MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fresaun Structured version   Visualization version   GIF version

Theorem fresaun 6641
Description: The union of two functions which agree on their common domain is a function. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
fresaun ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)

Proof of Theorem fresaun
StepHypRef Expression
1 simp1 1134 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → 𝐹:𝐴𝐶)
2 inss1 4167 . . . 4 (𝐴𝐵) ⊆ 𝐴
3 fssres 6636 . . . 4 ((𝐹:𝐴𝐶 ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶𝐶)
41, 2, 3sylancl 585 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶𝐶)
5 difss 4070 . . . . 5 (𝐴𝐵) ⊆ 𝐴
6 fssres 6636 . . . . 5 ((𝐹:𝐴𝐶 ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶𝐶)
71, 5, 6sylancl 585 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)⟶𝐶)
8 simp2 1135 . . . . 5 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → 𝐺:𝐵𝐶)
9 difss 4070 . . . . 5 (𝐵𝐴) ⊆ 𝐵
10 fssres 6636 . . . . 5 ((𝐺:𝐵𝐶 ∧ (𝐵𝐴) ⊆ 𝐵) → (𝐺 ↾ (𝐵𝐴)):(𝐵𝐴)⟶𝐶)
118, 9, 10sylancl 585 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐺 ↾ (𝐵𝐴)):(𝐵𝐴)⟶𝐶)
12 indifdir 4223 . . . . . 6 ((𝐴𝐵) ∩ (𝐵𝐴)) = ((𝐴 ∩ (𝐵𝐴)) ∖ (𝐵 ∩ (𝐵𝐴)))
13 disjdif 4410 . . . . . . 7 (𝐴 ∩ (𝐵𝐴)) = ∅
1413difeq1i 4057 . . . . . 6 ((𝐴 ∩ (𝐵𝐴)) ∖ (𝐵 ∩ (𝐵𝐴))) = (∅ ∖ (𝐵 ∩ (𝐵𝐴)))
15 0dif 4340 . . . . . 6 (∅ ∖ (𝐵 ∩ (𝐵𝐴))) = ∅
1612, 14, 153eqtri 2771 . . . . 5 ((𝐴𝐵) ∩ (𝐵𝐴)) = ∅
1716a1i 11 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐴𝐵) ∩ (𝐵𝐴)) = ∅)
187, 11, 17fun2d 6634 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))):((𝐴𝐵) ∪ (𝐵𝐴))⟶𝐶)
19 indi 4212 . . . . 5 ((𝐴𝐵) ∩ ((𝐴𝐵) ∪ (𝐵𝐴))) = (((𝐴𝐵) ∩ (𝐴𝐵)) ∪ ((𝐴𝐵) ∩ (𝐵𝐴)))
20 inass 4158 . . . . . . 7 ((𝐴𝐵) ∩ (𝐴𝐵)) = (𝐴 ∩ (𝐵 ∩ (𝐴𝐵)))
21 disjdif 4410 . . . . . . . 8 (𝐵 ∩ (𝐴𝐵)) = ∅
2221ineq2i 4148 . . . . . . 7 (𝐴 ∩ (𝐵 ∩ (𝐴𝐵))) = (𝐴 ∩ ∅)
23 in0 4330 . . . . . . 7 (𝐴 ∩ ∅) = ∅
2420, 22, 233eqtri 2771 . . . . . 6 ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅
25 incom 4139 . . . . . . . 8 (𝐴𝐵) = (𝐵𝐴)
2625ineq1i 4147 . . . . . . 7 ((𝐴𝐵) ∩ (𝐵𝐴)) = ((𝐵𝐴) ∩ (𝐵𝐴))
27 inass 4158 . . . . . . . 8 ((𝐵𝐴) ∩ (𝐵𝐴)) = (𝐵 ∩ (𝐴 ∩ (𝐵𝐴)))
2813ineq2i 4148 . . . . . . . 8 (𝐵 ∩ (𝐴 ∩ (𝐵𝐴))) = (𝐵 ∩ ∅)
29 in0 4330 . . . . . . . 8 (𝐵 ∩ ∅) = ∅
3027, 28, 293eqtri 2771 . . . . . . 7 ((𝐵𝐴) ∩ (𝐵𝐴)) = ∅
3126, 30eqtri 2767 . . . . . 6 ((𝐴𝐵) ∩ (𝐵𝐴)) = ∅
3224, 31uneq12i 4099 . . . . 5 (((𝐴𝐵) ∩ (𝐴𝐵)) ∪ ((𝐴𝐵) ∩ (𝐵𝐴))) = (∅ ∪ ∅)
33 un0 4329 . . . . 5 (∅ ∪ ∅) = ∅
3419, 32, 333eqtri 2771 . . . 4 ((𝐴𝐵) ∩ ((𝐴𝐵) ∪ (𝐵𝐴))) = ∅
3534a1i 11 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐴𝐵) ∩ ((𝐴𝐵) ∪ (𝐵𝐴))) = ∅)
364, 18, 35fun2d 6634 . 2 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))):((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴)))⟶𝐶)
37 un12 4105 . . . . 5 ((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴))) = ((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴)))
3825uneq1i 4097 . . . . . . 7 ((𝐴𝐵) ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ (𝐵𝐴))
39 inundif 4417 . . . . . . 7 ((𝐵𝐴) ∪ (𝐵𝐴)) = 𝐵
4038, 39eqtri 2767 . . . . . 6 ((𝐴𝐵) ∪ (𝐵𝐴)) = 𝐵
4140uneq2i 4098 . . . . 5 ((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴))) = ((𝐴𝐵) ∪ 𝐵)
42 undif1 4414 . . . . 5 ((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵)
4337, 41, 423eqtri 2771 . . . 4 ((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴))) = (𝐴𝐵)
4443feq2i 6588 . . 3 (((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))):((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴)))⟶𝐶 ↔ ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))):(𝐴𝐵)⟶𝐶)
45 ffn 6596 . . . . 5 (𝐹:𝐴𝐶𝐹 Fn 𝐴)
46 ffn 6596 . . . . 5 (𝐺:𝐵𝐶𝐺 Fn 𝐵)
47 id 22 . . . . 5 ((𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)) → (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)))
48 resasplit 6640 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) = ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))))
4945, 46, 47, 48syl3an 1158 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) = ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))))
5049feq1d 6581 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺):(𝐴𝐵)⟶𝐶 ↔ ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))):(𝐴𝐵)⟶𝐶))
5144, 50bitr4id 289 . 2 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))):((𝐴𝐵) ∪ ((𝐴𝐵) ∪ (𝐵𝐴)))⟶𝐶 ↔ (𝐹𝐺):(𝐴𝐵)⟶𝐶))
5236, 51mpbid 231 1 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1541  cdif 3888  cun 3889  cin 3890  wss 3891  c0 4261  cres 5590   Fn wfn 6425  wf 6426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-fun 6432  df-fn 6433  df-f 6434
This theorem is referenced by:  elmapresaun  8642  cvmliftlem10  33235
  Copyright terms: Public domain W3C validator