HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sumdmdlem Structured version   Visualization version   GIF version

Theorem sumdmdlem 32419
Description: Lemma for sumdmdi 32421. The span of vector 𝐶 not in the subspace sum is "trimmed off." (Contributed by NM, 18-Dec-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
sumdmdi.1 𝐴C
sumdmdi.2 𝐵C
Assertion
Ref Expression
sumdmdlem ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → ((𝐵 + (span‘{𝐶})) ∩ 𝐴) = (𝐵𝐴))

Proof of Theorem sumdmdlem
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3914 . . . 4 (𝑦 ∈ ((𝐵 + (span‘{𝐶})) ∩ 𝐴) ↔ (𝑦 ∈ (𝐵 + (span‘{𝐶})) ∧ 𝑦𝐴))
2 sumdmdi.2 . . . . . . . . 9 𝐵C
32chshii 31228 . . . . . . . 8 𝐵S
4 spansnsh 31562 . . . . . . . 8 (𝐶 ∈ ℋ → (span‘{𝐶}) ∈ S )
5 shsel 31315 . . . . . . . 8 ((𝐵S ∧ (span‘{𝐶}) ∈ S ) → (𝑦 ∈ (𝐵 + (span‘{𝐶})) ↔ ∃𝑧𝐵𝑤 ∈ (span‘{𝐶})𝑦 = (𝑧 + 𝑤)))
63, 4, 5sylancr 587 . . . . . . 7 (𝐶 ∈ ℋ → (𝑦 ∈ (𝐵 + (span‘{𝐶})) ↔ ∃𝑧𝐵𝑤 ∈ (span‘{𝐶})𝑦 = (𝑧 + 𝑤)))
7 sumdmdi.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐴C
87cheli 31233 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦𝐴𝑦 ∈ ℋ)
92cheli 31233 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧𝐵𝑧 ∈ ℋ)
10 elspansncl 31566 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐶 ∈ ℋ ∧ 𝑤 ∈ (span‘{𝐶})) → 𝑤 ∈ ℋ)
11 hvsubadd 31078 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑦 𝑧) = 𝑤 ↔ (𝑧 + 𝑤) = 𝑦))
12 eqcom 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 + 𝑤) = 𝑦𝑦 = (𝑧 + 𝑤))
1311, 12bitrdi 287 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑦 𝑧) = 𝑤𝑦 = (𝑧 + 𝑤)))
148, 9, 10, 13syl3an 1160 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦𝐴𝑧𝐵 ∧ (𝐶 ∈ ℋ ∧ 𝑤 ∈ (span‘{𝐶}))) → ((𝑦 𝑧) = 𝑤𝑦 = (𝑧 + 𝑤)))
15143expa 1118 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦𝐴𝑧𝐵) ∧ (𝐶 ∈ ℋ ∧ 𝑤 ∈ (span‘{𝐶}))) → ((𝑦 𝑧) = 𝑤𝑦 = (𝑧 + 𝑤)))
167chshii 31228 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐴S
1716, 3shsvsi 31368 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦𝐴𝑧𝐵) → (𝑦 𝑧) ∈ (𝐴 + 𝐵))
18 eleq1 2821 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 𝑧) = 𝑤 → ((𝑦 𝑧) ∈ (𝐴 + 𝐵) ↔ 𝑤 ∈ (𝐴 + 𝐵)))
1917, 18syl5ibcom 245 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦𝐴𝑧𝐵) → ((𝑦 𝑧) = 𝑤𝑤 ∈ (𝐴 + 𝐵)))
2019adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦𝐴𝑧𝐵) ∧ (𝐶 ∈ ℋ ∧ 𝑤 ∈ (span‘{𝐶}))) → ((𝑦 𝑧) = 𝑤𝑤 ∈ (𝐴 + 𝐵)))
2115, 20sylbird 260 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑦𝐴𝑧𝐵) ∧ (𝐶 ∈ ℋ ∧ 𝑤 ∈ (span‘{𝐶}))) → (𝑦 = (𝑧 + 𝑤) → 𝑤 ∈ (𝐴 + 𝐵)))
2221exp32 420 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝐴𝑧𝐵) → (𝐶 ∈ ℋ → (𝑤 ∈ (span‘{𝐶}) → (𝑦 = (𝑧 + 𝑤) → 𝑤 ∈ (𝐴 + 𝐵)))))
2322com4r 94 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑧 + 𝑤) → ((𝑦𝐴𝑧𝐵) → (𝐶 ∈ ℋ → (𝑤 ∈ (span‘{𝐶}) → 𝑤 ∈ (𝐴 + 𝐵)))))
