ HL → 𝐾 ∈ Lat)
3130adantr 483 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ Lat)
32 simpr3 1192 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐴)
334, 7atbase 36440 . . . . . . . . . . . . . 14 (𝑄𝐴𝑄𝐵)
3432, 33syl 17 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐵)
354, 5, 15latleeqj2 17674 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵) → (𝑄 𝑋 ↔ (𝑋 𝑄) = 𝑋))
3631, 34, 3, 35syl3anc 1367 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄 𝑋 ↔ (𝑋 𝑄) = 𝑋))
3736biimpa 479 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑄 𝑋) → (𝑋 𝑄) = 𝑋)
3837breq2d 5078 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑄 𝑋) → (𝑃 (𝑋 𝑄) ↔ 𝑃 𝑋))
3938biimpa 479 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → 𝑃 𝑋)
4039expl 460 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑄 𝑋𝑃 (𝑋 𝑄)) → 𝑃 𝑋))
41 simpl 485 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ HL)
42 simpr2 1191 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃𝐴)
435, 15, 7hlatlej2 36527 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑃𝐴) → 𝑃 (𝑄 𝑃))
4441, 32, 42, 43syl3anc 1367 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃 (𝑄 𝑃))
4540, 44jctird 529 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑃 𝑋𝑃 (𝑄 𝑃))))
4645, 42jctild 528 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑃𝐴 ∧ (𝑃 𝑋𝑃 (𝑄 𝑃)))))
4746impl 458 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → (𝑃𝐴 ∧ (𝑃 𝑋𝑃 (𝑄 𝑃))))
48 breq1 5069 . . . . . . 7 (𝑟 = 𝑃 → (𝑟 𝑋𝑃 𝑋))
49 oveq2 7164 . . . . . . . 8 (𝑟 = 𝑃 → (𝑄 𝑟) = (𝑄 𝑃))
5049breq2d 5078 . . . . . . 7 (𝑟 = 𝑃 → (𝑃 (𝑄 𝑟) ↔ 𝑃 (𝑄 𝑃)))
5148, 50anbi12d 632 . . . . . 6 (𝑟 = 𝑃 → ((𝑟 𝑋𝑃 (𝑄 𝑟)) ↔ (𝑃 𝑋𝑃 (𝑄 𝑃))))
5251rspcev 3623 . . . . 5 ((𝑃𝐴 ∧ (𝑃 𝑋𝑃 (𝑄 𝑃))) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))
5347, 52syl 17 . . . 4 ((((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))
5453adantrl 714 . . 3 ((((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑄 𝑋) ∧ (𝑋0𝑃 (𝑋 𝑄))) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))
5554exp31 422 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄 𝑋 → ((𝑋0𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))))
56 simpr 487 . . 3 ((𝑋0𝑃 (𝑋 𝑄)) → 𝑃 (𝑋 𝑄))
57 ioran 980 . . . . 5 (¬ (𝑃 = 𝑄𝑄 𝑋) ↔ (¬ 𝑃 = 𝑄 ∧ ¬ 𝑄 𝑋))
58 df-ne 3017 . . . . . 6 (𝑃𝑄 ↔ ¬ 𝑃 = 𝑄)
5958anbi1i 625 . . . . 5 ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ↔ (¬ 𝑃 = 𝑄 ∧ ¬ 𝑄 𝑋))
6057, 59bitr4i 280 . . . 4 (¬ (𝑃 = 𝑄𝑄 𝑋) ↔ (𝑃𝑄 ∧ ¬ 𝑄 𝑋))
61 eqid 2821 . . . . . . . . . 10 (meet‘𝐾) = (meet‘𝐾)
624, 5, 15, 61, 7cvrat3 36593 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 ∧ ¬ 𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴))
63623expd 1349 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃𝑄 → (¬ 𝑄 𝑋 → (𝑃 (𝑋 𝑄) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴))))
6463imp4c 426 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴))
654, 7atbase 36440 . . . . . . . . . . . . 13 (𝑃𝐴𝑃𝐵)
6642, 65syl 17 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃𝐵)
674, 15latjcl 17661 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
6831, 66, 34, 67syl3anc 1367 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 𝑄) ∈ 𝐵)
694, 5, 61latmle1 17686 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋)
7031, 3, 68, 69syl3anc 1367 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋)
7170adantr 483 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → (𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋)
72 simpll 765 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → 𝐾 ∈ HL)
7363imp44 431 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴)
74 simplr2 1212 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → 𝑃𝐴)
7534adantr 483 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → 𝑄𝐵)
7673, 74, 753jca 1124 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵))
7772, 76jca 514 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → (𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)))
