| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nfsbc1v 3808 | . . 3
⊢
Ⅎ𝑝[𝑞 / 𝑝]𝜓 | 
| 2 |  | nfsbc1v 3808 | . . 3
⊢
Ⅎ𝑝[𝑤 / 𝑝]𝜓 | 
| 3 |  | sbceq1a 3799 | . . 3
⊢ (𝑝 = 𝑤 → (𝜓 ↔ [𝑤 / 𝑝]𝜓)) | 
| 4 |  | dfsbcq 3790 | . . 3
⊢ (𝑤 = 𝑞 → ([𝑤 / 𝑝]𝜓 ↔ [𝑞 / 𝑝]𝜓)) | 
| 5 | 1, 2, 3, 4 | reu8nf 3877 | . 2
⊢
(∃!𝑝 ∈
(Pairs‘𝑋)𝜓 ↔ ∃𝑝 ∈ (Pairs‘𝑋)(𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞))) | 
| 6 |  | sprel 47471 | . . . . . 6
⊢ (𝑝 ∈ (Pairs‘𝑋) → ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 𝑝 = {𝑎, 𝑏}) | 
| 7 |  | reupr.a | . . . . . . . . . . . . . . 15
⊢ (𝑝 = {𝑎, 𝑏} → (𝜓 ↔ 𝜒)) | 
| 8 | 7 | biimpcd 249 | . . . . . . . . . . . . . 14
⊢ (𝜓 → (𝑝 = {𝑎, 𝑏} → 𝜒)) | 
| 9 | 8 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞)) → (𝑝 = {𝑎, 𝑏} → 𝜒)) | 
| 10 | 9 | ad2antlr 727 | . . . . . . . . . . . 12
⊢ (((𝑋 ∈ 𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞))) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑝 = {𝑎, 𝑏} → 𝜒)) | 
| 11 | 10 | imp 406 | . . . . . . . . . . 11
⊢ ((((𝑋 ∈ 𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞))) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑝 = {𝑎, 𝑏}) → 𝜒) | 
| 12 |  | pm3.22 459 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ 𝑋 ∈ 𝑉) → (𝑋 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) | 
| 13 | 12 | adantr 480 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ 𝑋 ∈ 𝑉) ∧ 𝜓) → (𝑋 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) | 
| 14 |  | prelspr 47473 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑋 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → {𝑥, 𝑦} ∈ (Pairs‘𝑋)) | 
| 15 |  | dfsbcq 3790 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑞 = {𝑥, 𝑦} → ([𝑞 / 𝑝]𝜓 ↔ [{𝑥, 𝑦} / 𝑝]𝜓)) | 
| 16 |  | eqeq2 2749 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑞 = {𝑥, 𝑦} → (𝑝 = 𝑞 ↔ 𝑝 = {𝑥, 𝑦})) | 
| 17 | 15, 16 | imbi12d 344 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑞 = {𝑥, 𝑦} → (([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞) ↔ ([{𝑥, 𝑦} / 𝑝]𝜓 → 𝑝 = {𝑥, 𝑦}))) | 
| 18 | 17 | adantl 481 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑋 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑞 = {𝑥, 𝑦}) → (([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞) ↔ ([{𝑥, 𝑦} / 𝑝]𝜓 → 𝑝 = {𝑥, 𝑦}))) | 
| 19 | 14, 18 | rspcdv 3614 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑋 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞) → ([{𝑥, 𝑦} / 𝑝]𝜓 → 𝑝 = {𝑥, 𝑦}))) | 
| 20 | 13, 19 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ 𝑋 ∈ 𝑉) ∧ 𝜓) → (∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞) → ([{𝑥, 𝑦} / 𝑝]𝜓 → 𝑝 = {𝑥, 𝑦}))) | 
| 21 |  | zfpair2 5433 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ {𝑥, 𝑦} ∈ V | 
| 22 |  | reupr.x | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑝 = {𝑥, 𝑦} → (𝜓 ↔ 𝜃)) | 
| 23 | 21, 22 | sbcie 3830 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
([{𝑥, 𝑦} / 𝑝]𝜓 ↔ 𝜃) | 
| 24 |  | pm2.27 42 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
([{𝑥, 𝑦} / 𝑝]𝜓 → (([{𝑥, 𝑦} / 𝑝]𝜓 → 𝑝 = {𝑥, 𝑦}) → 𝑝 = {𝑥, 𝑦})) | 
