HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sumdmdlem Structured version   Visualization version   GIF version

Theorem sumdmdlem 31360
Description: Lemma for sumdmdi 31362. The span of vector 𝐶 not in the subspace sum is "trimmed off." (Contributed by NM, 18-Dec-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
sumdmdi.1 𝐴C
sumdmdi.2 𝐵C
Assertion
Ref Expression
sumdmdlem ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → ((𝐵 + (span‘{𝐶})) ∩ 𝐴) = (𝐵𝐴))

Proof of Theorem sumdmdlem
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3926 . . . 4 (𝑦 ∈ ((𝐵 + (span‘{𝐶})) ∩ 𝐴) ↔ (𝑦 ∈ (𝐵 + (span‘{𝐶})) ∧ 𝑦𝐴))
2 sumdmdi.2 . . . . . . . . 9 𝐵C
32chshii 30169 . . . . . . . 8 𝐵S
4 spansnsh 30503 . . . . . . . 8 (𝐶 ∈ ℋ → (span‘{𝐶}) ∈ S )
5 shsel 30256 . . . . . . . 8 ((𝐵S ∧ (span‘{𝐶}) ∈ S ) → (𝑦 ∈ (𝐵 + (span‘{𝐶})) ↔ ∃𝑧𝐵𝑤 ∈ (span‘{𝐶})𝑦 = (𝑧 + 𝑤)))
63, 4, 5sylancr 587 . . . . . . 7 (𝐶 ∈ ℋ → (𝑦 ∈ (𝐵 + (span‘{𝐶})) ↔ ∃𝑧𝐵𝑤 ∈ (span‘{𝐶})𝑦 = (𝑧 + 𝑤)))
7 sumdmdi.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐴C
87cheli 30174 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦𝐴𝑦 ∈ ℋ)
92cheli 30174 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧𝐵𝑧 ∈ ℋ)
10 elspansncl 30507 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐶 ∈ ℋ ∧ 𝑤 ∈ (span‘{𝐶})) → 𝑤 ∈ ℋ)
11 hvsubadd 30019 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑦 𝑧) = 𝑤 ↔ (𝑧 + 𝑤) = 𝑦))
12 eqcom 2743 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 + 𝑤) = 𝑦𝑦 = (𝑧 + 𝑤))
1311, 12bitrdi 286 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑦 𝑧) = 𝑤𝑦 = (𝑧 + 𝑤)))
148, 9, 10, 13syl3an 1160 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦𝐴𝑧𝐵 ∧ (𝐶 ∈ ℋ ∧ 𝑤 ∈ (span‘{𝐶}))) → ((𝑦 𝑧) = 𝑤𝑦 = (𝑧 + 𝑤)))
15143expa 1118 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦𝐴𝑧𝐵) ∧ (𝐶 ∈ ℋ ∧ 𝑤 ∈ (span‘{𝐶}))) → ((𝑦 𝑧) = 𝑤𝑦 = (𝑧 + 𝑤)))
167chshii 30169 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐴S
1716, 3shsvsi 30309 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦𝐴𝑧𝐵) → (𝑦 𝑧) ∈ (𝐴 + 𝐵))
18 eleq1 2825 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 𝑧) = 𝑤 → ((𝑦 𝑧) ∈ (𝐴 + 𝐵) ↔ 𝑤 ∈ (𝐴 + 𝐵)))
1917, 18syl5ibcom 244 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦𝐴𝑧𝐵) → ((𝑦 𝑧) = 𝑤𝑤 ∈ (𝐴 + 𝐵)))
2019adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦𝐴𝑧𝐵) ∧ (𝐶 ∈ ℋ ∧ 𝑤 ∈ (span‘{𝐶}))) → ((𝑦 𝑧) = 𝑤𝑤 ∈ (𝐴 + 𝐵)))
2115, 20sylbird 259 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑦𝐴𝑧𝐵) ∧ (𝐶 ∈ ℋ ∧ 𝑤 ∈ (span‘{𝐶}))) → (𝑦 = (𝑧 + 𝑤) → 𝑤 ∈ (𝐴 + 𝐵)))
2221exp32 421 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝐴𝑧𝐵) → (𝐶 ∈ ℋ → (𝑤 ∈ (span‘{𝐶}) → (𝑦 = (𝑧 + 𝑤) → 𝑤 ∈ (𝐴 + 𝐵)))))
2322com4r 94 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑧 + 𝑤) → ((𝑦𝐴𝑧𝐵) → (𝐶 ∈ ℋ → (𝑤 ∈ (span‘{𝐶}) → 𝑤 ∈ (𝐴 + 𝐵)))))
2423imp31 418 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝐶 ∈ ℋ) → (𝑤 ∈ (span‘{𝐶}) → 𝑤 ∈ (𝐴 + 𝐵)))
2524adantrr 715 . . . . . . . . . . . . . . . . . . 19 (((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) ∧ (𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵))) → (𝑤 ∈ (span‘{𝐶}) → 𝑤 ∈ (𝐴 + 𝐵)))
2616, 3shscli 30259 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 + 𝐵) ∈ S
27 elspansn5 30516 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 + 𝐵) ∈ S → (((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) ∧ (𝑤 ∈ (span‘{𝐶}) ∧ 𝑤 ∈ (𝐴 + 𝐵))) → 𝑤 = 0))
2826, 27ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) ∧ (𝑤 ∈ (span‘{𝐶}) ∧ 𝑤 ∈ (𝐴 + 𝐵))) → 𝑤 = 0)
2928exp32 421 . . . . . . . . . . . . . . . . . . . 20 ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → (𝑤 ∈ (span‘{𝐶}) → (𝑤 ∈ (𝐴 + 𝐵) → 𝑤 = 0)))
3029adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) ∧ (𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵))) → (𝑤 ∈ (span‘{𝐶}) → (𝑤 ∈ (𝐴 + 𝐵) → 𝑤 = 0)))
3125, 30mpdd 43 . . . . . . . . . . . . . . . . . 18 (((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) ∧ (𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵))) → (𝑤 ∈ (span‘{𝐶}) → 𝑤 = 0))
32 oveq2 7365 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 = 0 → (𝑧 + 𝑤) = (𝑧 + 0))
33 ax-hvaddid 29946 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ ℋ → (𝑧 + 0) = 𝑧)
3432, 33sylan9eqr 2798 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℋ ∧ 𝑤 = 0) → (𝑧 + 𝑤) = 𝑧)
359, 34sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧𝐵𝑤 = 0) → (𝑧 + 𝑤) = 𝑧)
3635eqeq2d 2747 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧𝐵𝑤 = 0) → (𝑦 = (𝑧 + 𝑤) ↔ 𝑦 = 𝑧))
3736adantll 712 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑦𝐴𝑧𝐵) ∧ 𝑤 = 0) → (𝑦 = (𝑧 + 𝑤) ↔ 𝑦 = 𝑧))
3837biimpac 479 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 = (𝑧 + 𝑤) ∧ ((𝑦𝐴𝑧𝐵) ∧ 𝑤 = 0)) → 𝑦 = 𝑧)
39 eleq1 2825 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑧 → (𝑦𝐵𝑧𝐵))
4039biimparc 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧𝐵𝑦 = 𝑧) → 𝑦𝐵)
41 elin 3926 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (𝐵𝐴) ↔ (𝑦𝐵𝑦𝐴))
4241biimpri 227 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦𝐵𝑦𝐴) → 𝑦 ∈ (𝐵𝐴))
4342ancoms 459 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦𝐴𝑦𝐵) → 𝑦 ∈ (𝐵𝐴))
4440, 43sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝐴 ∧ (𝑧𝐵𝑦 = 𝑧)) → 𝑦 ∈ (𝐵𝐴))
4544expr 457 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝐴𝑧𝐵) → (𝑦 = 𝑧𝑦 ∈ (𝐵𝐴)))
4645ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 = (𝑧 + 𝑤) ∧ ((𝑦𝐴𝑧𝐵) ∧ 𝑤 = 0)) → (𝑦 = 𝑧𝑦 ∈ (𝐵𝐴)))
4738, 46mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 = (𝑧 + 𝑤) ∧ ((𝑦𝐴𝑧𝐵) ∧ 𝑤 = 0)) → 𝑦 ∈ (𝐵𝐴))
4847expr 457 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) → (𝑤 = 0𝑦 ∈ (𝐵𝐴)))
4948a1d 25 . . . . . . . . . . . . . . . . . . 19 ((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) → (𝑤 ∈ (span‘{𝐶}) → (𝑤 = 0𝑦 ∈ (𝐵𝐴))))
5049adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) ∧ (𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵))) → (𝑤 ∈ (span‘{𝐶}) → (𝑤 = 0𝑦 ∈ (𝐵𝐴))))
5131, 50mpdd 43 . . . . . . . . . . . . . . . . 17 (((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) ∧ (𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵))) → (𝑤 ∈ (span‘{𝐶}) → 𝑦 ∈ (𝐵𝐴)))
5251ex 413 . . . . . . . . . . . . . . . 16 ((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) → ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → (𝑤 ∈ (span‘{𝐶}) → 𝑦 ∈ (𝐵𝐴))))
5352com23 86 . . . . . . . . . . . . . . 15 ((𝑦 = (𝑧 + 𝑤) ∧ (𝑦𝐴𝑧𝐵)) → (𝑤 ∈ (span‘{𝐶}) → ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → 𝑦 ∈ (𝐵𝐴))))
5453exp32 421 . . . . . . . . . . . . . 14 (𝑦 = (𝑧 + 𝑤) → (𝑦𝐴 → (𝑧𝐵 → (𝑤 ∈ (span‘{𝐶}) → ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → 𝑦 ∈ (𝐵𝐴))))))
5554com4l 92 . . . . . . . . . . . . 13 (𝑦𝐴 → (𝑧𝐵 → (𝑤 ∈ (span‘{𝐶}) → (𝑦 = (𝑧 + 𝑤) → ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → 𝑦 ∈ (𝐵𝐴))))))
5655imp4c 424 . . . . . . . . . . . 12 (𝑦𝐴 → (((𝑧𝐵𝑤 ∈ (span‘{𝐶})) ∧ 𝑦 = (𝑧 + 𝑤)) → ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → 𝑦 ∈ (𝐵𝐴))))
5756exp4a 432 . . . . . . . . . . 11 (𝑦𝐴 → (((𝑧𝐵𝑤 ∈ (span‘{𝐶})) ∧ 𝑦 = (𝑧 + 𝑤)) → (𝐶 ∈ ℋ → (¬ 𝐶 ∈ (𝐴 + 𝐵) → 𝑦 ∈ (𝐵𝐴)))))
5857com23 86 . . . . . . . . . 10 (𝑦𝐴 → (𝐶 ∈ ℋ → (((𝑧𝐵𝑤 ∈ (span‘{𝐶})) ∧ 𝑦 = (𝑧 + 𝑤)) → (¬ 𝐶 ∈ (𝐴 + 𝐵) → 𝑦 ∈ (𝐵𝐴)))))
5958com4l 92 . . . . . . . . 9 (𝐶 ∈ ℋ → (((𝑧𝐵𝑤 ∈ (span‘{𝐶})) ∧ 𝑦 = (𝑧 + 𝑤)) → (¬ 𝐶 ∈ (𝐴 + 𝐵) → (𝑦𝐴𝑦 ∈ (𝐵𝐴)))))
