Proof of Theorem cvrat4
Step | Hyp | Ref
| Expression |
1 | | hlatl 37374 |
. . . . . . . . . 10
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
2 | 1 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ AtLat) |
3 | | simpr1 1193 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑋 ∈ 𝐵) |
4 | | cvrat4.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝐾) |
5 | | cvrat4.l |
. . . . . . . . . . 11
⊢ ≤ =
(le‘𝐾) |
6 | | cvrat4.z |
. . . . . . . . . . 11
⊢ 0 =
(0.‘𝐾) |
7 | | cvrat4.a |
. . . . . . . . . . 11
⊢ 𝐴 = (Atoms‘𝐾) |
8 | 4, 5, 6, 7 | atlex 37330 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ∃𝑟 ∈ 𝐴 𝑟 ≤ 𝑋) |
9 | 8 | 3exp 1118 |
. . . . . . . . 9
⊢ (𝐾 ∈ AtLat → (𝑋 ∈ 𝐵 → (𝑋 ≠ 0 → ∃𝑟 ∈ 𝐴 𝑟 ≤ 𝑋))) |
10 | 2, 3, 9 | sylc 65 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 ≠ 0 → ∃𝑟 ∈ 𝐴 𝑟 ≤ 𝑋)) |
11 | 10 | adantr 481 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 = 𝑄) → (𝑋 ≠ 0 → ∃𝑟 ∈ 𝐴 𝑟 ≤ 𝑋)) |
12 | | simpll 764 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → 𝐾 ∈ HL) |
13 | | simplr3 1216 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → 𝑄 ∈ 𝐴) |
14 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → 𝑟 ∈ 𝐴) |
15 | | cvrat4.j |
. . . . . . . . . . . . . . 15
⊢ ∨ =
(join‘𝐾) |
16 | 5, 15, 7 | hlatlej1 37389 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑟)) |
17 | 12, 13, 14, 16 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑟)) |
18 | | breq1 5077 |
. . . . . . . . . . . . 13
⊢ (𝑃 = 𝑄 → (𝑃 ≤ (𝑄 ∨ 𝑟) ↔ 𝑄 ≤ (𝑄 ∨ 𝑟))) |
19 | 17, 18 | syl5ibr 245 |
. . . . . . . . . . . 12
⊢ (𝑃 = 𝑄 → (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → 𝑃 ≤ (𝑄 ∨ 𝑟))) |
20 | 19 | expd 416 |
. . . . . . . . . . 11
⊢ (𝑃 = 𝑄 → ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑟 ∈ 𝐴 → 𝑃 ≤ (𝑄 ∨ 𝑟)))) |
21 | 20 | impcom 408 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 = 𝑄) → (𝑟 ∈ 𝐴 → 𝑃 ≤ (𝑄 ∨ 𝑟))) |
22 | 21 | anim2d 612 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 = 𝑄) → ((𝑟 ≤ 𝑋 ∧ 𝑟 ∈ 𝐴) → (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)))) |
23 | 22 | expcomd 417 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 = 𝑄) → (𝑟 ∈ 𝐴 → (𝑟 ≤ 𝑋 → (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))))) |
24 | 23 | reximdvai 3200 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 = 𝑄) → (∃𝑟 ∈ 𝐴 𝑟 ≤ 𝑋 → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)))) |
25 | 11, 24 | syld 47 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 = 𝑄) → (𝑋 ≠ 0 → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)))) |
26 | 25 | ex 413 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 = 𝑄 → (𝑋 ≠ 0 → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))))) |
27 | 26 | a1i 11 |
. . . 4
⊢ (𝑃 ≤ (𝑋 ∨ 𝑄) → ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 = 𝑄 → (𝑋 ≠ 0 → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)))))) |
28 | 27 | com4l 92 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 = 𝑄 → (𝑋 ≠ 0 → (𝑃 ≤ (𝑋 ∨ 𝑄) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)))))) |
29 | 28 | imp4a 423 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 = 𝑄 → ((𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))))) |
30 | | hllat 37377 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
31 | 30 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ Lat) |
32 | | simpr3 1195 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐴) |
33 | 4, 7 | atbase 37303 |
. . . . . . . . . . . . . 14
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
34 | 32, 33 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐵) |
35 | 4, 5, 15 | latleeqj2 18170 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑄 ≤ 𝑋 ↔ (𝑋 ∨ 𝑄) = 𝑋)) |
36 | 31, 34, 3, 35 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑄 ≤ 𝑋 ↔ (𝑋 ∨ 𝑄) = 𝑋)) |
37 | 36 | biimpa 477 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑄 ≤ 𝑋) → (𝑋 ∨ 𝑄) = 𝑋) |
38 | 37 | breq2d 5086 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑄 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) ↔ 𝑃 ≤ 𝑋)) |
39 | 38 | biimpa 477 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → 𝑃 ≤ 𝑋) |
40 | 39 | expl 458 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → 𝑃 ≤ 𝑋)) |
41 | | simpl 483 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ HL) |
42 | | simpr2 1194 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑃 ∈ 𝐴) |
43 | 5, 15, 7 | hlatlej2 37390 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → 𝑃 ≤ (𝑄 ∨ 𝑃)) |
44 | 41, 32, 42, 43 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑃 ≤ (𝑄 ∨ 𝑃)) |
45 | 40, 44 | jctird 527 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑃)))) |
46 | 45, 42 | jctild 526 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑃 ∈ 𝐴 ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑃))))) |
47 | 46 | impl 456 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑃 ∈ 𝐴 ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑃)))) |
48 | | breq1 5077 |
. . . . . . 7
⊢ (𝑟 = 𝑃 → (𝑟 ≤ 𝑋 ↔ 𝑃 ≤ 𝑋)) |
49 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑟 = 𝑃 → (𝑄 ∨ 𝑟) = (𝑄 ∨ 𝑃)) |
50 | 49 | breq2d 5086 |
. . . . . . 7
⊢ (𝑟 = 𝑃 → (𝑃 ≤ (𝑄 ∨ 𝑟) ↔ 𝑃 ≤ (𝑄 ∨ 𝑃))) |
51 | 48, 50 | anbi12d 631 |
. . . . . 6