784, 5, 61, 6, 7atnle 36468 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ AtLat ∧ 𝑄𝐴𝑋𝐵) → (¬ 𝑄 𝑋 ↔ (𝑄(meet‘𝐾)𝑋) = 0 ))
792, 32, 3, 78syl3anc 1367 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (¬ 𝑄 𝑋 ↔ (𝑄(meet‘𝐾)𝑋) = 0 ))
804, 61latmcom 17685 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵) → (𝑄(meet‘𝐾)𝑋) = (𝑋(meet‘𝐾)𝑄))
8131, 34, 3, 80syl3anc 1367 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄(meet‘𝐾)𝑋) = (𝑋(meet‘𝐾)𝑄))
8281eqeq1d 2823 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑄(meet‘𝐾)𝑋) = 0 ↔ (𝑋(meet‘𝐾)𝑄) = 0 ))
8379, 82bitrd 281 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (¬ 𝑄 𝑋 ↔ (𝑋(meet‘𝐾)𝑄) = 0 ))
844, 61latmcl 17662 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵)
8531, 3, 68, 84syl3anc 1367 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵)
8685, 3, 343jca 1124 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵𝑋𝐵𝑄𝐵))
8731, 86jca 514 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝐾 ∈ Lat ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵𝑋𝐵𝑄𝐵)))
884, 5, 61latmlem2 17692 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵𝑋𝐵𝑄𝐵)) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋 → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) (𝑄(meet‘𝐾)𝑋)))
8987, 70, 88sylc 65 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) (𝑄(meet‘𝐾)𝑋))
9089, 81breqtrd 5092 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) (𝑋(meet‘𝐾)𝑄))
91 breq2 5070 . . . . . . . . . . . . . . . 16 ((𝑋(meet‘𝐾)𝑄) = 0 → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) (𝑋(meet‘𝐾)𝑄) ↔ (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) 0 ))
9290, 91syl5ibcom 247 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋(meet‘𝐾)𝑄) = 0 → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) 0 ))
93 hlop 36513 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ HL → 𝐾 ∈ OP)
9493adantr 483 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ OP)
954, 61latmcl 17662 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) ∈ 𝐵)
9631, 34, 85, 95syl3anc 1367 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) ∈ 𝐵)
974, 5, 6ople0 36338 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ OP ∧ (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) ∈ 𝐵) → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) 0 ↔ (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 ))
9894, 96, 97syl2anc 586 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) 0 ↔ (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 ))
9992, 98sylibd 241 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋(meet‘𝐾)𝑄) = 0 → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 ))
10083, 99sylbid 242 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (¬ 𝑄 𝑋 → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 ))
101100imp 409 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ¬ 𝑄 𝑋) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 )
102101adantrl 714 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑄 𝑋)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 )
103102adantrr 715 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 )
1044, 5, 61latmle2 17687 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑃 𝑄))
10531, 3, 68, 104syl3anc 1367 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑃 𝑄))
1064, 15latjcom 17669 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) = (𝑄 𝑃))
10731, 66, 34, 106syl3anc 1367 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 𝑄) = (𝑄 𝑃))
108105, 107breqtrd 5092 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑄 𝑃))
109108adantr 483 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → (𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑄 𝑃))
11030adantr 483 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → 𝐾 ∈ Lat)
111 simpr3 1192 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → 𝑄𝐵)
112 simpr1 1190 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴)
