MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem4 Structured version   Visualization version   GIF version

Theorem uniioombllem4 25514
Description: Lemma for uniioombl 25517. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
uniioombl.m (𝜑𝑀 ∈ ℕ)
uniioombl.m2 (𝜑 → (abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
uniioombl.k 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
uniioombl.n (𝜑𝑁 ∈ ℕ)
uniioombl.n2 (𝜑 → ∀𝑗 ∈ (1...𝑀)(abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀))
uniioombl.l 𝐿 = (((,) ∘ 𝐹) “ (1...𝑁))
Assertion
Ref Expression
uniioombllem4 (𝜑 → (vol*‘(𝐾𝐴)) ≤ ((vol*‘(𝐾𝐿)) + 𝐶))
Distinct variable groups:   𝑖,𝑗,𝑥,𝐹   𝑖,𝐺,𝑗,𝑥   𝑗,𝐾,𝑥   𝐴,𝑗,𝑥   𝐶,𝑖,𝑗,𝑥   𝑖,𝑀,𝑗,𝑥   𝑖,𝑁,𝑗   𝜑,𝑖,𝑗,𝑥   𝑇,𝑖,𝑗,𝑥
Allowed substitution hints:   𝐴(𝑖)   𝑆(𝑥,𝑖,𝑗)   𝐸(𝑥,𝑖,𝑗)   𝐾(𝑖)   𝐿(𝑥,𝑖,𝑗)   𝑁(𝑥)

Proof of Theorem uniioombllem4
StepHypRef Expression
1 inss1 4184 . . 3 (𝐾𝐴) ⊆ 𝐾
2 uniioombl.k . . . . 5 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
3 imassrn 6019 . . . . . 6 (((,) ∘ 𝐺) “ (1...𝑀)) ⊆ ran ((,) ∘ 𝐺)
43unissi 4865 . . . . 5 (((,) ∘ 𝐺) “ (1...𝑀)) ⊆ ran ((,) ∘ 𝐺)
52, 4eqsstri 3976 . . . 4 𝐾 ran ((,) ∘ 𝐺)
6 uniioombl.g . . . . . . 7 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
76uniiccdif 25506 . . . . . 6 (𝜑 → ( ran ((,) ∘ 𝐺) ⊆ ran ([,] ∘ 𝐺) ∧ (vol*‘( ran ([,] ∘ 𝐺) ∖ ran ((,) ∘ 𝐺))) = 0))
87simpld 494 . . . . 5 (𝜑 ran ((,) ∘ 𝐺) ⊆ ran ([,] ∘ 𝐺))
9 ovolficcss 25397 . . . . . 6 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐺) ⊆ ℝ)
106, 9syl 17 . . . . 5 (𝜑 ran ([,] ∘ 𝐺) ⊆ ℝ)
118, 10sstrd 3940 . . . 4 (𝜑 ran ((,) ∘ 𝐺) ⊆ ℝ)
125, 11sstrid 3941 . . 3 (𝜑𝐾 ⊆ ℝ)
13 uniioombl.1 . . . . . 6 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
14 uniioombl.2 . . . . . 6 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
15 uniioombl.3 . . . . . 6 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
16 uniioombl.a . . . . . 6 𝐴 = ran ((,) ∘ 𝐹)
17 uniioombl.e . . . . . 6 (𝜑 → (vol*‘𝐸) ∈ ℝ)
18 uniioombl.c . . . . . 6 (𝜑𝐶 ∈ ℝ+)
19 uniioombl.s . . . . . 6 (𝜑𝐸 ran ((,) ∘ 𝐺))
20 uniioombl.t . . . . . 6 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
21 uniioombl.v . . . . . 6 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
2213, 14, 15, 16, 17, 18, 6, 19, 20, 21uniioombllem1 25509 . . . . 5 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
23 ssid 3952 . . . . . 6 ran ((,) ∘ 𝐺) ⊆ ran ((,) ∘ 𝐺)
2420ovollb 25407 . . . . . 6 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ran ((,) ∘ 𝐺) ⊆ ran ((,) ∘ 𝐺)) → (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
256, 23, 24sylancl 586 . . . . 5 (𝜑 → (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
26 ovollecl 25411 . . . . 5 (( ran ((,) ∘ 𝐺) ⊆ ℝ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < )) → (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ)
2711, 22, 25, 26syl3anc 1373 . . . 4 (𝜑 → (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ)
28 ovolsscl 25414 . . . 4 ((𝐾 ran ((,) ∘ 𝐺) ∧ ran ((,) ∘ 𝐺) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ) → (vol*‘𝐾) ∈ ℝ)
295, 11, 27, 28mp3an2i 1468 . . 3 (𝜑 → (vol*‘𝐾) ∈ ℝ)
30 ovolsscl 25414 . . 3 (((𝐾𝐴) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐴)) ∈ ℝ)
311, 12, 29, 30mp3an2i 1468 . 2 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℝ)
32 inss1 4184 . . . 4 (𝐾𝐿) ⊆ 𝐾
33 ovolsscl 25414 . . . 4 (((𝐾𝐿) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐿)) ∈ ℝ)
3432, 12, 29, 33mp3an2i 1468 . . 3 (𝜑 → (vol*‘(𝐾𝐿)) ∈ ℝ)
35 ssun2 4126 . . . . . 6 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
36 nnuz 12775 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
37 uniioombl.n . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ)
3837peano2nnd 12142 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 + 1) ∈ ℕ)
3938, 36eleqtrdi 2841 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 + 1) ∈ (ℤ‘1))
40 uzsplit 13496 . . . . . . . . . . . . . . 15 ((𝑁 + 1) ∈ (ℤ‘1) → (ℤ‘1) = ((1...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
4139, 40syl 17 . . . . . . . . . . . . . 14 (𝜑 → (ℤ‘1) = ((1...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
4236, 41eqtrid 2778 . . . . . . . . . . . . 13 (𝜑 → ℕ = ((1...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
4337nncnd 12141 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℂ)
44 ax-1cn 11064 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
45 pncan 11366 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
4643, 44, 45sylancl 586 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
4746oveq2d 7362 . . . . . . . . . . . . . 14 (𝜑 → (1...((𝑁 + 1) − 1)) = (1...𝑁))
4847uneq1d 4114 . . . . . . . . . . . . 13 (𝜑 → ((1...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))) = ((1...𝑁) ∪ (ℤ‘(𝑁 + 1))))
4942, 48eqtrd 2766 . . . . . . . . . . . 12 (𝜑 → ℕ = ((1...𝑁) ∪ (ℤ‘(𝑁 + 1))))
5049iuneq1d 4967 . . . . . . . . . . 11 (𝜑 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)) = 𝑖 ∈ ((1...𝑁) ∪ (ℤ‘(𝑁 + 1)))((,)‘(𝐹𝑖)))
51 iunxun 5040 . . . . . . . . . . 11 𝑖 ∈ ((1...𝑁) ∪ (ℤ‘(𝑁 + 1)))((,)‘(𝐹𝑖)) = ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∪ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
5250, 51eqtrdi 2782 . . . . . . . . . 10 (𝜑 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)) = ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∪ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
53 ioof 13347 . . . . . . . . . . . . . 14 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
54 inss2 4185 . . . . . . . . . . . . . . . 16 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
55 rexpssxrxp 11157 . . . . . . . . . . . . . . . 16 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
5654, 55sstri 3939 . . . . . . . . . . . . . . 15 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
57 fss 6667 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
5813, 56, 57sylancl 586 . . . . . . . . . . . . . 14 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
59 fco 6675 . . . . . . . . . . . . . 14 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
6053, 58, 59sylancr 587 . . . . . . . . . . . . 13 (𝜑 → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
61 ffn 6651 . . . . . . . . . . . . 13 (((,) ∘ 𝐹):ℕ⟶𝒫 ℝ → ((,) ∘ 𝐹) Fn ℕ)
62 fniunfv 7181 . . . . . . . . . . . . 13 (((,) ∘ 𝐹) Fn ℕ → 𝑖 ∈ ℕ (((,) ∘ 𝐹)‘𝑖) = ran ((,) ∘ 𝐹))
6360, 61, 623syl 18 . . . . . . . . . . . 12 (𝜑 𝑖 ∈ ℕ (((,) ∘ 𝐹)‘𝑖) = ran ((,) ∘ 𝐹))
64 fvco3 6921 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑖 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑖) = ((,)‘(𝐹𝑖)))
6513, 64sylan 580 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑖) = ((,)‘(𝐹𝑖)))
6665iuneq2dv 4964 . . . . . . . . . . . 12 (𝜑 𝑖 ∈ ℕ (((,) ∘ 𝐹)‘𝑖) = 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
6763, 66eqtr3d 2768 . . . . . . . . . . 11 (𝜑 ran ((,) ∘ 𝐹) = 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
6816, 67eqtrid 2778 . . . . . . . . . 10 (𝜑𝐴 = 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
69 uniioombl.l . . . . . . . . . . . 12 𝐿 = (((,) ∘ 𝐹) “ (1...𝑁))
70 ffun 6654 . . . . . . . . . . . . . 14 (((,) ∘ 𝐹):ℕ⟶𝒫 ℝ → Fun ((,) ∘ 𝐹))
71 funiunfv 7182 . . . . . . . . . . . . . 14 (Fun ((,) ∘ 𝐹) → 𝑖 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑖) = (((,) ∘ 𝐹) “ (1...𝑁)))
7260, 70, 713syl 18 . . . . . . . . . . . . 13 (𝜑 𝑖 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑖) = (((,) ∘ 𝐹) “ (1...𝑁)))
73 elfznn 13453 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1...𝑁) → 𝑖 ∈ ℕ)
7413, 73, 64syl2an 596 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑁)) → (((,) ∘ 𝐹)‘𝑖) = ((,)‘(𝐹𝑖)))
7574iuneq2dv 4964 . . . . . . . . . . . . 13 (𝜑 𝑖 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑖) = 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)))
7672, 75eqtr3d 2768 . . . . . . . . . . . 12 (𝜑 (((,) ∘ 𝐹) “ (1...𝑁)) = 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)))
7769, 76eqtrid 2778 . . . . . . . . . . 11 (𝜑𝐿 = 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)))
7877uneq1d 4114 . . . . . . . . . 10 (𝜑 → (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∪ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
7952, 68, 783eqtr4d 2776 . . . . . . . . 9 (𝜑𝐴 = (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
8079ineq2d 4167 . . . . . . . 8 (𝜑 → (𝐾𝐴) = (𝐾 ∩ (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))))
81 indi 4231 . . . . . . . 8 (𝐾 ∩ (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))) = ((𝐾𝐿) ∪ (𝐾 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
8280, 81eqtrdi 2782 . . . . . . 7 (𝜑 → (𝐾𝐴) = ((𝐾𝐿) ∪ (𝐾 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))))
83 fss 6667 . . . . . . . . . . . . . . 15 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐺:ℕ⟶(ℝ* × ℝ*))
846, 56, 83sylancl 586 . . . . . . . . . . . . . 14 (𝜑𝐺:ℕ⟶(ℝ* × ℝ*))
85 fco 6675 . . . . . . . . . . . . . 14 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐺:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
8653, 84, 85sylancr 587 . . . . . . . . . . . . 13 (𝜑 → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
87 ffun 6654 . . . . . . . . . . . . 13 (((,) ∘ 𝐺):ℕ⟶𝒫 ℝ → Fun ((,) ∘ 𝐺))
88 funiunfv 7182 . . . . . . . . . . . . 13 (Fun ((,) ∘ 𝐺) → 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = (((,) ∘ 𝐺) “ (1...𝑀)))
8986, 87, 883syl 18 . . . . . . . . . . . 12 (𝜑 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = (((,) ∘ 𝐺) “ (1...𝑀)))
90 elfznn 13453 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℕ)
91 fvco3 6921 . . . . . . . . . . . . . 14 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (((,) ∘ 𝐺)‘𝑗) = ((,)‘(𝐺𝑗)))
926, 90, 91syl2an 596 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (((,) ∘ 𝐺)‘𝑗) = ((,)‘(𝐺𝑗)))
9392iuneq2dv 4964 . . . . . . . . . . . 12 (𝜑 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
9489, 93eqtr3d 2768 . . . . . . . . . . 11 (𝜑 (((,) ∘ 𝐺) “ (1...𝑀)) = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
952, 94eqtrid 2778 . . . . . . . . . 10 (𝜑𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
9695ineq2d 4167 . . . . . . . . 9 (𝜑 → ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ 𝐾) = ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗))))
97 incom 4156 . . . . . . . . 9 (𝐾 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ 𝐾)
98 iunin2 5017 . . . . . . . . . . . . 13 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖))) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
99 incom 4156 . . . . . . . . . . . . . . 15 (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖)))
10099a1i 11 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ‘(𝑁 + 1)) → (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖))))
101100iuneq2i 4961 . . . . . . . . . . . . 13 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖)))
102 incom 4156 . . . . . . . . . . . . 13 ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
10398, 101, 1023eqtr4ri 2765 . . . . . . . . . . . 12 ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))
104103a1i 11 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
105104iuneq2i 4961 . . . . . . . . . 10 𝑗 ∈ (1...𝑀)( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))
106 iunin2 5017 . . . . . . . . . 10 𝑗 ∈ (1...𝑀)( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
107105, 106eqtr3i 2756 . . . . . . . . 9 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
10896, 97, 1073eqtr4g 2791 . . . . . . . 8 (𝜑 → (𝐾 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
109108uneq2d 4115 . . . . . . 7 (𝜑 → ((𝐾𝐿) ∪ (𝐾 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))) = ((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
11082, 109eqtrd 2766 . . . . . 6 (𝜑 → (𝐾𝐴) = ((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
11135, 110sseqtrrid 3973 . . . . 5 (𝜑 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ (𝐾𝐴))
112111, 1sstrdi 3942 . . . 4 (𝜑 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾)
113 ovolsscl 25414 . . . 4 (( 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
114112, 12, 29, 113syl3anc 1373 . . 3 (𝜑 → (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
11534, 114readdcld 11141 . 2 (𝜑 → ((vol*‘(𝐾𝐿)) + (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ∈ ℝ)
11618rpred 12934 . . 3 (𝜑𝐶 ∈ ℝ)
11734, 116readdcld 11141 . 2 (𝜑 → ((vol*‘(𝐾𝐿)) + 𝐶) ∈ ℝ)
118110fveq2d 6826 . . 3 (𝜑 → (vol*‘(𝐾𝐴)) = (vol*‘((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
11932, 12sstrid 3941 . . . 4 (𝜑 → (𝐾𝐿) ⊆ ℝ)
120112, 12sstrd 3940 . . . 4 (𝜑 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ)