2423imp31 417 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝐶 ∈ ℋ) → (𝑤 ∈ (span‘{𝐶}) → 𝑤 ∈ (𝐴 + 𝐵)))
2524adantrr 717 . . . . . . . . . . . . . . . . . . 19 (((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) ∧ (𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵))) → (𝑤 ∈ (span‘{𝐶}) → 𝑤 ∈ (𝐴 + 𝐵)))
2616, 3shscli 31318 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 + 𝐵) ∈ S
27 elspansn5 31575 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 + 𝐵) ∈ S → (((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) ∧ (𝑤 ∈ (span‘{𝐶}) ∧ 𝑤 ∈ (𝐴 + 𝐵))) → 𝑤 = 0))
2826, 27ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) ∧ (𝑤 ∈ (span‘{𝐶}) ∧ 𝑤 ∈ (𝐴 + 𝐵))) → 𝑤 = 0)
2928exp32 420 . . . . . . . . . . . . . . . . . . . 20 ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → (𝑤 ∈ (span‘{𝐶}) → (𝑤 ∈ (𝐴 + 𝐵) → 𝑤 = 0)))
3029adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) ∧ (𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵))) → (𝑤 ∈ (span‘{𝐶}) → (𝑤 ∈ (𝐴 + 𝐵) → 𝑤 = 0)))
3125, 30mpdd 43 . . . . . . . . . . . . . . . . . 18 (((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) ∧ (𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵))) → (𝑤 ∈ (span‘{𝐶}) → 𝑤 = 0))
32 oveq2 7363 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 = 0 → (𝑧 + 𝑤) = (𝑧 + 0))
33 ax-hvaddid 31005 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ ℋ → (𝑧 + 0) = 𝑧)
3432, 33sylan9eqr 2790 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℋ ∧ 𝑤 = 0) → (𝑧 + 𝑤) = 𝑧)
359, 34sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧𝐵𝑤 = 0) → (𝑧 + 𝑤) = 𝑧)
3635eqeq2d 2744 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧𝐵𝑤 = 0) → (𝑦 = (𝑧 + 𝑤) ↔ 𝑦 = 𝑧))
3736adantll 714 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑦𝐴𝑧𝐵) ∧ 𝑤 = 0) → (𝑦 = (𝑧 + 𝑤) ↔ 𝑦 = 𝑧))
3837biimpac 478 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 = (𝑧 + 𝑤) ∧ ((𝑦𝐴𝑧𝐵) ∧ 𝑤 = 0)) → 𝑦 = 𝑧)
39 eleq1 2821 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑧 → (𝑦𝐵𝑧𝐵))
4039biimparc 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧𝐵𝑦 = 𝑧) → 𝑦𝐵)
41 elin 3914 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (𝐵𝐴) ↔ (𝑦𝐵𝑦𝐴))
4241biimpri 228 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦𝐵𝑦𝐴) → 𝑦 ∈ (𝐵𝐴))
4342ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦𝐴𝑦𝐵) → 𝑦 ∈ (𝐵𝐴))
4440, 43sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝐴 ∧ (𝑧𝐵𝑦 = 𝑧)) → 𝑦 ∈ (𝐵𝐴))
4544expr 456 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝐴𝑧𝐵) → (𝑦 = 𝑧𝑦 ∈ (𝐵𝐴)))
4645ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 = (𝑧 + 𝑤) ∧ ((𝑦𝐴𝑧𝐵) ∧ 𝑤 = 0)) → (𝑦 = 𝑧𝑦 ∈ (𝐵𝐴)))
