Proof of Theorem fresaun
Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → 𝐹:𝐴⟶𝐶) |
2 | | inss1 4167 |
. . . 4
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 |
3 | | fssres 6636 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐶 ∧ (𝐴 ∩ 𝐵) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∩ 𝐵)⟶𝐶) |
4 | 1, 2, 3 | sylancl 585 |
. . 3
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∩ 𝐵)⟶𝐶) |
5 | | difss 4070 |
. . . . 5
⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 |
6 | | fssres 6636 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐶 ∧ (𝐴 ∖ 𝐵) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)⟶𝐶) |
7 | 1, 5, 6 | sylancl 585 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)⟶𝐶) |
8 | | simp2 1135 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → 𝐺:𝐵⟶𝐶) |
9 | | difss 4070 |
. . . . 5
⊢ (𝐵 ∖ 𝐴) ⊆ 𝐵 |
10 | | fssres 6636 |
. . . . 5
⊢ ((𝐺:𝐵⟶𝐶 ∧ (𝐵 ∖ 𝐴) ⊆ 𝐵) → (𝐺 ↾ (𝐵 ∖ 𝐴)):(𝐵 ∖ 𝐴)⟶𝐶) |
11 | 8, 9, 10 | sylancl 585 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐺 ↾ (𝐵 ∖ 𝐴)):(𝐵 ∖ 𝐴)⟶𝐶) |
12 | | indifdir 4223 |
. . . . . 6
⊢ ((𝐴 ∖ 𝐵) ∩ (𝐵 ∖ 𝐴)) = ((𝐴 ∩ (𝐵 ∖ 𝐴)) ∖ (𝐵 ∩ (𝐵 ∖ 𝐴))) |
13 | | disjdif 4410 |
. . . . . . 7
⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ |
14 | 13 | difeq1i 4057 |
. . . . . 6
⊢ ((𝐴 ∩ (𝐵 ∖ 𝐴)) ∖ (𝐵 ∩ (𝐵 ∖ 𝐴))) = (∅ ∖ (𝐵 ∩ (𝐵 ∖ 𝐴))) |
15 | | 0dif 4340 |
. . . . . 6
⊢ (∅
∖ (𝐵 ∩ (𝐵 ∖ 𝐴))) = ∅ |
16 | 12, 14, 15 | 3eqtri 2771 |
. . . . 5
⊢ ((𝐴 ∖ 𝐵) ∩ (𝐵 ∖ 𝐴)) = ∅ |
17 | 16 | a1i 11 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐴 ∖ 𝐵) ∩ (𝐵 ∖ 𝐴)) = ∅) |
18 | 7, 11, 17 | fun2d 6634 |
. . 3
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))):((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴))⟶𝐶) |
19 | | indi 4212 |
. . . . 5
⊢ ((𝐴 ∩ 𝐵) ∩ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴))) = (((𝐴 ∩ 𝐵) ∩ (𝐴 ∖ 𝐵)) ∪ ((𝐴 ∩ 𝐵) ∩ (𝐵 ∖ 𝐴))) |
20 | | inass 4158 |
. . . . . . 7
⊢ ((𝐴 ∩ 𝐵) ∩ (𝐴 ∖ 𝐵)) = (𝐴 ∩ (𝐵 ∩ (𝐴 ∖ 𝐵))) |
21 | | disjdif 4410 |
. . . . . . . 8
⊢ (𝐵 ∩ (𝐴 ∖ 𝐵)) = ∅ |
22 | 21 | ineq2i 4148 |
. . . . . . 7
⊢ (𝐴 ∩ (𝐵 ∩ (𝐴 ∖ 𝐵))) = (𝐴 ∩ ∅) |
23 | | in0 4330 |
. . . . . . 7
⊢ (𝐴 ∩ ∅) =
∅ |
24 | 20, 22, 23 | 3eqtri 2771 |
. . . . . 6
⊢ ((𝐴 ∩ 𝐵) ∩ (𝐴 ∖ 𝐵)) = ∅ |
25 | | incom 4139 |
. . . . . . . 8
⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) |
26 | 25 | ineq1i 4147 |
. . . . . . 7
⊢ ((𝐴 ∩ 𝐵) ∩ (𝐵 ∖ 𝐴)) = ((𝐵 ∩ 𝐴) ∩ (𝐵 ∖ 𝐴)) |
27 | | inass 4158 |
. . . . . . . 8
⊢ ((𝐵 ∩ 𝐴) ∩ (𝐵 ∖ 𝐴)) = (𝐵 ∩ (𝐴 ∩ (𝐵 ∖ 𝐴))) |
28 | 13 | ineq2i 4148 |
. . . . . . . 8
⊢ (𝐵 ∩ (𝐴 ∩ (𝐵 ∖ 𝐴))) = (𝐵 ∩ ∅) |
29 | | in0 4330 |
. . . . . . . 8
⊢ (𝐵 ∩ ∅) =
∅ |
30 | 27, 28, 29 | 3eqtri 2771 |
. . . . . . 7
⊢ ((𝐵 ∩ 𝐴) ∩ (𝐵 ∖ 𝐴)) = ∅ |
