Step | Hyp | Ref
| Expression |
1 | | nfsbc1v 3731 |
. . 3
⊢
Ⅎ𝑝[𝑞 / 𝑝]𝜓 |
2 | | nfsbc1v 3731 |
. . 3
⊢
Ⅎ𝑝[𝑤 / 𝑝]𝜓 |
3 | | sbceq1a 3722 |
. . 3
⊢ (𝑝 = 𝑤 → (𝜓 ↔ [𝑤 / 𝑝]𝜓)) |
4 | | dfsbcq 3713 |
. . 3
⊢ (𝑤 = 𝑞 → ([𝑤 / 𝑝]𝜓 ↔ [𝑞 / 𝑝]𝜓)) |
5 | 1, 2, 3, 4 | reu8nf 3806 |
. 2
⊢
(∃!𝑝 ∈
(Pairs‘𝑋)𝜓 ↔ ∃𝑝 ∈ (Pairs‘𝑋)(𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞))) |
6 | | sprel 44824 |
. . . . . 6
⊢ (𝑝 ∈ (Pairs‘𝑋) → ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 𝑝 = {𝑎, 𝑏}) |
7 | | reupr.a |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = {𝑎, 𝑏} → (𝜓 ↔ 𝜒)) |
8 | 7 | biimpcd 248 |
. . . . . . . . . . . . . 14
⊢ (𝜓 → (𝑝 = {𝑎, 𝑏} → 𝜒)) |
9 | 8 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞)) → (𝑝 = {𝑎, 𝑏} → 𝜒)) |
10 | 9 | ad2antlr 723 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ 𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞))) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑝 = {𝑎, 𝑏} → 𝜒)) |
11 | 10 | imp 406 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ 𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞))) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑝 = {𝑎, 𝑏}) → 𝜒) |
12 | | pm3.22 459 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ 𝑋 ∈ 𝑉) → (𝑋 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) |
13 | 12 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ 𝑋 ∈ 𝑉) ∧ 𝜓) → (𝑋 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) |
14 | | prelspr 44826 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑋 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → {𝑥, 𝑦} ∈ (Pairs‘𝑋)) |
15 | | dfsbcq 3713 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑞 = {𝑥, 𝑦} → ([𝑞 / 𝑝]𝜓 ↔ [{𝑥, 𝑦} / 𝑝]𝜓)) |
16 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑞 = {𝑥, 𝑦} → (𝑝 = 𝑞 ↔ 𝑝 = {𝑥, 𝑦})) |
17 | 15, 16 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑞 = {𝑥, 𝑦} → (([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞) ↔ ([{𝑥, 𝑦} / 𝑝]𝜓 → 𝑝 = {𝑥, 𝑦}))) |
18 | 17 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑋 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑞 = {𝑥, 𝑦}) → (([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞) ↔ ([{𝑥, 𝑦} / 𝑝]𝜓 → 𝑝 = {𝑥, 𝑦}))) |
19 | 14, 18 | rspcdv 3543 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑋 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞) → ([{𝑥, 𝑦} / 𝑝]𝜓 → 𝑝 = {𝑥, 𝑦}))) |
20 | 13, 19 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ 𝑋 ∈ 𝑉) ∧ 𝜓) → (∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞) → ([{𝑥, 𝑦} / 𝑝]𝜓 → 𝑝 = {𝑥, 𝑦}))) |
21 | | zfpair2 5348 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ {𝑥, 𝑦} ∈ V |
22 | | reupr.x |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑝 = {𝑥, 𝑦} → (𝜓 ↔ 𝜃)) |
23 | 21, 22 | sbcie 3754 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
([{𝑥, 𝑦} / 𝑝]𝜓 ↔ 𝜃) |
24 | | pm2.27 42 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
([{𝑥, 𝑦} / 𝑝]𝜓 → (([{𝑥, 𝑦} / 𝑝]𝜓 → 𝑝 = {𝑥, 𝑦}) → 𝑝 = {𝑥, 𝑦})) |
25 | 23, 24 | sylbir 234 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜃 → (([{𝑥, 𝑦} / 𝑝]𝜓 → 𝑝 = {𝑥, 𝑦}) → 𝑝 = {𝑥, 𝑦})) |
26 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑥, 𝑦} = 𝑝 ↔ 𝑝 = {𝑥, 𝑦}) |
27 | 25, 26 | syl6ibr 251 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜃 → (([{𝑥, 𝑦} / 𝑝]𝜓 → 𝑝 = {𝑥, 𝑦}) → {𝑥, 𝑦} = 𝑝)) |
28 | 27 | com12 32 |
. . . . . . . . . . . . . . . . . . 19
⊢
(([{𝑥, 𝑦} / 𝑝]𝜓 → 𝑝 = {𝑥, 𝑦}) → (𝜃 → {𝑥, 𝑦} = 𝑝)) |
29 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑎, 𝑏} = 𝑝 → ({𝑥, 𝑦} = {𝑎, 𝑏} ↔ {𝑥, 𝑦} = 𝑝)) |
30 | 29 | eqcoms 2746 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝 = {𝑎, 𝑏} → ({𝑥, 𝑦} = {𝑎, 𝑏} ↔ {𝑥, 𝑦} = 𝑝)) |
31 | 30 | imbi2d 340 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = {𝑎, 𝑏} → ((𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}) ↔ (𝜃 → {𝑥, 𝑦} = 𝑝))) |
