Step | Hyp | Ref
| Expression |
1 | | elin 3903 |
. . . 4
⊢ (𝑦 ∈ ((𝐵 +ℋ (span‘{𝐶})) ∩ 𝐴) ↔ (𝑦 ∈ (𝐵 +ℋ (span‘{𝐶})) ∧ 𝑦 ∈ 𝐴)) |
2 | | sumdmdi.2 |
. . . . . . . . 9
⊢ 𝐵 ∈
Cℋ |
3 | 2 | chshii 29589 |
. . . . . . . 8
⊢ 𝐵 ∈
Sℋ |
4 | | spansnsh 29923 |
. . . . . . . 8
⊢ (𝐶 ∈ ℋ →
(span‘{𝐶}) ∈
Sℋ ) |
5 | | shsel 29676 |
. . . . . . . 8
⊢ ((𝐵 ∈
Sℋ ∧ (span‘{𝐶}) ∈ Sℋ
) → (𝑦 ∈ (𝐵 +ℋ
(span‘{𝐶})) ↔
∃𝑧 ∈ 𝐵 ∃𝑤 ∈ (span‘{𝐶})𝑦 = (𝑧 +ℎ 𝑤))) |
6 | 3, 4, 5 | sylancr 587 |
. . . . . . 7
⊢ (𝐶 ∈ ℋ → (𝑦 ∈ (𝐵 +ℋ (span‘{𝐶})) ↔ ∃𝑧 ∈ 𝐵 ∃𝑤 ∈ (span‘{𝐶})𝑦 = (𝑧 +ℎ 𝑤))) |
7 | | sumdmdi.1 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 𝐴 ∈
Cℋ |
8 | 7 | cheli 29594 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ) |
9 | 2 | cheli 29594 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 ∈ 𝐵 → 𝑧 ∈ ℋ) |
10 | | elspansncl 29927 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐶 ∈ ℋ ∧ 𝑤 ∈ (span‘{𝐶})) → 𝑤 ∈ ℋ) |
11 | | hvsubadd 29439 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑦 −ℎ
𝑧) = 𝑤 ↔ (𝑧 +ℎ 𝑤) = 𝑦)) |
12 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑧 +ℎ 𝑤) = 𝑦 ↔ 𝑦 = (𝑧 +ℎ 𝑤)) |
13 | 11, 12 | bitrdi 287 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((𝑦 −ℎ
𝑧) = 𝑤 ↔ 𝑦 = (𝑧 +ℎ 𝑤))) |
14 | 8, 9, 10, 13 | syl3an 1159 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ∧ (𝐶 ∈ ℋ ∧ 𝑤 ∈ (span‘{𝐶}))) → ((𝑦 −ℎ 𝑧) = 𝑤 ↔ 𝑦 = (𝑧 +ℎ 𝑤))) |
15 | 14 | 3expa 1117 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) ∧ (𝐶 ∈ ℋ ∧ 𝑤 ∈ (span‘{𝐶}))) → ((𝑦 −ℎ 𝑧) = 𝑤 ↔ 𝑦 = (𝑧 +ℎ 𝑤))) |
16 | 7 | chshii 29589 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 𝐴 ∈
Sℋ |
17 | 16, 3 | shsvsi 29729 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → (𝑦 −ℎ 𝑧) ∈ (𝐴 +ℋ 𝐵)) |
18 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 −ℎ
𝑧) = 𝑤 → ((𝑦 −ℎ 𝑧) ∈ (𝐴 +ℋ 𝐵) ↔ 𝑤 ∈ (𝐴 +ℋ 𝐵))) |
19 | 17, 18 | syl5ibcom 244 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → ((𝑦 −ℎ 𝑧) = 𝑤 → 𝑤 ∈ (𝐴 +ℋ 𝐵))) |
20 | 19 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) ∧ (𝐶 ∈ ℋ ∧ 𝑤 ∈ (span‘{𝐶}))) → ((𝑦 −ℎ 𝑧) = 𝑤 → 𝑤 ∈ (𝐴 +ℋ 𝐵))) |
21 | 15, 20 | sylbird 259 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) ∧ (𝐶 ∈ ℋ ∧ 𝑤 ∈ (span‘{𝐶}))) → (𝑦 = (𝑧 +ℎ 𝑤) → 𝑤 ∈ (𝐴 +ℋ 𝐵))) |
22 | 21 | exp32 421 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → (𝐶 ∈ ℋ → (𝑤 ∈ (span‘{𝐶}) → (𝑦 = (𝑧 +ℎ 𝑤) → 𝑤 ∈ (𝐴 +ℋ 𝐵))))) |
23 | 22 | com4r 94 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = (𝑧 +ℎ 𝑤) → ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → (𝐶 ∈ ℋ → (𝑤 ∈ (span‘{𝐶}) → 𝑤 ∈ (𝐴 +ℋ 𝐵))))) |
