Proof of Theorem sprsymrelfolem2
| Step | Hyp | Ref
| Expression |
| 1 | | df-br 5144 |
. . . . . . . 8
⊢ (𝑥𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 2 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉)) → 𝑉 ∈ 𝑊) |
| 3 | | ssel 3977 |
. . . . . . . . . . . . 13
⊢ (𝑅 ⊆ (𝑉 × 𝑉) → (〈𝑥, 𝑦〉 ∈ 𝑅 → 〈𝑥, 𝑦〉 ∈ (𝑉 × 𝑉))) |
| 4 | 3 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉)) → (〈𝑥, 𝑦〉 ∈ 𝑅 → 〈𝑥, 𝑦〉 ∈ (𝑉 × 𝑉))) |
| 5 | 4 | imp 406 |
. . . . . . . . . . 11
⊢ (((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉)) ∧ 〈𝑥, 𝑦〉 ∈ 𝑅) → 〈𝑥, 𝑦〉 ∈ (𝑉 × 𝑉)) |
| 6 | | opelxp 5721 |
. . . . . . . . . . 11
⊢
(〈𝑥, 𝑦〉 ∈ (𝑉 × 𝑉) ↔ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) |
| 7 | 5, 6 | sylib 218 |
. . . . . . . . . 10
⊢ (((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉)) ∧ 〈𝑥, 𝑦〉 ∈ 𝑅) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) |
| 8 | | prelspr 47473 |
. . . . . . . . . 10
⊢ ((𝑉 ∈ 𝑊 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → {𝑥, 𝑦} ∈ (Pairs‘𝑉)) |
| 9 | 2, 7, 8 | syl2an2r 685 |
. . . . . . . . 9
⊢ (((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉)) ∧ 〈𝑥, 𝑦〉 ∈ 𝑅) → {𝑥, 𝑦} ∈ (Pairs‘𝑉)) |
| 10 | 9 | ex 412 |
. . . . . . . 8
⊢ ((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉)) → (〈𝑥, 𝑦〉 ∈ 𝑅 → {𝑥, 𝑦} ∈ (Pairs‘𝑉))) |
| 11 | 1, 10 | biimtrid 242 |
. . . . . . 7
⊢ ((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉)) → (𝑥𝑅𝑦 → {𝑥, 𝑦} ∈ (Pairs‘𝑉))) |
| 12 | 11 | 3adant3 1133 |
. . . . . 6
⊢ ((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) → (𝑥𝑅𝑦 → {𝑥, 𝑦} ∈ (Pairs‘𝑉))) |
| 13 | 12 | imp 406 |
. . . . 5
⊢ (((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦) → {𝑥, 𝑦} ∈ (Pairs‘𝑉)) |
| 14 | | vex 3484 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 15 | | vex 3484 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
| 16 | | vex 3484 |
. . . . . . . 8
⊢ 𝑎 ∈ V |
| 17 | | vex 3484 |
. . . . . . . 8
⊢ 𝑏 ∈ V |
| 18 | 14, 15, 16, 17 | preq12b 4850 |
. . . . . . 7
⊢ ({𝑥, 𝑦} = {𝑎, 𝑏} ↔ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) ∨ (𝑥 = 𝑏 ∧ 𝑦 = 𝑎))) |
| 19 | | breq12 5148 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (𝑥𝑅𝑦 ↔ 𝑎𝑅𝑏)) |
| 20 | 19 | biimpd 229 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (𝑥𝑅𝑦 → 𝑎𝑅𝑏)) |
| 21 | 20 | com12 32 |
. . . . . . . . . . . 12
⊢ (𝑥𝑅𝑦 → ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → 𝑎𝑅𝑏)) |
| 22 | 21 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦) → ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → 𝑎𝑅𝑏)) |
| 23 | 22 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → 𝑎𝑅𝑏)) |
| 24 | 23 | com12 32 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → ((((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑎𝑅𝑏)) |
| 25 | | rsp2 3277 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑥 ∈
𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥) → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥))) |
| 26 | 25 | ancomsd 465 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑥 ∈
𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥) → ((𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉) → (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥))) |