4738, 46mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 = (𝑧 + 𝑤) ∧ ((𝑦𝐴𝑧𝐵) ∧ 𝑤 = 0)) → 𝑦 ∈ (𝐵𝐴))
4847expr 456 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) → (𝑤 = 0𝑦 ∈ (𝐵𝐴)))
4948a1d 25 . . . . . . . . . . . . . . . . . . 19 ((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) → (𝑤 ∈ (span‘{𝐶}) → (𝑤 = 0𝑦 ∈ (𝐵𝐴))))
5049adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) ∧ (𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵))) → (𝑤 ∈ (span‘{𝐶}) → (𝑤 = 0𝑦 ∈ (𝐵𝐴))))
5131, 50mpdd 43 . . . . . . . . . . . . . . . . 17 (((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) ∧ (𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵))) → (𝑤 ∈ (span‘{𝐶}) → 𝑦 ∈ (𝐵𝐴)))
5251ex 412 . . . . . . . . . . . . . . . 16 ((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) → ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → (𝑤 ∈ (span‘{𝐶}) → 𝑦 ∈ (𝐵𝐴))))
5352com23 86 . . . . . . . . . . . . . . 15 ((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) → (𝑤 ∈ (span‘{𝐶}) → ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → 𝑦 ∈ (𝐵𝐴))))
5453exp32 420 . . . . . . . . . . . . . 14 (𝑦 = (𝑧 + 𝑤) → (𝑦𝐴 → (𝑧𝐵 → (𝑤 ∈ (span‘{𝐶}) → ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → 𝑦 ∈ (𝐵𝐴))))))
5554com4l 92 . . . . . . . . . . . . 13 (𝑦𝐴 → (𝑧𝐵 → (𝑤 ∈ (span‘{𝐶}) → (𝑦 = (𝑧 + 𝑤) → ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → 𝑦 ∈ (𝐵𝐴))))))
5655imp4c 423 . . . . . . . . . . . 12 (𝑦𝐴 → (((𝑧𝐵𝑤 ∈ (span‘{𝐶})) ∧ 𝑦 = (𝑧 + 𝑤)) → ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → 𝑦 ∈ (𝐵𝐴))))
5756exp4a 431 . . . . . . . . . . 11 (𝑦𝐴 → (((𝑧𝐵𝑤 ∈ (span‘{𝐶})) ∧ 𝑦 = (𝑧 + 𝑤)) → (𝐶 ∈ ℋ → (¬ 𝐶 ∈ (𝐴 + 𝐵) → 𝑦 ∈ (𝐵𝐴)))))
5857com23 86 . . . . . . . . . 10 (𝑦𝐴 → (𝐶 ∈ ℋ → (((𝑧𝐵𝑤 ∈ (span‘{𝐶})) ∧ 𝑦 = (𝑧 + 𝑤)) → (¬ 𝐶 ∈ (𝐴 + 𝐵) → 𝑦 ∈ (𝐵𝐴)))))
5958com4l 92 . . . . . . . . 9 (𝐶 ∈ ℋ → (((𝑧𝐵𝑤 ∈ (span‘{𝐶})) ∧ 𝑦 = (𝑧 + 𝑤)) → (¬ 𝐶 ∈ (𝐴 + 𝐵) → (𝑦𝐴𝑦 ∈ (𝐵𝐴)))))
6059expd 415 . . . . . . . 8 (𝐶 ∈ ℋ → ((𝑧𝐵𝑤 ∈ (span‘{𝐶})) → (𝑦 = (𝑧 + 𝑤) → (¬ 𝐶 ∈ (𝐴 + 𝐵) → (𝑦𝐴𝑦 ∈ (𝐵𝐴))))))
6160rexlimdvv 3189 . . . . . . 7 (𝐶 ∈ ℋ → (∃𝑧𝐵𝑤 ∈ (span‘{𝐶})𝑦 = (𝑧 + 𝑤) → (¬ 𝐶 ∈ (𝐴 + 𝐵) → (𝑦𝐴𝑦 ∈ (𝐵𝐴)))))
626, 61sylbid 240 . . . . . 6 (𝐶 ∈ ℋ → (𝑦 ∈ (𝐵 + (span‘{𝐶})) → (¬ 𝐶 ∈ (𝐴 + 𝐵) → (𝑦𝐴𝑦 ∈ (𝐵𝐴)))))
6362com23 86 . . . . 5 (𝐶 ∈ ℋ → (¬ 𝐶 ∈ (𝐴 + 𝐵) → (𝑦 ∈ (𝐵 + (span‘{𝐶})) → (𝑦𝐴𝑦 ∈ (𝐵𝐴)))))
6463imp4b 421 . . . 4 ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → ((𝑦 ∈ (𝐵 + (span‘{𝐶})) ∧ 𝑦𝐴) → 𝑦 ∈ (𝐵𝐴)))
651, 64biimtrid 242 . . 3 ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → (𝑦 ∈ ((𝐵 + (span‘{𝐶})) ∩ 𝐴) → 𝑦 ∈ (𝐵𝐴)))
6665ssrdv 3936 . 2 ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → ((𝐵 + (span‘{𝐶})) ∩ 𝐴) ⊆ (𝐵𝐴))
67 shsub1 31325 . . . . 5 ((𝐵S ∧ (span‘{𝐶}) ∈ S ) → 𝐵 ⊆ (𝐵 + (span‘{𝐶})))