⊢ (𝑟 = 𝑃 → ((𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)) ↔ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑃)))) |
52 | 51 | rspcev 3561 |
. . . . 5
⊢ ((𝑃 ∈ 𝐴 ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑃))) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))) |
53 | 47, 52 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))) |
54 | 53 | adantrl 713 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑄 ≤ 𝑋) ∧ (𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))) |
55 | 54 | exp31 420 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑄 ≤ 𝑋 → ((𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))))) |
56 | | simpr 485 |
. . 3
⊢ ((𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → 𝑃 ≤ (𝑋 ∨ 𝑄)) |
57 | | ioran 981 |
. . . . 5
⊢ (¬
(𝑃 = 𝑄 ∨ 𝑄 ≤ 𝑋) ↔ (¬ 𝑃 = 𝑄 ∧ ¬ 𝑄 ≤ 𝑋)) |
58 | | df-ne 2944 |
. . . . . 6
⊢ (𝑃 ≠ 𝑄 ↔ ¬ 𝑃 = 𝑄) |
59 | 58 | anbi1i 624 |
. . . . 5
⊢ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ↔ (¬ 𝑃 = 𝑄 ∧ ¬ 𝑄 ≤ 𝑋)) |
60 | 57, 59 | bitr4i 277 |
. . . 4
⊢ (¬
(𝑃 = 𝑄 ∨ 𝑄 ≤ 𝑋) ↔ (𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋)) |
61 | | eqid 2738 |
. . . . . . . . . 10
⊢
(meet‘𝐾) =
(meet‘𝐾) |
62 | 4, 5, 15, 61, 7 | cvrat3 37456 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴)) |
63 | 62 | 3expd 1352 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ≠ 𝑄 → (¬ 𝑄 ≤ 𝑋 → (𝑃 ≤ (𝑋 ∨ 𝑄) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴)))) |
64 | 63 | imp4c 424 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴)) |
65 | 4, 7 | atbase 37303 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
66 | 42, 65 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑃 ∈ 𝐵) |
67 | 4, 15 | latjcl 18157 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
68 | 31, 66, 34, 67 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
69 | 4, 5, 61 | latmle1 18182 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ 𝑋) |
70 | 31, 3, 68, 69 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ 𝑋) |
71 | 70 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ 𝑋) |
72 | | simpll 764 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → 𝐾 ∈ HL) |
73 | 63 | imp44 429 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴) |
74 | | simplr2 1215 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → 𝑃 ∈ 𝐴) |
75 | 34 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → 𝑄 ∈ 𝐵) |
76 | 73, 74, 75 | 3jca 1127 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵)) |
77 | 72, 76 | jca 512 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → (𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵))) |
78 | 4, 5, 61, 6, 7 | atnle 37331 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ AtLat ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (¬ 𝑄 ≤ 𝑋 ↔ (𝑄(meet‘𝐾)𝑋) = 0 )) |
79 | 2, 32, 3, 78 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (¬ 𝑄 ≤ 𝑋 ↔ (𝑄(meet‘𝐾)𝑋) = 0 )) |
80 | 4, 61 | latmcom 18181 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑄(meet‘𝐾)𝑋) = (𝑋(meet‘𝐾)𝑄)) |
81 | 31, 34, 3, 80 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑄(meet‘𝐾)𝑋) = (𝑋(meet‘𝐾)𝑄)) |
82 | 81 | eqeq1d 2740 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑄(meet‘𝐾)𝑋) = 0 ↔ (𝑋(meet‘𝐾)𝑄) = 0 )) |
83 | 79, 82 | bitrd 278 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (¬ 𝑄 ≤ 𝑋 ↔ (𝑋(meet‘𝐾)𝑄) = 0 )) |
84 | 4, 61 | latmcl 18158 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐵) |
85 | 31, 3, 68, 84 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐵) |
86 | 85, 3, 34 | 3jca 1127 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵)) |
87 | 31, 86 | jca 512 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝐾 ∈ Lat ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵))) |
88 | 4, 5, 61 | latmlem2 18188 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 ∈ Lat ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵)) → ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ 𝑋 → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) ≤ (𝑄(meet‘𝐾)𝑋))) |
89 | 87, 70, 88 | sylc 65 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) ≤ (𝑄(meet‘𝐾)𝑋)) |
90 | 89, 81 | breqtrd 5100 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) ≤ (𝑋(meet‘𝐾)𝑄)) |
91 | | breq2 5078 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋(meet‘𝐾)𝑄) = 0 → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) ≤ (𝑋(meet‘𝐾)𝑄) ↔ (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) ≤ 0 )) |
92 | 90, 91 | syl5ibcom 244 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋(meet‘𝐾)𝑄) = 0 → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) ≤ 0 )) |
93 | | hlop 37376 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
94 | 93 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ OP) |
95 | 4, 61 | latmcl 18158 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐵) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) ∈ 𝐵) |
96 | 31, 34, 85, 95 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) ∈ 𝐵) |
97 | 4, 5, 6 | ople0 37201 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ OP ∧ (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) ∈ 𝐵) → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) ≤ 0 ↔ (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) = 0 )) |
