MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrclwwlkge2 Structured version   Visualization version   GIF version

Theorem umgrclwwlkge2 28334
Description: A closed walk in a multigraph has a length of at least 2 (because it cannot have a loop). (Contributed by Alexander van der Vekens, 16-Sep-2018.) (Revised by AV, 24-Apr-2021.)
Assertion
Ref Expression
umgrclwwlkge2 (𝐺 ∈ UMGraph → (𝑃 ∈ (ClWWalks‘𝐺) → 2 ≤ (♯‘𝑃)))

Proof of Theorem umgrclwwlkge2
StepHypRef Expression
1 eqid 2739 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
21clwwlkbp 28328 . . . . 5 (𝑃 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅))
32adantl 481 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝑃 ∈ (ClWWalks‘𝐺)) → (𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅))
4 lencl 14217 . . . . . . 7 (𝑃 ∈ Word (Vtx‘𝐺) → (♯‘𝑃) ∈ ℕ0)
543ad2ant2 1132 . . . . . 6 ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅) → (♯‘𝑃) ∈ ℕ0)
65adantl 481 . . . . 5 (((𝐺 ∈ UMGraph ∧ 𝑃 ∈ (ClWWalks‘𝐺)) ∧ (𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅)) → (♯‘𝑃) ∈ ℕ0)
7 hasheq0 14059 . . . . . . . . . . 11 (𝑃 ∈ Word (Vtx‘𝐺) → ((♯‘𝑃) = 0 ↔ 𝑃 = ∅))
87bicomd 222 . . . . . . . . . 10 (𝑃 ∈ Word (Vtx‘𝐺) → (𝑃 = ∅ ↔ (♯‘𝑃) = 0))
98necon3bid 2989 . . . . . . . . 9 (𝑃 ∈ Word (Vtx‘𝐺) → (𝑃 ≠ ∅ ↔ (♯‘𝑃) ≠ 0))
109biimpd 228 . . . . . . . 8 (𝑃 ∈ Word (Vtx‘𝐺) → (𝑃 ≠ ∅ → (♯‘𝑃) ≠ 0))
1110a1i 11 . . . . . . 7 (𝐺 ∈ V → (𝑃 ∈ Word (Vtx‘𝐺) → (𝑃 ≠ ∅ → (♯‘𝑃) ≠ 0)))
12113imp 1109 . . . . . 6 ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅) → (♯‘𝑃) ≠ 0)
1312adantl 481 . . . . 5 (((𝐺 ∈ UMGraph ∧ 𝑃 ∈ (ClWWalks‘𝐺)) ∧ (𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅)) → (♯‘𝑃) ≠ 0)
14 clwwlk1loop 28331 . . . . . . . . . 10 ((𝑃 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑃) = 1) → {(𝑃‘0), (𝑃‘0)} ∈ (Edg‘𝐺))
1514expcom 413 . . . . . . . . 9 ((♯‘𝑃) = 1 → (𝑃 ∈ (ClWWalks‘𝐺) → {(𝑃‘0), (𝑃‘0)} ∈ (Edg‘𝐺)))
16 eqid 2739 . . . . . . . . . . 11 (𝑃‘0) = (𝑃‘0)
17 eqid 2739 . . . . . . . . . . . 12 (Edg‘𝐺) = (Edg‘𝐺)
1817umgredgne 27496 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ {(𝑃‘0), (𝑃‘0)} ∈ (Edg‘𝐺)) → (𝑃‘0) ≠ (𝑃‘0))
19 eqneqall 2955 . . . . . . . . . . 11 ((𝑃‘0) = (𝑃‘0) → ((𝑃‘0) ≠ (𝑃‘0) → ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅) → (♯‘𝑃) ≠ 1)))
2016, 18, 19mpsyl 68 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ {(𝑃‘0), (𝑃‘0)} ∈ (Edg‘𝐺)) → ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅) → (♯‘𝑃) ≠ 1))
2120expcom 413 . . . . . . . . 9 ({(𝑃‘0), (𝑃‘0)} ∈ (Edg‘𝐺) → (𝐺 ∈ UMGraph → ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅) → (♯‘𝑃) ≠ 1)))
2215, 21syl6 35 . . . . . . . 8 ((♯‘𝑃) = 1 → (𝑃 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ UMGraph → ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅) → (♯‘𝑃) ≠ 1))))
2322com23 86 . . . . . . 7 ((♯‘𝑃) = 1 → (𝐺 ∈ UMGraph → (𝑃 ∈ (ClWWalks‘𝐺) → ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅) → (♯‘𝑃) ≠ 1))))
2423imp4c 423 . . . . . 6 ((♯‘𝑃) = 1 → (((𝐺 ∈ UMGraph ∧ 𝑃 ∈ (ClWWalks‘𝐺)) ∧ (𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅)) → (♯‘𝑃) ≠ 1))
25 neqne 2952 . . . . . . 7 (¬ (♯‘𝑃) = 1 → (♯‘𝑃) ≠ 1)
2625a1d 25 . . . . . 6 (¬ (♯‘𝑃) = 1 → (((𝐺 ∈ UMGraph ∧ 𝑃 ∈ (ClWWalks‘𝐺)) ∧ (𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅)) → (♯‘𝑃) ≠ 1))
2724, 26pm2.61i 182 . . . . 5 (((𝐺 ∈ UMGraph ∧ 𝑃 ∈ (ClWWalks‘𝐺)) ∧ (𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅)) → (♯‘𝑃) ≠ 1)
286, 13, 273jca 1126 . . . 4 (((𝐺 ∈ UMGraph ∧ 𝑃 ∈ (ClWWalks‘𝐺)) ∧ (𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅)) → ((♯‘𝑃) ∈ ℕ0 ∧ (♯‘𝑃) ≠ 0 ∧ (♯‘𝑃) ≠ 1))
293, 28mpdan 683 . . 3 ((𝐺 ∈ UMGraph ∧ 𝑃 ∈ (ClWWalks‘𝐺)) → ((♯‘𝑃) ∈ ℕ0 ∧ (♯‘𝑃) ≠ 0 ∧ (♯‘𝑃) ≠ 1))
30 nn0n0n1ge2 12283 . . 3 (((♯‘𝑃) ∈ ℕ0 ∧ (♯‘𝑃) ≠ 0 ∧ (♯‘𝑃) ≠ 1) → 2 ≤ (♯‘𝑃))
3129, 30syl 17 . 2 ((𝐺 ∈ UMGraph ∧ 𝑃 ∈ (ClWWalks‘𝐺)) → 2 ≤ (♯‘𝑃))
3231ex 412 1 (𝐺 ∈ UMGraph → (𝑃 ∈ (ClWWalks‘𝐺) → 2 ≤ (♯‘𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1541  wcel 2109  wne 2944  Vcvv 3430  c0 4261  {cpr 4568   class class class wbr 5078  cfv 6430  0cc0 10855  1c1 10856  cle 10994  2c2 12011  0cn0 12216  chash 14025  Word cword 14198  Vtxcvtx 27347  Edgcedg 27398  UMGraphcumgr 27432  ClWWalkscclwwlk 28324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-oadd 8285  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-dju 9643  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-n0 12217  df-z 12303  df-uz 12565  df-fz 13222  df-fzo 13365  df-hash 14026  df-word 14199  df-lsw 14247  df-edg 27399  df-umgr 27434  df-clwwlk 28325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator