Proof of Theorem cvrat4
| Step | Hyp | Ref
| Expression |
| 1 | | hlatl 39361 |
. . . . . . . . . 10
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| 2 | 1 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ AtLat) |
| 3 | | simpr1 1195 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑋 ∈ 𝐵) |
| 4 | | cvrat4.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝐾) |
| 5 | | cvrat4.l |
. . . . . . . . . . 11
⊢ ≤ =
(le‘𝐾) |
| 6 | | cvrat4.z |
. . . . . . . . . . 11
⊢ 0 =
(0.‘𝐾) |
| 7 | | cvrat4.a |
. . . . . . . . . . 11
⊢ 𝐴 = (Atoms‘𝐾) |
| 8 | 4, 5, 6, 7 | atlex 39317 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ∃𝑟 ∈ 𝐴 𝑟 ≤ 𝑋) |
| 9 | 8 | 3exp 1120 |
. . . . . . . . 9
⊢ (𝐾 ∈ AtLat → (𝑋 ∈ 𝐵 → (𝑋 ≠ 0 → ∃𝑟 ∈ 𝐴 𝑟 ≤ 𝑋))) |
| 10 | 2, 3, 9 | sylc 65 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 ≠ 0 → ∃𝑟 ∈ 𝐴 𝑟 ≤ 𝑋)) |
| 11 | 10 | adantr 480 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 = 𝑄) → (𝑋 ≠ 0 → ∃𝑟 ∈ 𝐴 𝑟 ≤ 𝑋)) |
| 12 | | simpll 767 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → 𝐾 ∈ HL) |
| 13 | | simplr3 1218 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → 𝑄 ∈ 𝐴) |
| 14 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → 𝑟 ∈ 𝐴) |
| 15 | | cvrat4.j |
. . . . . . . . . . . . . . 15
⊢ ∨ =
(join‘𝐾) |
| 16 | 5, 15, 7 | hlatlej1 39376 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑟)) |
| 17 | 12, 13, 14, 16 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑟)) |
| 18 | | breq1 5146 |
. . . . . . . . . . . . 13
⊢ (𝑃 = 𝑄 → (𝑃 ≤ (𝑄 ∨ 𝑟) ↔ 𝑄 ≤ (𝑄 ∨ 𝑟))) |
| 19 | 17, 18 | imbitrrid 246 |
. . . . . . . . . . . 12
⊢ (𝑃 = 𝑄 → (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → 𝑃 ≤ (𝑄 ∨ 𝑟))) |
| 20 | 19 | expd 415 |
. . . . . . . . . . 11
⊢ (𝑃 = 𝑄 → ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑟 ∈ 𝐴 → 𝑃 ≤ (𝑄 ∨ 𝑟)))) |
| 21 | 20 | impcom 407 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 = 𝑄) → (𝑟 ∈ 𝐴 → 𝑃 ≤ (𝑄 ∨ 𝑟))) |
| 22 | 21 | anim2d 612 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 = 𝑄) → ((𝑟 ≤ 𝑋 ∧ 𝑟 ∈ 𝐴) → (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)))) |
| 23 | 22 | expcomd 416 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 = 𝑄) → (𝑟 ∈ 𝐴 → (𝑟 ≤ 𝑋 → (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))))) |
| 24 | 23 | reximdvai 3165 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 = 𝑄) → (∃𝑟 ∈ 𝐴 𝑟 ≤ 𝑋 → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)))) |
| 25 | 11, 24 | syld 47 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 = 𝑄) → (𝑋 ≠ 0 → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)))) |
| 26 | 25 | ex 412 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 = 𝑄 → (𝑋 ≠ 0 → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))))) |
| 27 | 26 | a1i 11 |
. . . 4
⊢ (𝑃 ≤ (𝑋 ∨ 𝑄) → ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 = 𝑄 → (𝑋 ≠ 0 → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)))))) |
| 28 | 27 | com4l 92 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 = 𝑄 → (𝑋 ≠ 0 → (𝑃 ≤ (𝑋 ∨ 𝑄) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)))))) |
| 29 | 28 | imp4a 422 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 = 𝑄 → ((𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))))) |
| 30 | | hllat 39364 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| 31 | 30 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ Lat) |
| 32 | | simpr3 1197 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐴) |
| 33 | 4, 7 | atbase 39290 |
. . . . . . . . . . . . . 14
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
| 34 | 32, 33 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐵) |
| 35 | 4, 5, 15 | latleeqj2 18497 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑄 ≤ 𝑋 ↔ (𝑋 ∨ 𝑄) = 𝑋)) |
| 36 | 31, 34, 3, 35 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑄 ≤ 𝑋 ↔ (𝑋 ∨ 𝑄) = 𝑋)) |
| 37 | 36 | biimpa 476 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑄 ≤ 𝑋) → (𝑋 ∨ 𝑄) = 𝑋) |
| 38 | 37 | breq2d 5155 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑄 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) ↔ 𝑃 ≤ 𝑋)) |