121 ovolun 25427 . . . 4 ((((𝐾𝐿) ⊆ ℝ ∧ (vol*‘(𝐾𝐿)) ∈ ℝ) ∧ ( 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ ∧ (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)) → (vol*‘((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ≤ ((vol*‘(𝐾𝐿)) + (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
122119, 34, 120, 114, 121syl22anc 838 . . 3 (𝜑 → (vol*‘((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ≤ ((vol*‘(𝐾𝐿)) + (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
123118, 122eqbrtrd 5111 . 2 (𝜑 → (vol*‘(𝐾𝐴)) ≤ ((vol*‘(𝐾𝐿)) + (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
124 fzfid 13880 . . . . 5 (𝜑 → (1...𝑀) ∈ Fin)
125 iunss 4992 . . . . . . . 8 ( 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾 ↔ ∀𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾)
126112, 125sylib 218 . . . . . . 7 (𝜑 → ∀𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾)
127126r19.21bi 3224 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾)
12812adantr 480 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐾 ⊆ ℝ)
12929adantr 480 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘𝐾) ∈ ℝ)
130 ovolsscl 25414 . . . . . 6 (( 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
131127, 128, 129, 130syl3anc 1373 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
132124, 131fsumrecl 15641 . . . 4 (𝜑 → Σ𝑗 ∈ (1...𝑀)(vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
133127, 128sstrd 3940 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ)
134133, 131jca 511 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → ( 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ ∧ (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ))
135134ralrimiva 3124 . . . . 5 (𝜑 → ∀𝑗 ∈ (1...𝑀)( 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ ∧ (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ))
136 ovolfiniun 25429 . . . . 5 (((1...𝑀) ∈ Fin ∧ ∀𝑗 ∈ (1...𝑀)( 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ ∧ (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)) → (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
137124, 135, 136syl2anc 584 . . . 4 (𝜑 → (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
138 uniioombl.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
139116, 138nndivred 12179 . . . . . . 7 (𝜑 → (𝐶 / 𝑀) ∈ ℝ)
140139adantr 480 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐶 / 𝑀) ∈ ℝ)
14177ineq2d 4167 . . . . . . . . . . . . 13 (𝜑 → (((,)‘(𝐺𝑗)) ∩ 𝐿) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖))))
142141adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ 𝐿) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖))))
14399a1i 11 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑁) → (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖))))
144143iuneq2i 4961 . . . . . . . . . . . . 13 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = 𝑖 ∈ (1...𝑁)(((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖)))
145 iunin2 5017 . . . . . . . . . . . . 13 𝑖 ∈ (1...𝑁)(((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖))) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)))
146144, 145eqtri 2754 . . . . . . . . . . . 12 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)))
147142, 146eqtr4di 2784 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ 𝐿) = 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
148 fzfid 13880 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (1...𝑁) ∈ Fin)
149 ffvelcdm 7014 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ( ≤ ∩ (ℝ × ℝ)))
15013, 73, 149syl2an 596 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (1...𝑁)) → (𝐹𝑖) ∈ ( ≤ ∩ (ℝ × ℝ)))
151150elin2d 4152 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (1...𝑁)) → (𝐹𝑖) ∈ (ℝ × ℝ))
152 1st2nd2 7960 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑖) ∈ (ℝ × ℝ) → (𝐹𝑖) = ⟨(1st ‘(𝐹𝑖)), (2nd ‘(𝐹𝑖))⟩)
153151, 152syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (1...𝑁)) → (𝐹𝑖) = ⟨(1st ‘(𝐹𝑖)), (2nd ‘(𝐹𝑖))⟩)
154153fveq2d 6826 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑁)) → ((,)‘(𝐹𝑖)) = ((,)‘⟨(1st ‘(𝐹𝑖)), (2nd ‘(𝐹𝑖))⟩))
155 df-ov 7349 . . . . . . . . . . . . . . . . 17 ((1st ‘(𝐹𝑖))(,)(2nd ‘(𝐹𝑖))) = ((,)‘⟨(1st ‘(𝐹𝑖)), (2nd ‘(𝐹𝑖))⟩)