32 | 28, 31 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . 18
⊢
(([{𝑥, 𝑦} / 𝑝]𝜓 → 𝑝 = {𝑥, 𝑦}) → (𝑝 = {𝑎, 𝑏} → (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) |
33 | 32 | a1d 25 |
. . . . . . . . . . . . . . . . 17
⊢
(([{𝑥, 𝑦} / 𝑝]𝜓 → 𝑝 = {𝑥, 𝑦}) → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑝 = {𝑎, 𝑏} → (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))) |
34 | 20, 33 | syl6 35 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ 𝑋 ∈ 𝑉) ∧ 𝜓) → (∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞) → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑝 = {𝑎, 𝑏} → (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))))) |
35 | 34 | expimpd 453 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ 𝑋 ∈ 𝑉) → ((𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞)) → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑝 = {𝑎, 𝑏} → (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))))) |
36 | 35 | expimpd 453 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑋 ∈ 𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞))) → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑝 = {𝑎, 𝑏} → (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))))) |
37 | 36 | imp4c 423 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((((𝑋 ∈ 𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞))) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑝 = {𝑎, 𝑏}) → (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) |
38 | 37 | impcom 407 |
. . . . . . . . . . . 12
⊢
(((((𝑋 ∈ 𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞))) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑝 = {𝑎, 𝑏}) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})) |
39 | 38 | ralrimivva 3114 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ 𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞))) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑝 = {𝑎, 𝑏}) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})) |
40 | 11, 39 | jca 511 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞))) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑝 = {𝑎, 𝑏}) → (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) |
41 | 40 | ex 412 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞))) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑝 = {𝑎, 𝑏} → (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))) |
42 | 41 | reximdvva 3205 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞))) → (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 𝑝 = {𝑎, 𝑏} → ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))) |
43 | 42 | expcom 413 |
. . . . . . 7
⊢ ((𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞)) → (𝑋 ∈ 𝑉 → (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 𝑝 = {𝑎, 𝑏} → ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))))) |
44 | 43 | com13 88 |
. . . . . 6
⊢
(∃𝑎 ∈
𝑋 ∃𝑏 ∈ 𝑋 𝑝 = {𝑎, 𝑏} → (𝑋 ∈ 𝑉 → ((𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞)) → ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))))) |
45 | 6, 44 | syl 17 |
. . . . 5
⊢ (𝑝 ∈ (Pairs‘𝑋) → (𝑋 ∈ 𝑉 → ((𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞)) → ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))))) |
46 | 45 | impcom 407 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑝 ∈ (Pairs‘𝑋)) → ((𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞)) → ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))) |
47 | 46 | rexlimdva 3212 |
. . 3
⊢ (𝑋 ∈ 𝑉 → (∃𝑝 ∈ (Pairs‘𝑋)(𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞)) → ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))) |