6059expd 416 . . . . . . . 8 (𝐶 ∈ ℋ → ((𝑧𝐵𝑤 ∈ (span‘{𝐶})) → (𝑦 = (𝑧 + 𝑤) → (¬ 𝐶 ∈ (𝐴 + 𝐵) → (𝑦𝐴𝑦 ∈ (𝐵𝐴))))))
6160rexlimdvv 3204 . . . . . . 7 (𝐶 ∈ ℋ → (∃𝑧𝐵𝑤 ∈ (span‘{𝐶})𝑦 = (𝑧 + 𝑤) → (¬ 𝐶 ∈ (𝐴 + 𝐵) → (𝑦𝐴𝑦 ∈ (𝐵𝐴)))))
626, 61sylbid 239 . . . . . 6 (𝐶 ∈ ℋ → (𝑦 ∈ (𝐵 + (span‘{𝐶})) → (¬ 𝐶 ∈ (𝐴 + 𝐵) → (𝑦𝐴𝑦 ∈ (𝐵𝐴)))))
6362com23 86 . . . . 5 (𝐶 ∈ ℋ → (¬ 𝐶 ∈ (𝐴 + 𝐵) → (𝑦 ∈ (𝐵 + (span‘{𝐶})) → (𝑦𝐴𝑦 ∈ (𝐵𝐴)))))
6463imp4b 422 . . . 4 ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → ((𝑦 ∈ (𝐵 + (span‘{𝐶})) ∧ 𝑦𝐴) → 𝑦 ∈ (𝐵𝐴)))
651, 64biimtrid 241 . . 3 ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → (𝑦 ∈ ((𝐵 + (span‘{𝐶})) ∩ 𝐴) → 𝑦 ∈ (𝐵𝐴)))
6665ssrdv 3950 . 2 ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → ((𝐵 + (span‘{𝐶})) ∩ 𝐴) ⊆ (𝐵𝐴))
67 shsub1 30266 . . . . 5 ((𝐵S ∧ (span‘{𝐶}) ∈ S ) → 𝐵 ⊆ (𝐵 + (span‘{𝐶})))
683, 4, 67sylancr 587 . . . 4 (𝐶 ∈ ℋ → 𝐵 ⊆ (𝐵 + (span‘{𝐶})))
6968ssrind 4195 . . 3 (𝐶 ∈ ℋ → (𝐵𝐴) ⊆ ((𝐵 + (span‘{𝐶})) ∩ 𝐴))
7069adantr 481 . 2 ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → (𝐵𝐴) ⊆ ((𝐵 + (span‘{𝐶})) ∩ 𝐴))
7166, 70eqssd 3961 1 ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 + 𝐵)) → ((𝐵 + (span‘{𝐶})) ∩ 𝐴) = (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3073  cin 3909  wss 3910  {csn 4586  cfv 6496  (class class class)co 7357  chba 29861   + cva 29862  0c0v 29866   cmv 29867   S csh 29870   C cch 29871   + cph 29873  spancspn 29874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131  ax-hilex 29941  ax-hfvadd 29942  ax-hvcom 29943  ax-hvass 29944  ax-hv0cl 29945  ax-hvaddid 29946  ax-hfvmul 29947  ax-hvmulid 29948  ax-hvmulass 29949  ax-hvdistr1 29950  ax-hvdistr2 29951  ax-hvmul0 29952  ax-hfi 30021  ax-his1 30024  ax-his2 30025  ax-his3 30026  ax-his4 30027  ax-hcompl 30144
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-cn 22578  df-cnp 22579  df-lm 22580  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cfil 24619  df-cau 24620  df-cmet 24621  df-grpo 29435  df-gid 29436  df-ginv 29437  df-gdiv 29438  df-ablo 29487  df-vc 29501  df-nv 29534  df-va 29537  df-ba 29538  df-sm 29539  df-0v 29540  df-vs 29541  df-nmcv 29542  df-ims 29543  df-dip 29643  df-ssp 29664  df-ph 29755  df-cbn 29805  df-hnorm 29910  df-hba 29911  df-hvsub 29913  df-hlim 29914  df-hcau 29915  df-sh 30149  df-ch 30163  df-oc 30194  df-ch0 30195  df-shs 30250  df-span 30251
This theorem is referenced by:  sumdmdlem2  31361
  Copyright terms: Public domain W3C validator