24 | 23 | imp31 418 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 = (𝑧 +ℎ 𝑤) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) ∧ 𝐶 ∈ ℋ) → (𝑤 ∈ (span‘{𝐶}) → 𝑤 ∈ (𝐴 +ℋ 𝐵))) |
25 | 24 | adantrr 714 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑦 = (𝑧 +ℎ 𝑤) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) ∧ (𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 +ℋ 𝐵))) → (𝑤 ∈ (span‘{𝐶}) → 𝑤 ∈ (𝐴 +ℋ 𝐵))) |
26 | 16, 3 | shscli 29679 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 +ℋ 𝐵) ∈
Sℋ |
27 | | elspansn5 29936 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 +ℋ 𝐵) ∈
Sℋ → (((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 +ℋ 𝐵)) ∧ (𝑤 ∈ (span‘{𝐶}) ∧ 𝑤 ∈ (𝐴 +ℋ 𝐵))) → 𝑤 = 0ℎ)) |
28 | 26, 27 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐶 ∈ ℋ ∧ ¬
𝐶 ∈ (𝐴 +ℋ 𝐵)) ∧ (𝑤 ∈ (span‘{𝐶}) ∧ 𝑤 ∈ (𝐴 +ℋ 𝐵))) → 𝑤 = 0ℎ) |
29 | 28 | exp32 421 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐶 ∈ ℋ ∧ ¬
𝐶 ∈ (𝐴 +ℋ 𝐵)) → (𝑤 ∈ (span‘{𝐶}) → (𝑤 ∈ (𝐴 +ℋ 𝐵) → 𝑤 = 0ℎ))) |
30 | 29 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑦 = (𝑧 +ℎ 𝑤) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) ∧ (𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 +ℋ 𝐵))) → (𝑤 ∈ (span‘{𝐶}) → (𝑤 ∈ (𝐴 +ℋ 𝐵) → 𝑤 = 0ℎ))) |
31 | 25, 30 | mpdd 43 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 = (𝑧 +ℎ 𝑤) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) ∧ (𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 +ℋ 𝐵))) → (𝑤 ∈ (span‘{𝐶}) → 𝑤 = 0ℎ)) |
32 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑤 = 0ℎ →
(𝑧 +ℎ
𝑤) = (𝑧 +ℎ
0ℎ)) |
33 | | ax-hvaddid 29366 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 ∈ ℋ → (𝑧 +ℎ
0ℎ) = 𝑧) |
34 | 32, 33 | sylan9eqr 2800 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑧 ∈ ℋ ∧ 𝑤 = 0ℎ) →
(𝑧 +ℎ
𝑤) = 𝑧) |
35 | 9, 34 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑧 ∈ 𝐵 ∧ 𝑤 = 0ℎ) → (𝑧 +ℎ 𝑤) = 𝑧) |
36 | 35 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑧 ∈ 𝐵 ∧ 𝑤 = 0ℎ) → (𝑦 = (𝑧 +ℎ 𝑤) ↔ 𝑦 = 𝑧)) |
37 | 36 | adantll 711 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) ∧ 𝑤 = 0ℎ) → (𝑦 = (𝑧 +ℎ 𝑤) ↔ 𝑦 = 𝑧)) |
38 | 37 | biimpac 479 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 = (𝑧 +ℎ 𝑤) ∧ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) ∧ 𝑤 = 0ℎ)) → 𝑦 = 𝑧) |
39 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) |
40 | 39 | biimparc 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑧 ∈ 𝐵 ∧ 𝑦 = 𝑧) → 𝑦 ∈ 𝐵) |
41 | | elin 3903 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ (𝐵 ∩ 𝐴) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴)) |
42 | 41 | biimpri 227 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ (𝐵 ∩ 𝐴)) |
43 | 42 | ancoms 459 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ (𝐵 ∩ 𝐴)) |
44 | 40, 43 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑧 ∈ 𝐵 ∧ 𝑦 = 𝑧)) → 𝑦 ∈ (𝐵 ∩ 𝐴)) |
45 | 44 | expr 457 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → (𝑦 = 𝑧 → 𝑦 ∈ (𝐵 ∩ 𝐴))) |
46 | 45 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 = (𝑧 +ℎ 𝑤) ∧ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) ∧ 𝑤 = 0ℎ)) → (𝑦 = 𝑧 → 𝑦 ∈ (𝐵 ∩ 𝐴))) |
47 | 38, 46 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 = (𝑧 +ℎ 𝑤) ∧ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) ∧ 𝑤 = 0ℎ)) → 𝑦 ∈ (𝐵 ∩ 𝐴)) |
48 | 47 | expr 457 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 = (𝑧 +ℎ 𝑤) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) → (𝑤 = 0ℎ → 𝑦 ∈ (𝐵 ∩ 𝐴))) |
49 | 48 | a1d 25 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 = (𝑧 +ℎ 𝑤) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) → (𝑤 ∈ (span‘{𝐶}) → (𝑤 = 0ℎ → 𝑦 ∈ (𝐵 ∩ 𝐴)))) |
50 | 49 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 = (𝑧 +ℎ 𝑤) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) ∧ (𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 +ℋ 𝐵))) → (𝑤 ∈ (span‘{𝐶}) → (𝑤 = 0ℎ → 𝑦 ∈ (𝐵 ∩ 𝐴)))) |
51 | 31, 50 | mpdd 43 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 = (𝑧 +ℎ 𝑤) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) ∧ (𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 +ℋ 𝐵))) → (𝑤 ∈ (span‘{𝐶}) → 𝑦 ∈ (𝐵 ∩ 𝐴))) |
52 | 51 | ex 413 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 = (𝑧 +ℎ 𝑤) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) → ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 +ℋ 𝐵)) → (𝑤 ∈ (span‘{𝐶}) → 𝑦 ∈ (𝐵 ∩ 𝐴)))) |
53 | 52 | com23 86 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 = (𝑧 +ℎ 𝑤) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) → (𝑤 ∈ (span‘{𝐶}) → ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 +ℋ 𝐵)) → 𝑦 ∈ (𝐵 ∩ 𝐴)))) |
54 | 53 | exp32 421 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑧 +ℎ 𝑤) → (𝑦 ∈ 𝐴 → (𝑧 ∈ 𝐵 → (𝑤 ∈ (span‘{𝐶}) → ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 +ℋ 𝐵)) → 𝑦 ∈ (𝐵 ∩ 𝐴)))))) |