98 | 94, 96, 97 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) ≤ 0 ↔ (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) = 0 )) |
99 | 92, 98 | sylibd 238 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋(meet‘𝐾)𝑄) = 0 → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) = 0 )) |
100 | 83, 99 | sylbid 239 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (¬ 𝑄 ≤ 𝑋 → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) = 0 )) |
101 | 100 | imp 407 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ ¬ 𝑄 ≤ 𝑋) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) = 0 ) |
102 | 101 | adantrl 713 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) = 0 ) |
103 | 102 | adantrr 714 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) = 0 ) |
104 | 4, 5, 61 | latmle2 18183 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ (𝑃 ∨ 𝑄)) |
105 | 31, 3, 68, 104 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ (𝑃 ∨ 𝑄)) |
106 | 4, 15 | latjcom 18165 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
107 | 31, 66, 34, 106 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
108 | 105, 107 | breqtrd 5100 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ (𝑄 ∨ 𝑃)) |
109 | 108 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ (𝑄 ∨ 𝑃)) |
110 | 30 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵)) → 𝐾 ∈ Lat) |
111 | | simpr3 1195 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵)) → 𝑄 ∈ 𝐵) |
112 | | simpr1 1193 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵)) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴) |
113 | 4, 7 | atbase 37303 |
. . . . . . . . . . . . . 14
⊢ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐵) |
114 | 112, 113 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵)) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐵) |
115 | 4, 61 | latmcom 18181 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐵) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) = ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))(meet‘𝐾)𝑄)) |
116 | 110, 111,
114, 115 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) = ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))(meet‘𝐾)𝑄)) |
117 | 116 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵)) → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) = 0 ↔ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))(meet‘𝐾)𝑄) = 0 )) |
118 | 4, 5, 15, 61, 6, 7 | hlexch3 37405 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵) ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))(meet‘𝐾)𝑄) = 0 ) → ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ (𝑄 ∨ 𝑃) → 𝑃 ≤ (𝑄 ∨ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))))) |
119 | 118 | 3expia 1120 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵)) → (((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))(meet‘𝐾)𝑄) = 0 → ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ (𝑄 ∨ 𝑃) → 𝑃 ≤ (𝑄 ∨ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)))))) |
120 | 117, 119 | sylbid 239 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵)) → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) = 0 → ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ (𝑄 ∨ 𝑃) → 𝑃 ≤ (𝑄 ∨ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)))))) |
121 | 77, 103, 109, 120 | syl3c 66 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → 𝑃 ≤ (𝑄 ∨ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)))) |
122 | 71, 121 | jca 512 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))))) |
123 | 122 | ex 413 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)))))) |
124 | 64, 123 | jcad 513 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))))))) |
125 | | breq1 5077 |
. . . . . . . 8
⊢ (𝑟 = (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) → (𝑟 ≤ 𝑋 ↔ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ 𝑋)) |
126 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑟 = (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) → (𝑄 ∨ 𝑟) = (𝑄 ∨ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)))) |
127 | 126 | breq2d 5086 |
. . . . . . . 8
⊢ (𝑟 = (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) → (𝑃 ≤ (𝑄 ∨ 𝑟) ↔ 𝑃 ≤ (𝑄 ∨ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))))) |
128 | 125, 127 | anbi12d 631 |
. . . . . . 7
⊢ (𝑟 = (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) → ((𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)) ↔ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)))))) |
129 | 128 | rspcev 3561 |
. . . . . 6
⊢ (((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))))) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))) |
130 | 124, 129 | syl6 35 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)))) |
131 | 130 | expd 416 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))))) |
132 | 60, 131 | syl5bi 241 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (¬ (𝑃 = 𝑄 ∨ 𝑄 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))))) |
133 | 56, 132 | syl7 74 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (¬ (𝑃 = 𝑄 ∨ 𝑄 ≤ 𝑋) → ((𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))))) |
134 | 29, 55, 133 | ecase3d 1031 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)))) |