48 | | prelspr 44826 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → {𝑎, 𝑏} ∈ (Pairs‘𝑋)) |
49 | 48 | adantr 480 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) → {𝑎, 𝑏} ∈ (Pairs‘𝑋)) |
50 | | simprl 767 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) → 𝜒) |
51 | | nfsbc1v 3731 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥[𝑐 / 𝑥]𝜃 |
52 | | nfv 1918 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥{𝑐, 𝑦} = {𝑎, 𝑏} |
53 | 51, 52 | nfim 1900 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥([𝑐 / 𝑥]𝜃 → {𝑐, 𝑦} = {𝑎, 𝑏}) |
54 | | nfsbc1v 3731 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑦[𝑑 / 𝑦][𝑐 / 𝑥]𝜃 |
55 | | nfv 1918 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑦{𝑐, 𝑑} = {𝑎, 𝑏} |
56 | 54, 55 | nfim 1900 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑦([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → {𝑐, 𝑑} = {𝑎, 𝑏}) |
57 | | sbceq1a 3722 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑐 → (𝜃 ↔ [𝑐 / 𝑥]𝜃)) |
58 | | preq1 4666 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑐 → {𝑥, 𝑦} = {𝑐, 𝑦}) |
59 | 58 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑐 → ({𝑥, 𝑦} = {𝑎, 𝑏} ↔ {𝑐, 𝑦} = {𝑎, 𝑏})) |
60 | 57, 59 | imbi12d 344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑐 → ((𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}) ↔ ([𝑐 / 𝑥]𝜃 → {𝑐, 𝑦} = {𝑎, 𝑏}))) |
61 | | sbceq1a 3722 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑑 → ([𝑐 / 𝑥]𝜃 ↔ [𝑑 / 𝑦][𝑐 / 𝑥]𝜃)) |
62 | | preq2 4667 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑑 → {𝑐, 𝑦} = {𝑐, 𝑑}) |
63 | 62 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑑 → ({𝑐, 𝑦} = {𝑎, 𝑏} ↔ {𝑐, 𝑑} = {𝑎, 𝑏})) |
64 | 61, 63 | imbi12d 344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑑 → (([𝑐 / 𝑥]𝜃 → {𝑐, 𝑦} = {𝑎, 𝑏}) ↔ ([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → {𝑐, 𝑑} = {𝑎, 𝑏}))) |
65 | 53, 56, 60, 64 | rspc2 3560 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}) → ([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → {𝑐, 𝑑} = {𝑎, 𝑏}))) |
66 | 65 | ad2antlr 723 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋)) ∧ 𝜒) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}) → ([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → {𝑐, 𝑑} = {𝑎, 𝑏}))) |
67 | 22 | sbcpr 44861 |
. . . . . . . . . . . . . . . . . 18
⊢
([{𝑐, 𝑑} / 𝑝]𝜓 ↔ [𝑑 / 𝑦][𝑐 / 𝑥]𝜃) |
68 | | pm2.27 42 |
. . . . . . . . . . . . . . . . . 18
⊢
([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → (([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → {𝑐, 𝑑} = {𝑎, 𝑏}) → {𝑐, 𝑑} = {𝑎, 𝑏})) |
69 | 67, 68 | sylbi 216 |
. . . . . . . . . . . . . . . . 17
⊢
([{𝑐, 𝑑} / 𝑝]𝜓 → (([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → {𝑐, 𝑑} = {𝑎, 𝑏}) → {𝑐, 𝑑} = {𝑎, 𝑏})) |
70 | | eqcom 2745 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝑎, 𝑏} = {𝑐, 𝑑} ↔ {𝑐, 𝑑} = {𝑎, 𝑏}) |
71 | 69, 70 | syl6ibr 251 |
. . . . . . . . . . . . . . . 16
⊢
([{𝑐, 𝑑} / 𝑝]𝜓 → (([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → {𝑐, 𝑑} = {𝑎, 𝑏}) → {𝑎, 𝑏} = {𝑐, 𝑑})) |
72 | 71 | com12 32 |
. . . . . . . . . . . . . . 15
⊢
(([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → {𝑐, 𝑑} = {𝑎, 𝑏}) → ([{𝑐, 𝑑} / 𝑝]𝜓 → {𝑎, 𝑏} = {𝑐, 𝑑})) |
73 | 66, 72 | syl6 35 |
. . . . . . . . . . . . . 14
⊢ ((((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋)) ∧ 𝜒) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}) → ([{𝑐, 𝑑} / 𝑝]𝜓 → {𝑎, 𝑏} = {𝑐, 𝑑}))) |
74 | 73 | expimpd 453 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋)) → ((𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})) → ([{𝑐, 𝑑} / 𝑝]𝜓 → {𝑎, 𝑏} = {𝑐, 𝑑}))) |
75 | 74 | expcom 413 |
. . . . . . . . . . . 12
⊢ ((𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋) → ((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})) → ([{𝑐, 𝑑} / 𝑝]𝜓 → {𝑎, 𝑏} = {𝑐, 𝑑})))) |