55 | 54 | com4l 92 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝐴 → (𝑧 ∈ 𝐵 → (𝑤 ∈ (span‘{𝐶}) → (𝑦 = (𝑧 +ℎ 𝑤) → ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 +ℋ 𝐵)) → 𝑦 ∈ (𝐵 ∩ 𝐴)))))) |
56 | 55 | imp4c 424 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐴 → (((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ (span‘{𝐶})) ∧ 𝑦 = (𝑧 +ℎ 𝑤)) → ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 +ℋ 𝐵)) → 𝑦 ∈ (𝐵 ∩ 𝐴)))) |
57 | 56 | exp4a 432 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐴 → (((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ (span‘{𝐶})) ∧ 𝑦 = (𝑧 +ℎ 𝑤)) → (𝐶 ∈ ℋ → (¬ 𝐶 ∈ (𝐴 +ℋ 𝐵) → 𝑦 ∈ (𝐵 ∩ 𝐴))))) |
58 | 57 | com23 86 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐴 → (𝐶 ∈ ℋ → (((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ (span‘{𝐶})) ∧ 𝑦 = (𝑧 +ℎ 𝑤)) → (¬ 𝐶 ∈ (𝐴 +ℋ 𝐵) → 𝑦 ∈ (𝐵 ∩ 𝐴))))) |
59 | 58 | com4l 92 |
. . . . . . . . 9
⊢ (𝐶 ∈ ℋ → (((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ (span‘{𝐶})) ∧ 𝑦 = (𝑧 +ℎ 𝑤)) → (¬ 𝐶 ∈ (𝐴 +ℋ 𝐵) → (𝑦 ∈ 𝐴 → 𝑦 ∈ (𝐵 ∩ 𝐴))))) |
60 | 59 | expd 416 |
. . . . . . . 8
⊢ (𝐶 ∈ ℋ → ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ (span‘{𝐶})) → (𝑦 = (𝑧 +ℎ 𝑤) → (¬ 𝐶 ∈ (𝐴 +ℋ 𝐵) → (𝑦 ∈ 𝐴 → 𝑦 ∈ (𝐵 ∩ 𝐴)))))) |
61 | 60 | rexlimdvv 3222 |
. . . . . . 7
⊢ (𝐶 ∈ ℋ →
(∃𝑧 ∈ 𝐵 ∃𝑤 ∈ (span‘{𝐶})𝑦 = (𝑧 +ℎ 𝑤) → (¬ 𝐶 ∈ (𝐴 +ℋ 𝐵) → (𝑦 ∈ 𝐴 → 𝑦 ∈ (𝐵 ∩ 𝐴))))) |
62 | 6, 61 | sylbid 239 |
. . . . . 6
⊢ (𝐶 ∈ ℋ → (𝑦 ∈ (𝐵 +ℋ (span‘{𝐶})) → (¬ 𝐶 ∈ (𝐴 +ℋ 𝐵) → (𝑦 ∈ 𝐴 → 𝑦 ∈ (𝐵 ∩ 𝐴))))) |
63 | 62 | com23 86 |
. . . . 5
⊢ (𝐶 ∈ ℋ → (¬
𝐶 ∈ (𝐴 +ℋ 𝐵) → (𝑦 ∈ (𝐵 +ℋ (span‘{𝐶})) → (𝑦 ∈ 𝐴 → 𝑦 ∈ (𝐵 ∩ 𝐴))))) |
64 | 63 | imp4b 422 |
. . . 4
⊢ ((𝐶 ∈ ℋ ∧ ¬
𝐶 ∈ (𝐴 +ℋ 𝐵)) → ((𝑦 ∈ (𝐵 +ℋ (span‘{𝐶})) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ (𝐵 ∩ 𝐴))) |
65 | 1, 64 | syl5bi 241 |
. . 3
⊢ ((𝐶 ∈ ℋ ∧ ¬
𝐶 ∈ (𝐴 +ℋ 𝐵)) → (𝑦 ∈ ((𝐵 +ℋ (span‘{𝐶})) ∩ 𝐴) → 𝑦 ∈ (𝐵 ∩ 𝐴))) |
66 | 65 | ssrdv 3927 |
. 2
⊢ ((𝐶 ∈ ℋ ∧ ¬
𝐶 ∈ (𝐴 +ℋ 𝐵)) → ((𝐵 +ℋ (span‘{𝐶})) ∩ 𝐴) ⊆ (𝐵 ∩ 𝐴)) |
67 | | shsub1 29686 |
. . . . 5
⊢ ((𝐵 ∈
Sℋ ∧ (span‘{𝐶}) ∈ Sℋ
) → 𝐵 ⊆ (𝐵 +ℋ
(span‘{𝐶}))) |
68 | 3, 4, 67 | sylancr 587 |
. . . 4
⊢ (𝐶 ∈ ℋ → 𝐵 ⊆ (𝐵 +ℋ (span‘{𝐶}))) |
69 | 68 | ssrind 4169 |
. . 3
⊢ (𝐶 ∈ ℋ → (𝐵 ∩ 𝐴) ⊆ ((𝐵 +ℋ (span‘{𝐶})) ∩ 𝐴)) |
70 | 69 | adantr 481 |
. 2
⊢ ((𝐶 ∈ ℋ ∧ ¬
𝐶 ∈ (𝐴 +ℋ 𝐵)) → (𝐵 ∩ 𝐴) ⊆ ((𝐵 +ℋ (span‘{𝐶})) ∩ 𝐴)) |
71 | 66, 70 | eqssd 3938 |
1
⊢ ((𝐶 ∈ ℋ ∧ ¬
𝐶 ∈ (𝐴 +ℋ 𝐵)) → ((𝐵 +ℋ (span‘{𝐶})) ∩ 𝐴) = (𝐵 ∩ 𝐴)) |