| 25 | 23, 24 | sylbir 235 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜃 → (([{𝑥, 𝑦} / 𝑝]𝜓 → 𝑝 = {𝑥, 𝑦}) → 𝑝 = {𝑥, 𝑦})) | 
| 26 |  | eqcom 2744 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑥, 𝑦} = 𝑝 ↔ 𝑝 = {𝑥, 𝑦}) | 
| 27 | 25, 26 | imbitrrdi 252 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜃 → (([{𝑥, 𝑦} / 𝑝]𝜓 → 𝑝 = {𝑥, 𝑦}) → {𝑥, 𝑦} = 𝑝)) | 
| 28 | 27 | com12 32 | . . . . . . . . . . . . . . . . . . 19
⊢
(([{𝑥, 𝑦} / 𝑝]𝜓 → 𝑝 = {𝑥, 𝑦}) → (𝜃 → {𝑥, 𝑦} = 𝑝)) | 
| 29 |  | eqeq2 2749 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑎, 𝑏} = 𝑝 → ({𝑥, 𝑦} = {𝑎, 𝑏} ↔ {𝑥, 𝑦} = 𝑝)) | 
| 30 | 29 | eqcoms 2745 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝 = {𝑎, 𝑏} → ({𝑥, 𝑦} = {𝑎, 𝑏} ↔ {𝑥, 𝑦} = 𝑝)) | 
| 31 | 30 | imbi2d 340 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = {𝑎, 𝑏} → ((𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}) ↔ (𝜃 → {𝑥, 𝑦} = 𝑝))) | 
| 32 | 28, 31 | syl5ibrcom 247 | . . . . . . . . . . . . . . . . . 18
⊢
(([{𝑥, 𝑦} / 𝑝]𝜓 → 𝑝 = {𝑥, 𝑦}) → (𝑝 = {𝑎, 𝑏} → (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) | 
| 33 | 32 | a1d 25 | . . . . . . . . . . . . . . . . 17
⊢
(([{𝑥, 𝑦} / 𝑝]𝜓 → 𝑝 = {𝑥, 𝑦}) → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑝 = {𝑎, 𝑏} → (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))) | 
| 34 | 20, 33 | syl6 35 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ 𝑋 ∈ 𝑉) ∧ 𝜓) → (∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞) → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑝 = {𝑎, 𝑏} → (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))))) | 
| 35 | 34 | expimpd 453 | . . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ 𝑋 ∈ 𝑉) → ((𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞)) → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑝 = {𝑎, 𝑏} → (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))))) | 
| 36 | 35 | expimpd 453 | . . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑋 ∈ 𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞))) → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑝 = {𝑎, 𝑏} → (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))))) | 
| 37 | 36 | imp4c 423 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((((𝑋 ∈ 𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞))) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑝 = {𝑎, 𝑏}) → (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) | 
| 38 | 37 | impcom 407 | . . . . . . . . . . . 12
⊢
(((((𝑋 ∈ 𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞))) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑝 = {𝑎, 𝑏}) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})) | 
| 39 | 38 | ralrimivva 3202 | . . . . . . . . . . 11
⊢ ((((𝑋 ∈ 𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞))) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑝 = {𝑎, 𝑏}) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})) | 
| 40 | 11, 39 | jca 511 | . . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞))) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑝 = {𝑎, 𝑏}) → (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) | 
| 41 | 40 | ex 412 | . . . . . . . . 9