| 27 | 26 | imp 406 |
. . . . . . . . . . . . . . . . 17
⊢
((∀𝑥 ∈
𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥) ∧ (𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉)) → (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) |
| 28 | 27 | biimpd 229 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑥 ∈
𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥) ∧ (𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉)) → (𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
| 29 | 28 | ex 412 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥 ∈
𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥) → ((𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉) → (𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
| 30 | 29 | 3ad2ant3 1136 |
. . . . . . . . . . . . . 14
⊢ ((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) → ((𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉) → (𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
| 31 | 30 | com23 86 |
. . . . . . . . . . . . 13
⊢ ((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) → (𝑥𝑅𝑦 → ((𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉) → 𝑦𝑅𝑥))) |
| 32 | 31 | imp 406 |
. . . . . . . . . . . 12
⊢ (((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦) → ((𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉) → 𝑦𝑅𝑥)) |
| 33 | 32 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝑥 = 𝑏 ∧ 𝑦 = 𝑎) ∧ ((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦)) → ((𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉) → 𝑦𝑅𝑥)) |
| 34 | | eleq1 2829 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑎 → (𝑦 ∈ 𝑉 ↔ 𝑎 ∈ 𝑉)) |
| 35 | | eleq1 2829 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑏 → (𝑥 ∈ 𝑉 ↔ 𝑏 ∈ 𝑉)) |
| 36 | 34, 35 | bi2anan9r 639 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = 𝑎) → ((𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉) ↔ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
| 37 | | breq12 5148 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 = 𝑎 ∧ 𝑥 = 𝑏) → (𝑦𝑅𝑥 ↔ 𝑎𝑅𝑏)) |
| 38 | 37 | ancoms 458 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = 𝑎) → (𝑦𝑅𝑥 ↔ 𝑎𝑅𝑏)) |
| 39 | 36, 38 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = 𝑎) → (((𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉) → 𝑦𝑅𝑥) ↔ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → 𝑎𝑅𝑏))) |
| 40 | 39 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑥 = 𝑏 ∧ 𝑦 = 𝑎) ∧ ((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦)) → (((𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉) → 𝑦𝑅𝑥) ↔ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → 𝑎𝑅𝑏))) |
| 41 | 33, 40 | mpbid 232 |
. . . . . . . . . 10
⊢ (((𝑥 = 𝑏 ∧ 𝑦 = 𝑎) ∧ ((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦)) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → 𝑎𝑅𝑏)) |
| 42 | 41 | expimpd 453 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = 𝑎) → ((((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑎𝑅𝑏)) |
| 43 | 24, 42 | jaoi 858 |
. . . . . . . 8
⊢ (((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) ∨ (𝑥 = 𝑏 ∧ 𝑦 = 𝑎)) → ((((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑎𝑅𝑏)) |