| 39 | 38 | biimpa 476 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → 𝑃 ≤ 𝑋) |
| 40 | 39 | expl 457 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → 𝑃 ≤ 𝑋)) |
| 41 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ HL) |
| 42 | | simpr2 1196 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑃 ∈ 𝐴) |
| 43 | 5, 15, 7 | hlatlej2 39377 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → 𝑃 ≤ (𝑄 ∨ 𝑃)) |
| 44 | 41, 32, 42, 43 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑃 ≤ (𝑄 ∨ 𝑃)) |
| 45 | 40, 44 | jctird 526 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑃)))) |
| 46 | 45, 42 | jctild 525 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑃 ∈ 𝐴 ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑃))))) |
| 47 | 46 | impl 455 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑃 ∈ 𝐴 ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑃)))) |
| 48 | | breq1 5146 |
. . . . . . 7
⊢ (𝑟 = 𝑃 → (𝑟 ≤ 𝑋 ↔ 𝑃 ≤ 𝑋)) |
| 49 | | oveq2 7439 |
. . . . . . . 8
⊢ (𝑟 = 𝑃 → (𝑄 ∨ 𝑟) = (𝑄 ∨ 𝑃)) |
| 50 | 49 | breq2d 5155 |
. . . . . . 7
⊢ (𝑟 = 𝑃 → (𝑃 ≤ (𝑄 ∨ 𝑟) ↔ 𝑃 ≤ (𝑄 ∨ 𝑃))) |
| 51 | 48, 50 | anbi12d 632 |
. . . . . 6
⊢ (𝑟 = 𝑃 → ((𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)) ↔ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑃)))) |
| 52 | 51 | rspcev 3622 |
. . . . 5
⊢ ((𝑃 ∈ 𝐴 ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑃))) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))) |
| 53 | 47, 52 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))) |
| 54 | 53 | adantrl 716 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑄 ≤ 𝑋) ∧ (𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))) |
| 55 | 54 | exp31 419 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑄 ≤ 𝑋 → ((𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))))) |
| 56 | | simpr 484 |
. . 3
⊢ ((𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → 𝑃 ≤ (𝑋 ∨ 𝑄)) |
| 57 | | ioran 986 |
. . . . 5
⊢ (¬
(𝑃 = 𝑄 ∨ 𝑄 ≤ 𝑋) ↔ (¬ 𝑃 = 𝑄 ∧ ¬ 𝑄 ≤ 𝑋)) |
| 58 | | df-ne 2941 |
. . . . . 6
⊢ (𝑃 ≠ 𝑄 ↔ ¬ 𝑃 = 𝑄) |
| 59 | 58 | anbi1i 624 |
. . . . 5
⊢ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ↔ (¬ 𝑃 = 𝑄 ∧ ¬ 𝑄 ≤ 𝑋)) |
| 60 | 57, 59 | bitr4i 278 |
. . . 4
⊢ (¬
(𝑃 = 𝑄 ∨ 𝑄 ≤ 𝑋) ↔ (𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋)) |
| 61 | | eqid 2737 |
. . . . . . . . . 10
⊢
(meet‘𝐾) =
(meet‘𝐾) |
| 62 | 4, 5, 15, 61, 7 | cvrat3 39444 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴)) |
| 63 | 62 | 3expd 1354 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ≠ 𝑄 → (¬ 𝑄 ≤ 𝑋 → (𝑃 ≤ (𝑋 ∨ 𝑄) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴)))) |
| 64 | 63 | imp4c 423 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴)) |
| 65 | 4, 7 | atbase 39290 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
| 66 | 42, 65 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑃 ∈ 𝐵) |
| 67 | 4, 15 | latjcl 18484 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
| 68 | 31, 66, 34, 67 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
| 69 | 4, 5, 61 | latmle1 18509 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ 𝑋) |
| 70 | 31, 3, 68, 69 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ 𝑋) |
| 71 | 70 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ 𝑋) |
| 72 | | simpll 767 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → 𝐾 ∈ HL) |
| 73 | 63 | imp44 428 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴) |
| 74 | | simplr2 1217 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → 𝑃 ∈ 𝐴) |
| 75 | 34 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → 𝑄 ∈ 𝐵) |
| 76 | 73, 74, 75 | 3jca 1129 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵)) |
| 77 | 72, 76 | jca 511 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → (𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵))) |
| 78 | 4, 5, 61, 6, 7 | atnle 39318 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ AtLat ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (¬ 𝑄 ≤ 𝑋 ↔ (𝑄(meet‘𝐾)𝑋) = 0 )) |
| 79 | 2, 32, 3, 78 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (¬ 𝑄 ≤ 𝑋 ↔ (𝑄(meet‘𝐾)𝑋) = 0 )) |
| 80 | 4, 61 | latmcom 18508 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑄(meet‘𝐾)𝑋) = (𝑋(meet‘𝐾)𝑄)) |
| 81 | 31, 34, 3, 80 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑄(meet‘𝐾)𝑋) = (𝑋(meet‘𝐾)𝑄)) |
| 82 | 81 | eqeq1d 2739 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑄(meet‘𝐾)𝑋) = 0 ↔ (𝑋(meet‘𝐾)𝑄) = 0 )) |
| 83 | 79, 82 | bitrd 279 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (¬ 𝑄 ≤ 𝑋 ↔ (𝑋(meet‘𝐾)𝑄) = 0 )) |
| 84 | 4, 61 | latmcl 18485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐵) |
| 85 | 31, 3, 68, 84 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐵) |
| 86 | 85, 3, 34 | 3jca 1129 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵)) |
| 87 | 31, 86 | jca 511 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝐾 ∈ Lat ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵))) |
| 88 | 4, 5, 61 | latmlem2 18515 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 ∈ Lat ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵)) → ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ 𝑋 → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) ≤ (𝑄(meet‘𝐾)𝑋))) |
| 89 | 87, 70, 88 | sylc 65 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) ≤ (𝑄(meet‘𝐾)𝑋)) |
| 90 | 89, 81 | breqtrd 5169 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) ≤ (𝑋(meet‘𝐾)𝑄)) |
| 91 | | breq2 5147 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋(meet‘𝐾)𝑄) = 0 → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) ≤ (𝑋(meet‘𝐾)𝑄) ↔ (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) ≤ 0 )) |
| 92 | 90, 91 | syl5ibcom 245 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋(meet‘𝐾)𝑄) = 0 → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) ≤ 0 )) |
| 93 | | hlop 39363 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
| 94 | 93 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ OP) |
| 95 | 4, 61 | latmcl 18485 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐵) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) ∈ 𝐵) |
| 96 | 31, 34, 85, 95 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) ∈ 𝐵) |
| 97 | 4, 5, 6 | ople0 39188 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ OP ∧ (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) ∈ 𝐵) → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) ≤ 0 ↔ (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) = 0 )) |
| 98 | 94, 96, 97 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) ≤ 0 ↔ (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) = 0 )) |
| 99 | 92, 98 | sylibd 239 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋(meet‘𝐾)𝑄) = 0 → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) = 0 )) |
| 100 | 83, 99 | sylbid 240 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (¬ 𝑄 ≤ 𝑋 → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) = 0 )) |
| 101 | 100 | imp 406 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ ¬ 𝑄 ≤ 𝑋) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) = 0 ) |
| 102 | 101 | adantrl 716 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) = 0 ) |
| 103 | 102 | adantrr 717 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) = 0 ) |
| 104 | 4, 5, 61 | latmle2 18510 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ (𝑃 ∨ 𝑄)) |
| 105 | 31, 3, 68, 104 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ (𝑃 ∨ 𝑄)) |
| 106 | 4, 15 | latjcom 18492 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
| 107 | 31, 66, 34, 106 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
| 108 | 105, 107 | breqtrd 5169 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ (𝑄 ∨ 𝑃)) |
| 109 | 108 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ (𝑄 ∨ 𝑃)) |
| 110 | 30 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵)) → 𝐾 ∈ Lat) |
| 111 | | simpr3 1197 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵)) → 𝑄 ∈ 𝐵) |