⊢ (((𝑋 ∈ 𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞))) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑝 = {𝑎, 𝑏} → (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))) | 
| 42 | 41 | reximdvva 3207 | . . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞))) → (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 𝑝 = {𝑎, 𝑏} → ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))) | 
| 43 | 42 | expcom 413 | . . . . . . 7
⊢ ((𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞)) → (𝑋 ∈ 𝑉 → (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 𝑝 = {𝑎, 𝑏} → ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))))) | 
| 44 | 43 | com13 88 | . . . . . 6
⊢
(∃𝑎 ∈
𝑋 ∃𝑏 ∈ 𝑋 𝑝 = {𝑎, 𝑏} → (𝑋 ∈ 𝑉 → ((𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞)) → ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))))) | 
| 45 | 6, 44 | syl 17 | . . . . 5
⊢ (𝑝 ∈ (Pairs‘𝑋) → (𝑋 ∈ 𝑉 → ((𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞)) → ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))))) | 
| 46 | 45 | impcom 407 | . . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑝 ∈ (Pairs‘𝑋)) → ((𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞)) → ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))) | 
| 47 | 46 | rexlimdva 3155 | . . 3
⊢ (𝑋 ∈ 𝑉 → (∃𝑝 ∈ (Pairs‘𝑋)(𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞)) → ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))) | 
| 48 |  | prelspr 47473 | . . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → {𝑎, 𝑏} ∈ (Pairs‘𝑋)) | 
| 49 | 48 | adantr 480 | . . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) → {𝑎, 𝑏} ∈ (Pairs‘𝑋)) | 
| 50 |  | simprl 771 | . . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) → 𝜒) | 
| 51 |  | nfsbc1v 3808 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥[𝑐 / 𝑥]𝜃 | 
| 52 |  | nfv 1914 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥{𝑐, 𝑦} = {𝑎, 𝑏} | 
| 53 | 51, 52 | nfim 1896 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥([𝑐 / 𝑥]𝜃 → {𝑐, 𝑦} = {𝑎, 𝑏}) | 
| 54 |  | nfsbc1v 3808 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑦[𝑑 / 𝑦][𝑐 / 𝑥]𝜃 | 
| 55 |  | nfv 1914 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑦{𝑐, 𝑑} = {𝑎, 𝑏} | 
| 56 | 54, 55 | nfim 1896 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑦([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → {𝑐, 𝑑} = {𝑎, 𝑏}) | 
| 57 |  | sbceq1a 3799 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑐 → (𝜃 ↔ [𝑐 / 𝑥]𝜃)) | 
| 58 |  | preq1 4733 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑐 → {𝑥, 𝑦} = {𝑐, 𝑦}) | 
| 59 | 58 | eqeq1d 2739 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑐 → ({𝑥, 𝑦} = {𝑎, 𝑏} ↔ {𝑐, 𝑦} = {𝑎, 𝑏})) | 
| 60 | 57, 59 | imbi12d 344 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑐 → ((𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}) ↔ ([𝑐 / 𝑥]𝜃 → {𝑐, 𝑦} = {𝑎, 𝑏}))) | 
| 61 |  | sbceq1a 3799 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑑 → ([𝑐 / 𝑥]𝜃 ↔ [𝑑 / 𝑦][𝑐 / 𝑥]𝜃)) | 
| 62 |  | preq2 4734 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑑 → {𝑐, 𝑦} = {𝑐, 𝑑}) | 
| 63 | 62 | eqeq1d 2739 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑑 → ({𝑐, 𝑦} = {𝑎, 𝑏} ↔ {𝑐, 𝑑} = {𝑎, 𝑏})) | 
| 64 | 61, 63 | imbi12d 344 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑑 → (([𝑐 / 𝑥]𝜃 → {𝑐, 𝑦} = {𝑎, 𝑏}) ↔ ([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → {𝑐, 𝑑} = {𝑎, 𝑏}))) | 
| 65 | 53, 56, 60, 64 | rspc2 3631 | . . . . . . . . . . . . . . . 16
⊢ ((𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}) → ([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → {𝑐, 𝑑} = {𝑎, 𝑏}))) | 
| 66 | 65 | ad2antlr 727 | . . . . . . . . . . . . . . 15
⊢ ((((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋)) ∧ 𝜒) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}) → ([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → {𝑐, 𝑑} = {𝑎, 𝑏}))) | 
| 67 | 22 | sbcpr 47508 | . . . . . . . . . . . . . . . . . 18
⊢
([{𝑐, 𝑑} / 𝑝]𝜓 ↔ [𝑑 / 𝑦][𝑐 / 𝑥]𝜃) | 
| 68 |  | pm2.27 42 | . . . . . . . . . . . . . . . . . 18
⊢
([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → (([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → {𝑐, 𝑑} = {𝑎, 𝑏}) → {𝑐, 𝑑} = {𝑎, 𝑏})) | 
| 69 | 67, 68 | sylbi 217 | . . . . . . . . . . . . . . . . 17
⊢
([{𝑐, 𝑑} / 𝑝]𝜓 → (([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → {𝑐, 𝑑} = {𝑎, 𝑏}) → {𝑐, 𝑑} = {𝑎, 𝑏})) | 
| 70 |  | eqcom 2744 | . . . . . . . . . . . . . . . . 17
⊢ ({𝑎, 𝑏} = {𝑐, 𝑑} ↔ {𝑐, 𝑑} = {𝑎, 𝑏}) | 
| 71 | 69, 70 | imbitrrdi 252 | . . . . . . . . . . . . . . . 16
⊢
([{𝑐, 𝑑} / 𝑝]𝜓 → (([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → {𝑐, 𝑑} = {𝑎, 𝑏}) → {𝑎, 𝑏} = {𝑐, 𝑑})) | 
| 72 | 71 | com12 32 | . . . . . . . . . . . . . . 15
⊢
(([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → {𝑐, 𝑑} = {𝑎, 𝑏}) → ([{𝑐, 𝑑} / 𝑝]𝜓 → {𝑎, 𝑏} = {𝑐, 𝑑})) | 
| 73 | 66, 72 | syl6 35 | . . . . . . . . . . . . . 14
⊢ ((((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋)) ∧ 𝜒) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}) → ([{𝑐, 𝑑} / 𝑝]𝜓 → {𝑎, 𝑏} = {𝑐, 𝑑}))) | 
| 74 | 73 | expimpd 453 | . . . . . . . . . . . . 13
⊢ (((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋)) → ((𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})) → ([{𝑐, 𝑑} / 𝑝]𝜓 → {𝑎, 𝑏} = {𝑐, 𝑑}))) | 
| 75 | 74 | expcom 413 | . . . . . . . . . . . 12
⊢ ((𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋) → ((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})) → ([{𝑐, 𝑑} / 𝑝]𝜓 → {𝑎, 𝑏} = {𝑐, 𝑑})))) | 
| 76 | 75 | impd 410 | . . . . . . . . . . 11
⊢ ((𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋) → (((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) → ([{𝑐, 𝑑} / 𝑝]𝜓 → {𝑎, 𝑏} = {𝑐, 𝑑}))) | 
| 77 | 76 | impcom 407 | . . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) ∧ (𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋)) → ([{𝑐, 𝑑} / 𝑝]𝜓 → {𝑎, 𝑏} = {𝑐, 𝑑})) | 
| 78 |  | dfsbcq 3790 | . . . . . . . . . . 11
⊢ (𝑞 = {𝑐, 𝑑} → ([𝑞 / 𝑝]𝜓 ↔ [{𝑐, 𝑑} / 𝑝]𝜓)) | 
| 79 |  | eqeq2 2749 | . . . . . . . . . . 11
⊢ (𝑞 = {𝑐, 𝑑} → ({𝑎, 𝑏} = 𝑞 ↔ {𝑎, 𝑏} = {𝑐, 𝑑})) | 
| 80 | 78, 79 | imbi12d 344 | . . . . . . . . . 10
