MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrclwwlkge2 Structured version   Visualization version   GIF version

Theorem umgrclwwlkge2 27512
Description: A closed walk in a multigraph has a length of at least 2 (because it cannot have a loop). (Contributed by Alexander van der Vekens, 16-Sep-2018.) (Revised by AV, 24-Apr-2021.)
Assertion
Ref Expression
umgrclwwlkge2 (𝐺 ∈ UMGraph → (𝑃 ∈ (ClWWalks‘𝐺) → 2 ≤ (♯‘𝑃)))

Proof of Theorem umgrclwwlkge2
StepHypRef Expression
1 eqid 2771 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
21clwwlkbp 27506 . . . . 5 (𝑃 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅))
32adantl 474 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝑃 ∈ (ClWWalks‘𝐺)) → (𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅))
4 lencl 13692 . . . . . . 7 (𝑃 ∈ Word (Vtx‘𝐺) → (♯‘𝑃) ∈ ℕ0)
543ad2ant2 1115 . . . . . 6 ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅) → (♯‘𝑃) ∈ ℕ0)
65adantl 474 . . . . 5 (((𝐺 ∈ UMGraph ∧ 𝑃 ∈ (ClWWalks‘𝐺)) ∧ (𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅)) → (♯‘𝑃) ∈ ℕ0)
7 hasheq0 13537 . . . . . . . . . . 11 (𝑃 ∈ Word (Vtx‘𝐺) → ((♯‘𝑃) = 0 ↔ 𝑃 = ∅))
87bicomd 215 . . . . . . . . . 10 (𝑃 ∈ Word (Vtx‘𝐺) → (𝑃 = ∅ ↔ (♯‘𝑃) = 0))
98necon3bid 3004 . . . . . . . . 9 (𝑃 ∈ Word (Vtx‘𝐺) → (𝑃 ≠ ∅ ↔ (♯‘𝑃) ≠ 0))
109biimpd 221 . . . . . . . 8 (𝑃 ∈ Word (Vtx‘𝐺) → (𝑃 ≠ ∅ → (♯‘𝑃) ≠ 0))
1110a1i 11 . . . . . . 7 (𝐺 ∈ V → (𝑃 ∈ Word (Vtx‘𝐺) → (𝑃 ≠ ∅ → (♯‘𝑃) ≠ 0)))
12113imp 1092 . . . . . 6 ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅) → (♯‘𝑃) ≠ 0)
1312adantl 474 . . . . 5 (((𝐺 ∈ UMGraph ∧ 𝑃 ∈ (ClWWalks‘𝐺)) ∧ (𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅)) → (♯‘𝑃) ≠ 0)
14 clwwlk1loop 27509 . . . . . . . . . 10 ((𝑃 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑃) = 1) → {(𝑃‘0), (𝑃‘0)} ∈ (Edg‘𝐺))
1514expcom 406 . . . . . . . . 9 ((♯‘𝑃) = 1 → (𝑃 ∈ (ClWWalks‘𝐺) → {(𝑃‘0), (𝑃‘0)} ∈ (Edg‘𝐺)))
16 eqid 2771 . . . . . . . . . . 11 (𝑃‘0) = (𝑃‘0)
17 eqid 2771 . . . . . . . . . . . 12 (Edg‘𝐺) = (Edg‘𝐺)
1817umgredgne 26648 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ {(𝑃‘0), (𝑃‘0)} ∈ (Edg‘𝐺)) → (𝑃‘0) ≠ (𝑃‘0))
19 eqneqall 2971 . . . . . . . . . . 11 ((𝑃‘0) = (𝑃‘0) → ((𝑃‘0) ≠ (𝑃‘0) → ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅) → (♯‘𝑃) ≠ 1)))
2016, 18, 19mpsyl 68 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ {(𝑃‘0), (𝑃‘0)} ∈ (Edg‘𝐺)) → ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅) → (♯‘𝑃) ≠ 1))
2120expcom 406 . . . . . . . . 9 ({(𝑃‘0), (𝑃‘0)} ∈ (Edg‘𝐺) → (𝐺 ∈ UMGraph → ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅) → (♯‘𝑃) ≠ 1)))
2215, 21syl6 35 . . . . . . . 8 ((♯‘𝑃) = 1 → (𝑃 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ UMGraph → ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅) → (♯‘𝑃) ≠ 1))))
2322com23 86 . . . . . . 7 ((♯‘𝑃) = 1 → (𝐺 ∈ UMGraph → (𝑃 ∈ (ClWWalks‘𝐺) → ((𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅) → (♯‘𝑃) ≠ 1))))
2423imp4c 416 . . . . . 6 ((♯‘𝑃) = 1 → (((𝐺 ∈ UMGraph ∧ 𝑃 ∈ (ClWWalks‘𝐺)) ∧ (𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅)) → (♯‘𝑃) ≠ 1))
25 neqne 2968 . . . . . . 7 (¬ (♯‘𝑃) = 1 → (♯‘𝑃) ≠ 1)
2625a1d 25 . . . . . 6 (¬ (♯‘𝑃) = 1 → (((𝐺 ∈ UMGraph ∧ 𝑃 ∈ (ClWWalks‘𝐺)) ∧ (𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅)) → (♯‘𝑃) ≠ 1))
2724, 26pm2.61i 177 . . . . 5 (((𝐺 ∈ UMGraph ∧ 𝑃 ∈ (ClWWalks‘𝐺)) ∧ (𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅)) → (♯‘𝑃) ≠ 1)
286, 13, 273jca 1109 . . . 4 (((𝐺 ∈ UMGraph ∧ 𝑃 ∈ (ClWWalks‘𝐺)) ∧ (𝐺 ∈ V ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ 𝑃 ≠ ∅)) → ((♯‘𝑃) ∈ ℕ0 ∧ (♯‘𝑃) ≠ 0 ∧ (♯‘𝑃) ≠ 1))
293, 28mpdan 675 . . 3 ((𝐺 ∈ UMGraph ∧ 𝑃 ∈ (ClWWalks‘𝐺)) → ((♯‘𝑃) ∈ ℕ0 ∧ (♯‘𝑃) ≠ 0 ∧ (♯‘𝑃) ≠ 1))
30 nn0n0n1ge2 11772 . . 3 (((♯‘𝑃) ∈ ℕ0 ∧ (♯‘𝑃) ≠ 0 ∧ (♯‘𝑃) ≠ 1) → 2 ≤ (♯‘𝑃))
3129, 30syl 17 . 2 ((𝐺 ∈ UMGraph ∧ 𝑃 ∈ (ClWWalks‘𝐺)) → 2 ≤ (♯‘𝑃))
3231ex 405 1 (𝐺 ∈ UMGraph → (𝑃 ∈ (ClWWalks‘𝐺) → 2 ≤ (♯‘𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  w3a 1069   = wceq 1508  wcel 2051  wne 2960  Vcvv 3408  c0 4172  {cpr 4437   class class class wbr 4925  cfv 6185  0cc0 10333  1c1 10334  cle 10473  2c2 11493  0cn0 11705  chash 13503  Word cword 13670  Vtxcvtx 26499  Edgcedg 26550  UMGraphcumgr 26584  ClWWalkscclwwlk 27502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-oadd 7907  df-er 8087  df-map 8206  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-dju 9122  df-card 9160  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-nn 11438  df-2 11501  df-n0 11706  df-z 11792  df-uz 12057  df-fz 12707  df-fzo 12848  df-hash 13504  df-word 13671  df-lsw 13724  df-edg 26551  df-umgr 26586  df-clwwlk 27503
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator