MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fresaun Structured version   Visualization version   GIF version

Theorem fresaun 6422
Description: The union of two functions which agree on their common domain is a function. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
fresaun ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)

Proof of Theorem fresaun
StepHypRef Expression
1 simp1 1129 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → 𝐹:𝐴𝐶)
2 inss1 4129 . . . 4 (𝐴𝐵) ⊆ 𝐴
3 fssres 6417 . . . 4 ((𝐹:𝐴𝐶 ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶𝐶)
41, 2, 3sylancl 586 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶𝐶)
5 difss 4033 . . . . 5 (𝐴𝐵) ⊆ 𝐴
6 fssres 6417 . . . . 5 ((𝐹:𝐴𝐶 ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶𝐶)
71, 5, 6sylancl 586 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶𝐶)
8 simp2 1130 . . . . 5 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → 𝐺:𝐵𝐶)
9 difss 4033 . . . . 5 (𝐵𝐴) ⊆ 𝐵
10 fssres 6417 . . . . 5 ((𝐺:𝐵𝐶 ∧ (𝐵𝐴) ⊆ 𝐵) → (𝐺 ↾ (𝐵𝐴)):(𝐵𝐴)⟶𝐶)
118, 9, 10sylancl 586 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐺 ↾ (𝐵𝐴)):(𝐵𝐴)⟶𝐶)
12 indifdir 4184 . . . . . 6 ((𝐴𝐵) ∩ (𝐵𝐴)) = ((𝐴 ∩ (𝐵𝐴)) ∖ (𝐵 ∩ (𝐵𝐴)))
13 disjdif 4339 . . . . . . 7 (𝐴 ∩ (𝐵𝐴)) = ∅
1413difeq1i 4020 . . . . . 6 ((𝐴 ∩ (𝐵𝐴)) ∖ (𝐵 ∩ (𝐵𝐴))) = (∅ ∖ (𝐵 ∩ (𝐵𝐴)))
15 0dif 4279 . . . . . 6 (∅ ∖ (𝐵 ∩ (𝐵𝐴))) = ∅
1612, 14, 153eqtri 2823 . . . . 5 ((𝐴𝐵) ∩ (𝐵𝐴)) = ∅
1716a1i 11 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐴𝐵) ∩ (𝐵𝐴)) = ∅)
187, 11, 17fun2d 6415 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))):((𝐴𝐵) ∪ (𝐵𝐴))⟶𝐶)
19 indi 4174 . . . . 5 ((𝐴𝐵) ∩ ((𝐴𝐵) ∪ (𝐵𝐴))) = (((𝐴𝐵) ∩ (𝐴𝐵)) ∪ ((𝐴𝐵) ∩ (𝐵𝐴)))
20 inass 4120 . . . . . . 7 ((𝐴𝐵) ∩ (𝐴𝐵)) = (𝐴 ∩ (𝐵 ∩ (𝐴𝐵)))
21 disjdif 4339 . . . . . . . 8 (𝐵 ∩ (𝐴𝐵)) = ∅
2221ineq2i 4110 . . . . . . 7 (𝐴 ∩ (𝐵 ∩ (𝐴𝐵))) = (𝐴 ∩ ∅)
23 in0 4269 . . . . . . 7 (𝐴 ∩ ∅) = ∅
2420, 22, 233eqtri 2823 . . . . . 6 ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅
25 incom 4103 . . . . . . . 8 (𝐴𝐵) = (𝐵𝐴)
2625ineq1i 4109 . . . . . . 7 ((𝐴𝐵) ∩ (𝐵𝐴)) = ((𝐵𝐴) ∩ (𝐵𝐴))
27 inass 4120 . . . . . . . 8 ((𝐵𝐴) ∩ (𝐵𝐴)) = (𝐵 ∩ (𝐴 ∩ (𝐵𝐴)))
2813ineq2i 4110 . . . . . . . 8 (𝐵 ∩ (𝐴 ∩ (𝐵𝐴))) = (𝐵 ∩ ∅)
29 in0 4269 . . . . . . . 8 (𝐵 ∩ ∅) = ∅
3027, 28, 293eqtri 2823 . . . . . . 7 ((𝐵𝐴) ∩ (𝐵𝐴)) = ∅
3126, 30eqtri 2819 . . . . . 6 ((𝐴𝐵) ∩ (𝐵𝐴)) = ∅
3224, 31uneq12i 4062 . . . . 5 (((𝐴𝐵) ∩ (𝐴𝐵)) ∪ ((𝐴𝐵) ∩ (𝐵𝐴))) = (∅ ∪ ∅)
33 un0 4268 . . . . 5 (∅ ∪ ∅) = ∅
3419, 32, 333eqtri 2823 . . . 4 ((𝐴𝐵) ∩ ((𝐴𝐵) ∪ (𝐵𝐴))) = ∅
3534a1i 11 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐴𝐵) ∩ ((𝐴𝐵) ∪ (𝐵𝐴))) = ∅)
364, 18, 35fun2d 6415 . 2 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))):((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴)))⟶𝐶)
37 ffn 6387 . . . . 5 (𝐹:𝐴𝐶𝐹 Fn 𝐴)
38 ffn 6387 . . . . 5 (𝐺:𝐵𝐶𝐺 Fn 𝐵)
39 id 22 . . . . 5 ((𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)) → (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)))
40 resasplit 6421 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) = ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))))
4137, 38, 39, 40syl3an 1153 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) = ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))))
4241feq1d 6372 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺):(𝐴𝐵)⟶𝐶 ↔ ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))):(𝐴𝐵)⟶𝐶))
43 un12 4068 . . . . 5 ((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴))) = ((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴)))
4425uneq1i 4060 . . . . . . 7 ((𝐴𝐵) ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ (𝐵𝐴))
45 inundif 4345 . . . . . . 7 ((𝐵𝐴) ∪ (𝐵𝐴)) = 𝐵
4644, 45eqtri 2819 . . . . . 6 ((𝐴𝐵) ∪ (𝐵𝐴)) = 𝐵
4746uneq2i 4061 . . . . 5 ((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴))) = ((𝐴𝐵) ∪ 𝐵)
48 undif1 4342 . . . . 5 ((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵)
4943, 47, 483eqtri 2823 . . . 4 ((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴))) = (𝐴𝐵)
5049feq2i 6379 . . 3 (((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))):((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴)))⟶𝐶 ↔ ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))):(𝐴𝐵)⟶𝐶)
5142, 50syl6rbbr 291 . 2 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))):((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴)))⟶𝐶 ↔ (𝐹𝐺):(𝐴𝐵)⟶𝐶))
5236, 51mpbid 233 1 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1080   = wceq 1522  cdif 3860  cun 3861  cin 3862  wss 3863  c0 4215  cres 5450   Fn wfn 6225  wf 6226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5099  ax-nul 5106  ax-pr 5226
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-nul 4216  df-if 4386  df-sn 4477  df-pr 4479  df-op 4483  df-br 4967  df-opab 5029  df-id 5353  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-fun 6232  df-fn 6233  df-f 6234
This theorem is referenced by:  elmapresaun  8299  cvmliftlem10  32155
  Copyright terms: Public domain W3C validator