| 44 | 43 | com12 32 |
. . . . . . 7
⊢ ((((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) ∨ (𝑥 = 𝑏 ∧ 𝑦 = 𝑎)) → 𝑎𝑅𝑏)) |
| 45 | 18, 44 | biimtrid 242 |
. . . . . 6
⊢ ((((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ({𝑥, 𝑦} = {𝑎, 𝑏} → 𝑎𝑅𝑏)) |
| 46 | 45 | ralrimivva 3202 |
. . . . 5
⊢ (((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦) → ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑥, 𝑦} = {𝑎, 𝑏} → 𝑎𝑅𝑏)) |
| 47 | | sprsymrelfo.q |
. . . . . . 7
⊢ 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} |
| 48 | 47 | eleq2i 2833 |
. . . . . 6
⊢ ({𝑥, 𝑦} ∈ 𝑄 ↔ {𝑥, 𝑦} ∈ {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)}) |
| 49 | | eqeq1 2741 |
. . . . . . . . 9
⊢ (𝑞 = {𝑥, 𝑦} → (𝑞 = {𝑎, 𝑏} ↔ {𝑥, 𝑦} = {𝑎, 𝑏})) |
| 50 | 49 | imbi1d 341 |
. . . . . . . 8
⊢ (𝑞 = {𝑥, 𝑦} → ((𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏) ↔ ({𝑥, 𝑦} = {𝑎, 𝑏} → 𝑎𝑅𝑏))) |
| 51 | 50 | 2ralbidv 3221 |
. . . . . . 7
⊢ (𝑞 = {𝑥, 𝑦} → (∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏) ↔ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑥, 𝑦} = {𝑎, 𝑏} → 𝑎𝑅𝑏))) |
| 52 | 51 | elrab 3692 |
. . . . . 6
⊢ ({𝑥, 𝑦} ∈ {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ↔ ({𝑥, 𝑦} ∈ (Pairs‘𝑉) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑥, 𝑦} = {𝑎, 𝑏} → 𝑎𝑅𝑏))) |
| 53 | 48, 52 | bitri 275 |
. . . . 5
⊢ ({𝑥, 𝑦} ∈ 𝑄 ↔ ({𝑥, 𝑦} ∈ (Pairs‘𝑉) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑥, 𝑦} = {𝑎, 𝑏} → 𝑎𝑅𝑏))) |
| 54 | 13, 46, 53 | sylanbrc 583 |
. . . 4
⊢ (((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦) → {𝑥, 𝑦} ∈ 𝑄) |
| 55 | | eqidd 2738 |
. . . 4
⊢ (((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦) → {𝑥, 𝑦} = {𝑥, 𝑦}) |
| 56 | | eqeq1 2741 |
. . . . 5
⊢ (𝑐 = {𝑥, 𝑦} → (𝑐 = {𝑥, 𝑦} ↔ {𝑥, 𝑦} = {𝑥, 𝑦})) |
| 57 | 56 | rspcev 3622 |
. . . 4
⊢ (({𝑥, 𝑦} ∈ 𝑄 ∧ {𝑥, 𝑦} = {𝑥, 𝑦}) → ∃𝑐 ∈ 𝑄 𝑐 = {𝑥, 𝑦}) |
| 58 | 54, 55, 57 | syl2anc 584 |
. . 3
⊢ (((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) ∧ 𝑥𝑅𝑦) → ∃𝑐 ∈ 𝑄 𝑐 = {𝑥, 𝑦}) |
| 59 | 58 | ex 412 |
. 2
⊢ ((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) → (𝑥𝑅𝑦 → ∃𝑐 ∈ 𝑄 𝑐 = {𝑥, 𝑦})) |
| 60 | 47 | eleq2i 2833 |
. . . . . 6
⊢ (𝑐 ∈ 𝑄 ↔ 𝑐 ∈ {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)}) |
| 61 | | eqeq1 2741 |
. . . . . . . . 9
⊢ (𝑞 = 𝑐 → (𝑞 = {𝑎, 𝑏} ↔ 𝑐 = {𝑎, 𝑏})) |
| 62 | 61 | imbi1d 341 |
. . . . . . . 8
⊢ (𝑞 = 𝑐 → ((𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏) ↔ (𝑐 = {𝑎, 𝑏} → 𝑎𝑅𝑏))) |
| 63 | 62 | 2ralbidv 3221 |
. . . . . . 7
⊢ (𝑞 = 𝑐 → (∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏) ↔ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑐 = {𝑎, 𝑏} → 𝑎𝑅𝑏))) |
| 64 | 63 | elrab 3692 |
. . . . . 6
⊢ (𝑐 ∈ {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ↔ (𝑐 ∈ (Pairs‘𝑉) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑐 = {𝑎, 𝑏} → 𝑎𝑅𝑏))) |
| 65 | 60, 64 | bitri 275 |
. . . . 5
⊢ (𝑐 ∈ 𝑄 ↔ (𝑐 ∈ (Pairs‘𝑉) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑐 = {𝑎, 𝑏} → 𝑎𝑅𝑏))) |
| 66 | | eleq1 2829 |
. . . . . . . . . . 11
⊢ (𝑐 = {𝑥, 𝑦} → (𝑐 ∈ (Pairs‘𝑉) ↔ {𝑥, 𝑦} ∈ (Pairs‘𝑉))) |
| 67 | | prsprel 47474 |