683, 4, 67sylancr 587 . . . 4 (𝐶 ∈ ℋ → 𝐵 ⊆ (𝐵 + (span‘{𝐶})))
6968ssrind 4193 . . 3 (𝐶 ∈ ℋ → (𝐵𝐴) ⊆ ((𝐵 + (span‘{𝐶})) ∩ 𝐴))
7069adantr 480 . 2 ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → (𝐵𝐴) ⊆ ((𝐵 + (span‘{𝐶})) ∩ 𝐴))
7166, 70eqssd 3948 1 ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → ((𝐵 + (span‘{𝐶})) ∩ 𝐴) = (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wrex 3057  cin 3897  wss 3898  {csn 4577  cfv 6489  (class class class)co 7355  chba 30920   + cva 30921  0c0v 30925   cmv 30926   S csh 30929   C cch 30930   + cph 30932  spancspn 30933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cc 10337  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096  ax-mulf 11097  ax-hilex 31000  ax-hfvadd 31001  ax-hvcom 31002  ax-hvass 31003  ax-hv0cl 31004  ax-hvaddid 31005  ax-hfvmul 31006  ax-hvmulid 31007  ax-hvmulass 31008  ax-hvdistr1 31009  ax-hvdistr2 31010  ax-hvmul0 31011  ax-hfi 31080  ax-his1 31083  ax-his2 31084  ax-his3 31085  ax-his4 31086  ax-hcompl 31203
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-omul 8399  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-fi 9306  df-sup 9337  df-inf 9338  df-oi 9407  df-card 9843  df-acn 9846  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13256  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-fl 13703  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-rlim 15403  df-sum 15601  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-hom 17192  df-cco 17193  df-rest 17333  df-topn 17334  df-0g 17352  df-gsum 17353  df-topgen 17354  df-pt 17355  df-prds 17358  df-xrs 17414  df-qtop 17419  df-imas 17420  df-xps 17422  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-mulg 18989  df-cntz 19237  df-cmn 19702  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-fbas 21297  df-fg 21298  df-cnfld 21301  df-top 22829  df-topon 22846  df-topsp 22868  df-bases 22881  df-cld 22954  df-ntr 22955  df-cls 22956  df-nei 23033  df-cn 23162  df-cnp 23163  df-lm 23164  df-haus 23250  df-tx 23497  df-hmeo 23690  df-fil 23781  df-fm 23873  df-flim 23874  df-flf 23875  df-xms 24255  df-ms 24256  df-tms 24257  df-cfil 25202  df-cau 25203  df-cmet 25204  df-grpo 30494  df-gid 30495  df-ginv 30496  df-gdiv 30497  df-ablo 30546  df-vc 30560  df-nv 30593  df-va 30596  df-ba 30597  df-sm 30598  df-0v 30599  df-vs 30600  df-nmcv 30601  df-ims 30602  df-dip 30702  df-ssp 30723  df-ph 30814  df-cbn 30864  df-hnorm 30969  df-hba 30970  df-hvsub 30972  df-hlim 30973  df-hcau 30974  df-sh 31208  df-ch 31222  df-oc 31253  df-ch0 31254  df-shs 31309  df-span 31310
This theorem is referenced by:  sumdmdlem2  32420
  Copyright terms: Public domain W3C validator