1134, 7atbase 36440 . . . . . . . . . . . . . 14 ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴 → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵)
114112, 113syl 17 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵)
1154, 61latmcom 17685 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ (𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐵) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = ((𝑋(meet‘𝐾)(𝑃 𝑄))(meet‘𝐾)𝑄))
116110, 111, 114, 115syl3anc 1367 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = ((𝑋(meet‘𝐾)(𝑃 𝑄))(meet‘𝐾)𝑄))
117116eqeq1d 2823 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 ↔ ((𝑋(meet‘𝐾)(𝑃 𝑄))(meet‘𝐾)𝑄) = 0 ))
1184, 5, 15, 61, 6, 7hlexch3 36542 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵) ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄))(meet‘𝐾)𝑄) = 0 ) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑄 𝑃) → 𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄)))))
1191183expia 1117 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → (((𝑋(meet‘𝐾)(𝑃 𝑄))(meet‘𝐾)𝑄) = 0 → ((𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑄 𝑃) → 𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))))
120117, 119sylbid 242 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴𝑃𝐴𝑄𝐵)) → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 𝑄))) = 0 → ((𝑋(meet‘𝐾)(𝑃 𝑄)) (𝑄 𝑃) → 𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))))
12177, 103, 109, 120syl3c 66 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → 𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))
12271, 121jca 514 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄))) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄)))))
123122ex 415 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))))
12464, 123jcad 515 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → ((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴 ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄)))))))
125 breq1 5069 . . . . . . . 8 (𝑟 = (𝑋(meet‘𝐾)(𝑃 𝑄)) → (𝑟 𝑋 ↔ (𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋))
126 oveq2 7164 . . . . . . . . 9 (𝑟 = (𝑋(meet‘𝐾)(𝑃 𝑄)) → (𝑄 𝑟) = (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))
127126breq2d 5078 . . . . . . . 8 (𝑟 = (𝑋(meet‘𝐾)(𝑃 𝑄)) → (𝑃 (𝑄 𝑟) ↔ 𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄)))))
128125, 127anbi12d 632 . . . . . . 7 (𝑟 = (𝑋(meet‘𝐾)(𝑃 𝑄)) → ((𝑟 𝑋𝑃 (𝑄 𝑟)) ↔ ((𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))))
129128rspcev 3623 . . . . . 6 (((𝑋(meet‘𝐾)(𝑃 𝑄)) ∈ 𝐴 ∧ ((𝑋(meet‘𝐾)(𝑃 𝑄)) 𝑋𝑃 (𝑄 (𝑋(meet‘𝐾)(𝑃 𝑄))))) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))
130124, 129syl6 35 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (((𝑃𝑄 ∧ ¬ 𝑄 𝑋) ∧ 𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))
131130expd 418 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 ∧ ¬ 𝑄 𝑋) → (𝑃 (𝑋 𝑄) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))))
13260, 131syl5bi 244 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (¬ (𝑃 = 𝑄𝑄 𝑋) → (𝑃 (𝑋 𝑄) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))))
13356, 132syl7 74 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (¬ (𝑃 = 𝑄𝑄 𝑋) → ((𝑋0𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)))))
13429, 55, 133ecase3d 1029 1 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋0𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wrex 3139   class class class wbr 5066  cfv 6355  (class class class)co 7156  Basecbs 16483  lecple 16572  joincjn 17554  meetcmee 17555  0.cp0 17647  Latclat 17655  OPcops 36323  Atomscatm 36414  AtLatcal 36415  HLchlt 36501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-lat 17656  df-clat 17718  df-oposet 36327  df-ol 36329  df-oml 36330  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502
This theorem is referenced by:  cvrat42  36595  ps-2  36629
  Copyright terms: Public domain W3C validator