156154, 155eqtr4di 2784 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑁)) → ((,)‘(𝐹𝑖)) = ((1st ‘(𝐹𝑖))(,)(2nd ‘(𝐹𝑖))))
157 ioombl 25493 . . . . . . . . . . . . . . . 16 ((1st ‘(𝐹𝑖))(,)(2nd ‘(𝐹𝑖))) ∈ dom vol
158156, 157eqeltrdi 2839 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑁)) → ((,)‘(𝐹𝑖)) ∈ dom vol)
159158adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → ((,)‘(𝐹𝑖)) ∈ dom vol)
160 ffvelcdm 7014 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
1616, 90, 160syl2an 596 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
162161elin2d 4152 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ (ℝ × ℝ))
163 1st2nd2 7960 . . . . . . . . . . . . . . . . . . 19 ((𝐺𝑗) ∈ (ℝ × ℝ) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
164162, 163syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
165164fveq2d 6826 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩))
166 df-ov 7349 . . . . . . . . . . . . . . . . 17 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
167165, 166eqtr4di 2784 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))))
168 ioombl 25493 . . . . . . . . . . . . . . . 16 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) ∈ dom vol
169167, 168eqeltrdi 2839 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) ∈ dom vol)
170169adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → ((,)‘(𝐺𝑗)) ∈ dom vol)
171 inmbl 25470 . . . . . . . . . . . . . 14 ((((,)‘(𝐹𝑖)) ∈ dom vol ∧ ((,)‘(𝐺𝑗)) ∈ dom vol) → (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol)
172159, 170, 171syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol)
173172ralrimiva 3124 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → ∀𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol)
174 finiunmbl 25472 . . . . . . . . . . . 12 (((1...𝑁) ∈ Fin ∧ ∀𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol) → 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol)
175148, 173, 174syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol)
176147, 175eqeltrd 2831 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ 𝐿) ∈ dom vol)
177 inss2 4185 . . . . . . . . . . 11 (((,)‘(𝐺𝑗)) ∩ 𝐴) ⊆ 𝐴
17813uniiccdif 25506 . . . . . . . . . . . . . . 15 (𝜑 → ( ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹) ∧ (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0))
179178simpld 494 . . . . . . . . . . . . . 14 (𝜑 ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹))
180 ovolficcss 25397 . . . . . . . . . . . . . . 15 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
18113, 180syl 17 . . . . . . . . . . . . . 14 (𝜑 ran ([,] ∘ 𝐹) ⊆ ℝ)
182179, 181sstrd 3940 . . . . . . . . . . . . 13 (𝜑 ran ((,) ∘ 𝐹) ⊆ ℝ)
18316, 182eqsstrid 3968 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℝ)
184183adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐴 ⊆ ℝ)
185177, 184sstrid 3941 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ 𝐴) ⊆ ℝ)
186 inss1 4184 . . . . . . . . . . 11 (((,)‘(𝐺𝑗)) ∩ 𝐴) ⊆ ((,)‘(𝐺𝑗))
187 ioossre 13307 . . . . . . . . . . . 12 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) ⊆ ℝ
188167, 187eqsstrdi 3974 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
189167fveq2d 6826 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) = (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))))
190 ovolfcl 25394 . . . . . . . . . . . . . . 15 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
1916, 90, 190syl2an 596 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑀)) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
192 ovolioo 25496 . . . . . . . . . . . . . 14 (((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
193191, 192syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
194189, 193eqtrd 2766 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
195191simp2d 1143 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (2nd ‘(𝐺𝑗)) ∈ ℝ)
196191simp1d 1142 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (1st ‘(𝐺𝑗)) ∈ ℝ)
197195, 196resubcld 11545 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
198194, 197eqeltrd 2831 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
199 ovolsscl 25414 . . . . . . . . . . 11 (((((,)‘(𝐺𝑗)) ∩ 𝐴) ⊆ ((,)‘(𝐺𝑗)) ∧ ((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) ∈ ℝ)