. . . . . . . . . . . 12
⊢ (({𝑥, 𝑦} ∈ (Pairs‘𝑉) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) |
| 68 | 14, 15, 67 | mpanr12 705 |
. . . . . . . . . . 11
⊢ ({𝑥, 𝑦} ∈ (Pairs‘𝑉) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) |
| 69 | 66, 68 | biimtrdi 253 |
. . . . . . . . . 10
⊢ (𝑐 = {𝑥, 𝑦} → (𝑐 ∈ (Pairs‘𝑉) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
| 70 | 69 | com12 32 |
. . . . . . . . 9
⊢ (𝑐 ∈ (Pairs‘𝑉) → (𝑐 = {𝑥, 𝑦} → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
| 71 | 70 | adantr 480 |
. . . . . . . 8
⊢ ((𝑐 ∈ (Pairs‘𝑉) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑐 = {𝑎, 𝑏} → 𝑎𝑅𝑏)) → (𝑐 = {𝑥, 𝑦} → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
| 72 | 71 | imp 406 |
. . . . . . 7
⊢ (((𝑐 ∈ (Pairs‘𝑉) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑐 = {𝑎, 𝑏} → 𝑎𝑅𝑏)) ∧ 𝑐 = {𝑥, 𝑦}) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) |
| 73 | | preq1 4733 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑥 → {𝑎, 𝑏} = {𝑥, 𝑏}) |
| 74 | 73 | eqeq2d 2748 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝑐 = {𝑎, 𝑏} ↔ 𝑐 = {𝑥, 𝑏})) |
| 75 | | breq1 5146 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝑎𝑅𝑏 ↔ 𝑥𝑅𝑏)) |
| 76 | 74, 75 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑥 → ((𝑐 = {𝑎, 𝑏} → 𝑎𝑅𝑏) ↔ (𝑐 = {𝑥, 𝑏} → 𝑥𝑅𝑏))) |
| 77 | | preq2 4734 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑦 → {𝑥, 𝑏} = {𝑥, 𝑦}) |
| 78 | 77 | eqeq2d 2748 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑦 → (𝑐 = {𝑥, 𝑏} ↔ 𝑐 = {𝑥, 𝑦})) |
| 79 | | breq2 5147 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑦 → (𝑥𝑅𝑏 ↔ 𝑥𝑅𝑦)) |
| 80 | 78, 79 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑦 → ((𝑐 = {𝑥, 𝑏} → 𝑥𝑅𝑏) ↔ (𝑐 = {𝑥, 𝑦} → 𝑥𝑅𝑦))) |
| 81 | 76, 80 | rspc2v 3633 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑐 = {𝑎, 𝑏} → 𝑎𝑅𝑏) → (𝑐 = {𝑥, 𝑦} → 𝑥𝑅𝑦))) |
| 82 | 81 | a1d 25 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑐 ∈ (Pairs‘𝑉) → (∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑐 = {𝑎, 𝑏} → 𝑎𝑅𝑏) → (𝑐 = {𝑥, 𝑦} → 𝑥𝑅𝑦)))) |
| 83 | 82 | imp4c 423 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (((𝑐 ∈ (Pairs‘𝑉) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑐 = {𝑎, 𝑏} → 𝑎𝑅𝑏)) ∧ 𝑐 = {𝑥, 𝑦}) → 𝑥𝑅𝑦)) |
| 84 | 72, 83 | mpcom 38 |
. . . . . 6
⊢ (((𝑐 ∈ (Pairs‘𝑉) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑐 = {𝑎, 𝑏} → 𝑎𝑅𝑏)) ∧ 𝑐 = {𝑥, 𝑦}) → 𝑥𝑅𝑦) |
| 85 | 84 | a1d 25 |
. . . . 5
⊢ (((𝑐 ∈ (Pairs‘𝑉) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑐 = {𝑎, 𝑏} → 𝑎𝑅𝑏)) ∧ 𝑐 = {𝑥, 𝑦}) → ((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) → 𝑥𝑅𝑦)) |
| 86 | 65, 85 | sylanb 581 |
. . . 4
⊢ ((𝑐 ∈ 𝑄 ∧ 𝑐 = {𝑥, 𝑦}) → ((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) → 𝑥𝑅𝑦)) |
| 87 | 86 | rexlimiva 3147 |
. . 3
⊢
(∃𝑐 ∈
𝑄 𝑐 = {𝑥, 𝑦} → ((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) → 𝑥𝑅𝑦)) |
| 88 | 87 | com12 32 |
. 2
⊢ ((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) → (∃𝑐 ∈ 𝑄 𝑐 = {𝑥, 𝑦} → 𝑥𝑅𝑦)) |
| 89 | 59, 88 | impbid 212 |
1
⊢ ((𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ (𝑉 × 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥)) → (𝑥𝑅𝑦 ↔ ∃𝑐 ∈ 𝑄 𝑐 = {𝑥, 𝑦})) |