| 112 | | simpr1 1195 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵)) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴) |
| 113 | 4, 7 | atbase 39290 |
. . . . . . . . . . . . . 14
⊢ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐵) |
| 114 | 112, 113 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵)) → (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐵) |
| 115 | 4, 61 | latmcom 18508 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐵) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) = ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))(meet‘𝐾)𝑄)) |
| 116 | 110, 111,
114, 115 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵)) → (𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) = ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))(meet‘𝐾)𝑄)) |
| 117 | 116 | eqeq1d 2739 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵)) → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) = 0 ↔ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))(meet‘𝐾)𝑄) = 0 )) |
| 118 | 4, 5, 15, 61, 6, 7 | hlexch3 39393 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵) ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))(meet‘𝐾)𝑄) = 0 ) → ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ (𝑄 ∨ 𝑃) → 𝑃 ≤ (𝑄 ∨ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))))) |
| 119 | 118 | 3expia 1122 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵)) → (((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))(meet‘𝐾)𝑄) = 0 → ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ (𝑄 ∨ 𝑃) → 𝑃 ≤ (𝑄 ∨ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)))))) |
| 120 | 117, 119 | sylbid 240 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵)) → ((𝑄(meet‘𝐾)(𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))) = 0 → ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ (𝑄 ∨ 𝑃) → 𝑃 ≤ (𝑄 ∨ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)))))) |
| 121 | 77, 103, 109, 120 | syl3c 66 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → 𝑃 ≤ (𝑄 ∨ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)))) |
| 122 | 71, 121 | jca 511 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))))) |
| 123 | 122 | ex 412 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)))))) |
| 124 | 64, 123 | jcad 512 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))))))) |
| 125 | | breq1 5146 |
. . . . . . . 8
⊢ (𝑟 = (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) → (𝑟 ≤ 𝑋 ↔ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ 𝑋)) |
| 126 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑟 = (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) → (𝑄 ∨ 𝑟) = (𝑄 ∨ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)))) |
| 127 | 126 | breq2d 5155 |
. . . . . . . 8
⊢ (𝑟 = (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) → (𝑃 ≤ (𝑄 ∨ 𝑟) ↔ 𝑃 ≤ (𝑄 ∨ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))))) |
| 128 | 125, 127 | anbi12d 632 |
. . . . . . 7
⊢ (𝑟 = (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) → ((𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)) ↔ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)))))) |
| 129 | 128 | rspcev 3622 |
. . . . . 6
⊢ (((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ∈ 𝐴 ∧ ((𝑋(meet‘𝐾)(𝑃 ∨ 𝑄)) ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ (𝑋(meet‘𝐾)(𝑃 ∨ 𝑄))))) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))) |
| 130 | 124, 129 | syl6 35 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)))) |
| 131 | 130 | expd 415 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))))) |
| 132 | 60, 131 | biimtrid 242 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (¬ (𝑃 = 𝑄 ∨ 𝑄 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))))) |
| 133 | 56, 132 | syl7 74 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (¬ (𝑃 = 𝑄 ∨ 𝑄 ≤ 𝑋) → ((𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟))))) |
| 134 | 29, 55, 133 | ecase3d 1035 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)))) |