HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atcvat3i Structured version   Visualization version   GIF version

Theorem atcvat3i 32298
Description: A condition implying that a certain lattice element is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.)
Hypothesis
Ref Expression
atcvat3.1 𝐴C
Assertion
Ref Expression
atcvat3i ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms))

Proof of Theorem atcvat3i
StepHypRef Expression
1 atcvat3.1 . . . . . . . . . . 11 𝐴C
2 chcv1 32257 . . . . . . . . . . 11 ((𝐴C𝐶 ∈ HAtoms) → (¬ 𝐶𝐴𝐴 (𝐴 𝐶)))
31, 2mpan 688 . . . . . . . . . 10 (𝐶 ∈ HAtoms → (¬ 𝐶𝐴𝐴 (𝐴 𝐶)))
43biimpa 475 . . . . . . . . 9 ((𝐶 ∈ HAtoms ∧ ¬ 𝐶𝐴) → 𝐴 (𝐴 𝐶))
54ad2ant2lr 746 . . . . . . . 8 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (¬ 𝐶𝐴𝐵 ⊆ (𝐴 𝐶))) → 𝐴 (𝐴 𝐶))
6 atelch 32246 . . . . . . . . . . . 12 (𝐵 ∈ HAtoms → 𝐵C )
7 atelch 32246 . . . . . . . . . . . 12 (𝐶 ∈ HAtoms → 𝐶C )
86, 7anim12i 611 . . . . . . . . . . 11 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐵C𝐶C ))
9 chjcom 31408 . . . . . . . . . . . . . . . . 17 ((𝐵C𝐶C ) → (𝐵 𝐶) = (𝐶 𝐵))
109oveq2d 7435 . . . . . . . . . . . . . . . 16 ((𝐵C𝐶C ) → (𝐴 (𝐵 𝐶)) = (𝐴 (𝐶 𝐵)))
11 chjass 31435 . . . . . . . . . . . . . . . . . 18 ((𝐴C𝐶C𝐵C ) → ((𝐴 𝐶) ∨ 𝐵) = (𝐴 (𝐶 𝐵)))
121, 11mp3an1 1444 . . . . . . . . . . . . . . . . 17 ((𝐶C𝐵C ) → ((𝐴 𝐶) ∨ 𝐵) = (𝐴 (𝐶 𝐵)))
1312ancoms 457 . . . . . . . . . . . . . . . 16 ((𝐵C𝐶C ) → ((𝐴 𝐶) ∨ 𝐵) = (𝐴 (𝐶 𝐵)))
1410, 13eqtr4d 2768 . . . . . . . . . . . . . . 15 ((𝐵C𝐶C ) → (𝐴 (𝐵 𝐶)) = ((𝐴 𝐶) ∨ 𝐵))
1514adantr 479 . . . . . . . . . . . . . 14 (((𝐵C𝐶C ) ∧ 𝐵 ⊆ (𝐴 𝐶)) → (𝐴 (𝐵 𝐶)) = ((𝐴 𝐶) ∨ 𝐵))
16 simpl 481 . . . . . . . . . . . . . . . 16 ((𝐵C𝐶C ) → 𝐵C )
17 chjcl 31259 . . . . . . . . . . . . . . . . . 18 ((𝐴C𝐶C ) → (𝐴 𝐶) ∈ C )
181, 17mpan 688 . . . . . . . . . . . . . . . . 17 (𝐶C → (𝐴 𝐶) ∈ C )
1918adantl 480 . . . . . . . . . . . . . . . 16 ((𝐵C𝐶C ) → (𝐴 𝐶) ∈ C )
20 chlej2 31413 . . . . . . . . . . . . . . . . 17 (((𝐵C ∧ (𝐴 𝐶) ∈ C ∧ (𝐴 𝐶) ∈ C ) ∧ 𝐵 ⊆ (𝐴 𝐶)) → ((𝐴 𝐶) ∨ 𝐵) ⊆ ((𝐴 𝐶) ∨ (𝐴 𝐶)))
2120ex 411 . . . . . . . . . . . . . . . 16 ((𝐵C ∧ (𝐴 𝐶) ∈ C ∧ (𝐴 𝐶) ∈ C ) → (𝐵 ⊆ (𝐴 𝐶) → ((𝐴 𝐶) ∨ 𝐵) ⊆ ((𝐴 𝐶) ∨ (𝐴 𝐶))))
2216, 19, 19, 21syl3anc 1368 . . . . . . . . . . . . . . 15 ((𝐵C𝐶C ) → (𝐵 ⊆ (𝐴 𝐶) → ((𝐴 𝐶) ∨ 𝐵) ⊆ ((𝐴 𝐶) ∨ (𝐴 𝐶))))
2322imp 405 . . . . . . . . . . . . . 14 (((𝐵C𝐶C ) ∧ 𝐵 ⊆ (𝐴 𝐶)) → ((𝐴 𝐶) ∨ 𝐵) ⊆ ((𝐴 𝐶) ∨ (𝐴 𝐶)))
2415, 23eqsstrd 4015 . . . . . . . . . . . . 13 (((𝐵C𝐶C ) ∧ 𝐵 ⊆ (𝐴 𝐶)) → (𝐴 (𝐵 𝐶)) ⊆ ((𝐴 𝐶) ∨ (𝐴 𝐶)))
25 chjidm 31422 . . . . . . . . . . . . . . 15 ((𝐴 𝐶) ∈ C → ((𝐴 𝐶) ∨ (𝐴 𝐶)) = (𝐴 𝐶))
2618, 25syl 17 . . . . . . . . . . . . . 14 (𝐶C → ((𝐴 𝐶) ∨ (𝐴 𝐶)) = (𝐴 𝐶))
2726ad2antlr 725 . . . . . . . . . . . . 13 (((𝐵C𝐶C ) ∧ 𝐵 ⊆ (𝐴 𝐶)) → ((𝐴 𝐶) ∨ (𝐴 𝐶)) = (𝐴 𝐶))
2824, 27sseqtrd 4017 . . . . . . . . . . . 12 (((𝐵C𝐶C ) ∧ 𝐵 ⊆ (𝐴 𝐶)) → (𝐴 (𝐵 𝐶)) ⊆ (𝐴 𝐶))
29 simpr 483 . . . . . . . . . . . . . 14 ((𝐵C𝐶C ) → 𝐶C )
30 chjcl 31259 . . . . . . . . . . . . . 14 ((𝐵C𝐶C ) → (𝐵 𝐶) ∈ C )
31 chub2 31410 . . . . . . . . . . . . . . 15 ((𝐶C𝐵C ) → 𝐶 ⊆ (𝐵 𝐶))
3231ancoms 457 . . . . . . . . . . . . . 14 ((𝐵C𝐶C ) → 𝐶 ⊆ (𝐵 𝐶))
33 chlej2 31413 . . . . . . . . . . . . . . 15 (((𝐶C ∧ (𝐵 𝐶) ∈ C𝐴C ) ∧ 𝐶 ⊆ (𝐵 𝐶)) → (𝐴 𝐶) ⊆ (𝐴 (𝐵 𝐶)))
341, 33mp3anl3 1453 . . . . . . . . . . . . . 14 (((𝐶C ∧ (𝐵 𝐶) ∈ C ) ∧ 𝐶 ⊆ (𝐵 𝐶)) → (𝐴 𝐶) ⊆ (𝐴 (𝐵 𝐶)))
3529, 30, 32, 34syl21anc 836 . . . . . . . . . . . . 13 ((𝐵C𝐶C ) → (𝐴 𝐶) ⊆ (𝐴 (𝐵 𝐶)))
3635adantr 479 . . . . . . . . . . . 12 (((𝐵C𝐶C ) ∧ 𝐵 ⊆ (𝐴 𝐶)) → (𝐴 𝐶) ⊆ (𝐴 (𝐵 𝐶)))
3728, 36eqssd 3994 . . . . . . . . . . 11 (((𝐵C𝐶C ) ∧ 𝐵 ⊆ (𝐴 𝐶)) → (𝐴 (𝐵 𝐶)) = (𝐴 𝐶))
388, 37sylan 578 . . . . . . . . . 10 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝐵 ⊆ (𝐴 𝐶)) → (𝐴 (𝐵 𝐶)) = (𝐴 𝐶))
3938breq2d 5161 . . . . . . . . 9 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝐵 ⊆ (𝐴 𝐶)) → (𝐴 (𝐴 (𝐵 𝐶)) ↔ 𝐴 (𝐴 𝐶)))
4039adantrl 714 . . . . . . . 8 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (¬ 𝐶𝐴𝐵 ⊆ (𝐴 𝐶))) → (𝐴 (𝐴 (𝐵 𝐶)) ↔ 𝐴 (𝐴 𝐶)))
415, 40mpbird 256 . . . . . . 7 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (¬ 𝐶𝐴𝐵 ⊆ (𝐴 𝐶))) → 𝐴 (𝐴 (𝐵 𝐶)))
4241ex 411 . . . . . 6 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((¬ 𝐶𝐴𝐵 ⊆ (𝐴 𝐶)) → 𝐴 (𝐴 (𝐵 𝐶))))
4330, 1jctil 518 . . . . . . . 8 ((𝐵C𝐶C ) → (𝐴C ∧ (𝐵 𝐶) ∈ C ))
446, 7, 43syl2an 594 . . . . . . 7 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐴C ∧ (𝐵 𝐶) ∈ C ))
45 cvexch 32276 . . . . . . 7 ((𝐴C ∧ (𝐵 𝐶) ∈ C ) → ((𝐴 ∩ (𝐵 𝐶)) ⋖ (𝐵 𝐶) ↔ 𝐴 (𝐴 (𝐵 𝐶))))
4644, 45syl 17 . . . . . 6 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐴 ∩ (𝐵 𝐶)) ⋖ (𝐵 𝐶) ↔ 𝐴 (𝐴 (𝐵 𝐶))))
4742, 46sylibrd 258 . . . . 5 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((¬ 𝐶𝐴𝐵 ⊆ (𝐴 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) ⋖ (𝐵 𝐶)))
4847adantr 479 . . . 4 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ¬ 𝐵 = 𝐶) → ((¬ 𝐶𝐴𝐵 ⊆ (𝐴 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) ⋖ (𝐵 𝐶)))
49 chincl 31401 . . . . . . . 8 ((𝐴C ∧ (𝐵 𝐶) ∈ C ) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
501, 30, 49sylancr 585 . . . . . . 7 ((𝐵C𝐶C ) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
516, 7, 50syl2an 594 . . . . . 6 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
52 simpl 481 . . . . . 6 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → 𝐵 ∈ HAtoms)
53 simpr 483 . . . . . 6 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → 𝐶 ∈ HAtoms)
54 atcvat2 32291 . . . . . 6 (((𝐴 ∩ (𝐵 𝐶)) ∈ C𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((¬ 𝐵 = 𝐶 ∧ (𝐴 ∩ (𝐵 𝐶)) ⋖ (𝐵 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms))
5551, 52, 53, 54syl3anc 1368 . . . . 5 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((¬ 𝐵 = 𝐶 ∧ (𝐴 ∩ (𝐵 𝐶)) ⋖ (𝐵 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms))
5655expdimp 451 . . . 4 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ¬ 𝐵 = 𝐶) → ((𝐴 ∩ (𝐵 𝐶)) ⋖ (𝐵 𝐶) → (𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms))
5748, 56syld 47 . . 3 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ¬ 𝐵 = 𝐶) → ((¬ 𝐶𝐴𝐵 ⊆ (𝐴 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms))
5857exp4b 429 . 2 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (¬ 𝐵 = 𝐶 → (¬ 𝐶𝐴 → (𝐵 ⊆ (𝐴 𝐶) → (𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms))))
5958imp4c 422 1 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  cin 3943  wss 3944   class class class wbr 5149  (class class class)co 7419   C cch 30831   chj 30835   ccv 30866  HAtomscat 30867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9671  ax-cc 10465  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-pre-sup 11223  ax-addf 11224  ax-mulf 11225  ax-hilex 30901  ax-hfvadd 30902  ax-hvcom 30903  ax-hvass 30904  ax-hv0cl 30905  ax-hvaddid 30906  ax-hfvmul 30907  ax-hvmulid 30908  ax-hvmulass 30909  ax-hvdistr1 30910  ax-hvdistr2 30911  ax-hvmul0 30912  ax-hfi 30981  ax-his1 30984  ax-his2 30985  ax-his3 30986  ax-his4 30987  ax-hcompl 31104
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-omul 8492  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9393  df-fi 9441  df-sup 9472  df-inf 9473  df-oi 9540  df-card 9969  df-acn 9972  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-ioo 13368  df-ico 13370  df-icc 13371  df-fz 13525  df-fzo 13668  df-fl 13798  df-seq 14008  df-exp 14068  df-hash 14334  df-cj 15090  df-re 15091  df-im 15092  df-sqrt 15226  df-abs 15227  df-clim 15476  df-rlim 15477  df-sum 15677  df-struct 17135  df-sets 17152  df-slot 17170  df-ndx 17182  df-base 17200  df-ress 17229  df-plusg 17265  df-mulr 17266  df-starv 17267  df-sca 17268  df-vsca 17269  df-ip 17270  df-tset 17271  df-ple 17272  df-ds 17274  df-unif 17275  df-hom 17276  df-cco 17277  df-rest 17423  df-topn 17424  df-0g 17442  df-gsum 17443  df-topgen 17444  df-pt 17445  df-prds 17448  df-xrs 17503  df-qtop 17508  df-imas 17509  df-xps 17511  df-mre 17585  df-mrc 17586  df-acs 17588  df-mgm 18619  df-sgrp 18698  df-mnd 18714  df-submnd 18760  df-mulg 19048  df-cntz 19297  df-cmn 19766  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-top 22857  df-topon 22874  df-topsp 22896  df-bases 22910  df-cld 22984  df-ntr 22985  df-cls 22986  df-nei 23063  df-cn 23192  df-cnp 23193  df-lm 23194  df-haus 23280  df-tx 23527  df-hmeo 23720  df-fil 23811  df-fm 23903  df-flim 23904  df-flf 23905  df-xms 24287  df-ms 24288  df-tms 24289  df-cfil 25244  df-cau 25245  df-cmet 25246  df-grpo 30395  df-gid 30396  df-ginv 30397  df-gdiv 30398  df-ablo 30447  df-vc 30461  df-nv 30494  df-va 30497  df-ba 30498  df-sm 30499  df-0v 30500  df-vs 30501  df-nmcv 30502  df-ims 30503  df-dip 30603  df-ssp 30624  df-ph 30715  df-cbn 30765  df-hnorm 30870  df-hba 30871  df-hvsub 30873  df-hlim 30874  df-hcau 30875  df-sh 31109  df-ch 31123  df-oc 31154  df-ch0 31155  df-shs 31210  df-span 31211  df-chj 31212  df-chsup 31213  df-pjh 31297  df-cv 32181  df-at 32240
This theorem is referenced by:  atcvat4i  32299
  Copyright terms: Public domain W3C validator