⊢ (𝑞 = {𝑐, 𝑑} → (([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞) ↔ ([{𝑐, 𝑑} / 𝑝]𝜓 → {𝑎, 𝑏} = {𝑐, 𝑑}))) | 
| 81 | 77, 80 | syl5ibrcom 247 | . . . . . . . . 9
⊢ ((((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) ∧ (𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋)) → (𝑞 = {𝑐, 𝑑} → ([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞))) | 
| 82 | 81 | rexlimdvva 3213 | . . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) → (∃𝑐 ∈ 𝑋 ∃𝑑 ∈ 𝑋 𝑞 = {𝑐, 𝑑} → ([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞))) | 
| 83 |  | sprel 47471 | . . . . . . . 8
⊢ (𝑞 ∈ (Pairs‘𝑋) → ∃𝑐 ∈ 𝑋 ∃𝑑 ∈ 𝑋 𝑞 = {𝑐, 𝑑}) | 
| 84 | 82, 83 | impel 505 | . . . . . . 7
⊢ ((((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) ∧ 𝑞 ∈ (Pairs‘𝑋)) → ([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞)) | 
| 85 | 84 | ralrimiva 3146 | . . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) → ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞)) | 
| 86 |  | nfv 1914 | . . . . . . . 8
⊢
Ⅎ𝑝𝜒 | 
| 87 |  | nfcv 2905 | . . . . . . . . 9
⊢
Ⅎ𝑝(Pairs‘𝑋) | 
| 88 |  | nfv 1914 | . . . . . . . . . 10
⊢
Ⅎ𝑝{𝑎, 𝑏} = 𝑞 | 
| 89 | 1, 88 | nfim 1896 | . . . . . . . . 9
⊢
Ⅎ𝑝([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞) | 
| 90 | 87, 89 | nfralw 3311 | . . . . . . . 8
⊢
Ⅎ𝑝∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞) | 
| 91 | 86, 90 | nfan 1899 | . . . . . . 7
⊢
Ⅎ𝑝(𝜒 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞)) | 
| 92 |  | eqeq1 2741 | . . . . . . . . . 10
⊢ (𝑝 = {𝑎, 𝑏} → (𝑝 = 𝑞 ↔ {𝑎, 𝑏} = 𝑞)) | 
| 93 | 92 | imbi2d 340 | . . . . . . . . 9
⊢ (𝑝 = {𝑎, 𝑏} → (([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞) ↔ ([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞))) | 
| 94 | 93 | ralbidv 3178 | . . . . . . . 8
⊢ (𝑝 = {𝑎, 𝑏} → (∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞) ↔ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞))) | 
| 95 | 7, 94 | anbi12d 632 | . . . . . . 7
⊢ (𝑝 = {𝑎, 𝑏} → ((𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞)) ↔ (𝜒 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞)))) | 
| 96 | 91, 95 | rspce 3611 | . . . . . 6
⊢ (({𝑎, 𝑏} ∈ (Pairs‘𝑋) ∧ (𝜒 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞))) → ∃𝑝 ∈ (Pairs‘𝑋)(𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞))) | 
| 97 | 49, 50, 85, 96 | syl12anc 837 | . . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) → ∃𝑝 ∈ (Pairs‘𝑋)(𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞))) | 
| 98 | 97 | ex 412 | . . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})) → ∃𝑝 ∈ (Pairs‘𝑋)(𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞)))) | 
| 99 | 98 | rexlimdvva 3213 | . . 3
⊢ (𝑋 ∈ 𝑉 → (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})) → ∃𝑝 ∈ (Pairs‘𝑋)(𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞)))) | 
| 100 | 47, 99 | impbid 212 | . 2
⊢ (𝑋 ∈ 𝑉 → (∃𝑝 ∈ (Pairs‘𝑋)(𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → 𝑝 = 𝑞)) ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))) | 
| 101 | 5, 100 | bitrid 283 | 1
⊢ (𝑋 ∈ 𝑉 → (∃!𝑝 ∈ (Pairs‘𝑋)𝜓 ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))) |