31 | 26, 30 | eqtri 2767 |
. . . . . 6
⊢ ((𝐴 ∩ 𝐵) ∩ (𝐵 ∖ 𝐴)) = ∅ |
32 | 24, 31 | uneq12i 4099 |
. . . . 5
⊢ (((𝐴 ∩ 𝐵) ∩ (𝐴 ∖ 𝐵)) ∪ ((𝐴 ∩ 𝐵) ∩ (𝐵 ∖ 𝐴))) = (∅ ∪
∅) |
33 | | un0 4329 |
. . . . 5
⊢ (∅
∪ ∅) = ∅ |
34 | 19, 32, 33 | 3eqtri 2771 |
. . . 4
⊢ ((𝐴 ∩ 𝐵) ∩ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴))) = ∅ |
35 | 34 | a1i 11 |
. . 3
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐴 ∩ 𝐵) ∩ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴))) = ∅) |
36 | 4, 18, 35 | fun2d 6634 |
. 2
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))):((𝐴 ∩ 𝐵) ∪ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)))⟶𝐶) |
37 | | un12 4105 |
. . . . 5
⊢ ((𝐴 ∩ 𝐵) ∪ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴))) = ((𝐴 ∖ 𝐵) ∪ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴))) |
38 | 25 | uneq1i 4097 |
. . . . . . 7
⊢ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴)) = ((𝐵 ∩ 𝐴) ∪ (𝐵 ∖ 𝐴)) |
39 | | inundif 4417 |
. . . . . . 7
⊢ ((𝐵 ∩ 𝐴) ∪ (𝐵 ∖ 𝐴)) = 𝐵 |
40 | 38, 39 | eqtri 2767 |
. . . . . 6
⊢ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴)) = 𝐵 |
41 | 40 | uneq2i 4098 |
. . . . 5
⊢ ((𝐴 ∖ 𝐵) ∪ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴))) = ((𝐴 ∖ 𝐵) ∪ 𝐵) |
42 | | undif1 4414 |
. . . . 5
⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) |
43 | 37, 41, 42 | 3eqtri 2771 |
. . . 4
⊢ ((𝐴 ∩ 𝐵) ∪ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴))) = (𝐴 ∪ 𝐵) |
44 | 43 | feq2i 6588 |
. . 3
⊢ (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))):((𝐴 ∩ 𝐵) ∪ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)))⟶𝐶 ↔ ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))):(𝐴 ∪ 𝐵)⟶𝐶) |
45 | | ffn 6596 |
. . . . 5
⊢ (𝐹:𝐴⟶𝐶 → 𝐹 Fn 𝐴) |
46 | | ffn 6596 |
. . . . 5
⊢ (𝐺:𝐵⟶𝐶 → 𝐺 Fn 𝐵) |
47 | | id 22 |
. . . . 5
⊢ ((𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵)) → (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) |
48 | | resasplit 6640 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ∪ 𝐺) = ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))))) |
49 | 45, 46, 47, 48 | syl3an 1158 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ∪ 𝐺) = ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))))) |
50 | 49 | feq1d 6581 |
. . 3
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶 ↔ ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))):(𝐴 ∪ 𝐵)⟶𝐶)) |
51 | 44, 50 | bitr4id 289 |
. 2
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))):((𝐴 ∩ 𝐵) ∪ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)))⟶𝐶 ↔ (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶)) |
52 | 36, 51 | mpbid 231 |
1
⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐵)⟶𝐶) |