200186, 188, 198, 199mp3an2i 1468 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) ∈ ℝ)
201 mblsplit 25460 . . . . . . . . . 10 (((((,)‘(𝐺𝑗)) ∩ 𝐿) ∈ dom vol ∧ (((,)‘(𝐺𝑗)) ∩ 𝐴) ⊆ ℝ ∧ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) ∈ ℝ) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) = ((vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿))) + (vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿)))))
202176, 185, 200, 201syl3anc 1373 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) = ((vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿))) + (vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿)))))
203 imassrn 6019 . . . . . . . . . . . . . . 15 (((,) ∘ 𝐹) “ (1...𝑁)) ⊆ ran ((,) ∘ 𝐹)
204203unissi 4865 . . . . . . . . . . . . . 14 (((,) ∘ 𝐹) “ (1...𝑁)) ⊆ ran ((,) ∘ 𝐹)
205204, 69, 163sstr4i 3981 . . . . . . . . . . . . 13 𝐿𝐴
206 sslin 4190 . . . . . . . . . . . . 13 (𝐿𝐴 → (((,)‘(𝐺𝑗)) ∩ 𝐿) ⊆ (((,)‘(𝐺𝑗)) ∩ 𝐴))
207205, 206mp1i 13 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ 𝐿) ⊆ (((,)‘(𝐺𝑗)) ∩ 𝐴))
208 sseqin2 4170 . . . . . . . . . . . 12 ((((,)‘(𝐺𝑗)) ∩ 𝐿) ⊆ (((,)‘(𝐺𝑗)) ∩ 𝐴) ↔ ((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿)) = (((,)‘(𝐺𝑗)) ∩ 𝐿))
209207, 208sylib 218 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿)) = (((,)‘(𝐺𝑗)) ∩ 𝐿))
210209fveq2d 6826 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿))) = (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)))
211 indifdir 4242 . . . . . . . . . . . . 13 ((𝐴𝐿) ∩ ((,)‘(𝐺𝑗))) = ((𝐴 ∩ ((,)‘(𝐺𝑗))) ∖ (𝐿 ∩ ((,)‘(𝐺𝑗))))
212 incom 4156 . . . . . . . . . . . . . 14 (𝐴 ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ 𝐴)
213 incom 4156 . . . . . . . . . . . . . 14 (𝐿 ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ 𝐿)
214212, 213difeq12i 4071 . . . . . . . . . . . . 13 ((𝐴 ∩ ((,)‘(𝐺𝑗))) ∖ (𝐿 ∩ ((,)‘(𝐺𝑗)))) = ((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿))
215211, 214eqtri 2754 . . . . . . . . . . . 12 ((𝐴𝐿) ∩ ((,)‘(𝐺𝑗))) = ((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿))
21679eqcomd 2737 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = 𝐴)
21777ineq1d 4166 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
218 2fveq3 6827 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑖 → ((,)‘(𝐹𝑥)) = ((,)‘(𝐹𝑖)))
219218cbvdisjv 5067 . . . . . . . . . . . . . . . . . . . 20 (Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)) ↔ Disj 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
22014, 219sylib 218 . . . . . . . . . . . . . . . . . . 19 (𝜑Disj 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
221 fz1ssnn 13455 . . . . . . . . . . . . . . . . . . . 20 (1...𝑁) ⊆ ℕ
222221a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1...𝑁) ⊆ ℕ)
223 uzss 12755 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 + 1) ∈ (ℤ‘1) → (ℤ‘(𝑁 + 1)) ⊆ (ℤ‘1))
22439, 223syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (ℤ‘(𝑁 + 1)) ⊆ (ℤ‘1))
225224, 36sseqtrrdi 3971 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℤ‘(𝑁 + 1)) ⊆ ℕ)
22647ineq1d 4166 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((1...((𝑁 + 1) − 1)) ∩ (ℤ‘(𝑁 + 1))) = ((1...𝑁) ∩ (ℤ‘(𝑁 + 1))))
227 uzdisj 13497 . . . . . . . . . . . . . . . . . . . 20 ((1...((𝑁 + 1) − 1)) ∩ (ℤ‘(𝑁 + 1))) = ∅
228226, 227eqtr3di 2781 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅)
229 disjiun 5077 . . . . . . . . . . . . . . . . . . 19 ((Disj 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)) ∧ ((1...𝑁) ⊆ ℕ ∧ (ℤ‘(𝑁 + 1)) ⊆ ℕ ∧ ((1...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅)) → ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ∅)
230220, 222, 225, 228, 229syl13anc 1374 . . . . . . . . . . . . . . . . . 18 (𝜑 → ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ∅)
231217, 230eqtrd 2766 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ∅)
232 uneqdifeq 4440 . . . . . . . . . . . . . . . . 17 ((𝐿𝐴 ∧ (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ∅) → ((𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = 𝐴 ↔ (𝐴𝐿) = 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
233205, 231, 232sylancr 587 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = 𝐴 ↔ (𝐴𝐿) = 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