76 | 75 | impd 410 |
. . . . . . . . . . 11
⊢ ((𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋) → (((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) → ([{𝑐, 𝑑} / 𝑝]𝜓 → {𝑎, 𝑏} = {𝑐, 𝑑}))) |
77 | 76 | impcom 407 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) ∧ (𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋)) → ([{𝑐, 𝑑} / 𝑝]𝜓 → {𝑎, 𝑏} = {𝑐, 𝑑})) |
78 | | dfsbcq 3713 |
. . . . . . . . . . 11
⊢ (𝑞 = {𝑐, 𝑑} → ([𝑞 / 𝑝]𝜓 ↔ [{𝑐, 𝑑} / 𝑝]𝜓)) |
79 | | eqeq2 2750 |
. . . . . . . . . . 11
⊢ (𝑞 = {𝑐, 𝑑} → ({𝑎, 𝑏} = 𝑞 ↔ {𝑎, 𝑏} = {𝑐, 𝑑})) |
80 | 78, 79 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑞 = {𝑐, 𝑑} → (([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞) ↔ ([{𝑐, 𝑑} / 𝑝]𝜓 → {𝑎, 𝑏} = {𝑐, 𝑑}))) |
81 | 77, 80 | syl5ibrcom 246 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) ∧ (𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋)) → (𝑞 = {𝑐, 𝑑} → ([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞))) |
82 | 81 | rexlimdvva 3222 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) → (∃𝑐 ∈ 𝑋 ∃𝑑 ∈ 𝑋 𝑞 = {𝑐, 𝑑} → ([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞))) |
83 | | sprel 44824 |
. . . . . . . 8
⊢ (𝑞 ∈ (Pairs‘𝑋) → ∃𝑐 ∈ 𝑋 ∃𝑑 ∈ 𝑋 𝑞 = {𝑐, 𝑑}) |
84 | 82, 83 | impel 505 |
. . . . . . 7
⊢ ((((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) ∧ 𝑞 ∈ (Pairs‘𝑋)) → ([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞)) |
85 | 84 | ralrimiva 3107 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) → ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞)) |
86 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑝𝜒 |
87 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑝(Pairs‘𝑋) |
88 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑝{𝑎, 𝑏} = 𝑞 |
89 | 1, 88 | nfim 1900 |
. . . . . . . . 9
⊢
Ⅎ𝑝([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞) |
90 | 87, 89 | nfralw 3149 |
. . . . . . . 8
⊢
Ⅎ𝑝∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞) |
91 | 86, 90 | nfan 1903 |
. . . . . . 7
⊢
Ⅎ𝑝(𝜒 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞)) |
92 | | eqeq1 2742 |
. . . . . . . . . 10
⊢ (𝑝 = {𝑎, 𝑏} → (𝑝 = 𝑞 ↔ {𝑎, 𝑏} = 𝑞)) |
93 | 92 | imbi2d 340 |
. . . . . . . . 9
⊢ (𝑝 = {𝑎, 𝑏} → (([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞) ↔ ([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞))) |
94 | 93 | ralbidv 3120 |
. . . . . . . 8
⊢ (𝑝 = {𝑎, 𝑏} → (∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞) ↔ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞))) |
95 | 7, 94 | anbi12d 630 |
. . . . . . 7
⊢ (𝑝 = {𝑎, 𝑏} → ((𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞)) ↔ (𝜒 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞)))) |
96 | 91, 95 | rspce 3540 |
. . . . . 6
⊢ (({𝑎, 𝑏} ∈ (Pairs‘𝑋) ∧ (𝜒 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞))) → ∃𝑝 ∈ (Pairs‘𝑋)(𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞))) |
97 | 49, 50, 85, 96 | syl12anc 833 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) → ∃𝑝 ∈ (Pairs‘𝑋)(𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞))) |
98 | 97 | ex 412 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})) → ∃𝑝 ∈ (Pairs‘𝑋)(𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞)))) |
99 | 98 | rexlimdvva 3222 |
. . 3
⊢ (𝑋 ∈ 𝑉 → (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})) → ∃𝑝 ∈ (Pairs‘𝑋)(𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞)))) |
100 | 47, 99 | impbid 211 |
. 2
⊢ (𝑋 ∈ 𝑉 → (∃𝑝 ∈ (Pairs‘𝑋)(𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞)) ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))) |
101 | 5, 100 | syl5bb 282 |
1
⊢ (𝑋 ∈ 𝑉 → (∃!𝑝 ∈ (Pairs‘𝑋)𝜓 ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))) |