234216, 233mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐿) = 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
235234adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐴𝐿) = 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
236235ineq2d 4167 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ (𝐴𝐿)) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
237 incom 4156 . . . . . . . . . . . . 13 ((𝐴𝐿) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ (𝐴𝐿))
238101, 98eqtri 2754 . . . . . . . . . . . . 13 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
239236, 237, 2383eqtr4g 2791 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → ((𝐴𝐿) ∩ ((,)‘(𝐺𝑗))) = 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
240215, 239eqtr3id 2780 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿)) = 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
241240fveq2d 6826 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿))) = (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
242210, 241oveq12d 7364 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿))) + (vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿)))) = ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
243202, 242eqtrd 2766 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) = ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
244200, 140resubcld 11545 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) ∈ ℝ)
245 inss2 4185 . . . . . . . . . . . . 13 (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐺𝑗))
246188adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
247198adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
248 ovolsscl 25414 . . . . . . . . . . . . 13 (((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐺𝑗)) ∧ ((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ) → (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
249245, 246, 247, 248mp3an2i 1468 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
250148, 249fsumrecl 15641 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
251 uniioombl.n2 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑗 ∈ (1...𝑀)(abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀))
252251r19.21bi 3224 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀))
253250, 200, 140absdifltd 15343 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → ((abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀) ↔ (((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) < Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∧ Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) < ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) + (𝐶 / 𝑀)))))
254252, 253mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) < Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∧ Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) < ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) + (𝐶 / 𝑀))))
255254simpld 494 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) < Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
256244, 250, 255ltled 11261 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) ≤ Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
257147fveq2d 6826 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) = (vol*‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
258 mblvol 25458 . . . . . . . . . . . . . . . . 17 ((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol → (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
259172, 258syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
260259, 249eqeltrd 2831 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
261172, 260jca 511 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → ((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol ∧ (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ))
262261ralrimiva 3124 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → ∀𝑖 ∈ (1...𝑁)((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol ∧ (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ))
263 inss1 4184 . . . . . . . . . . . . . . . 16 (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐹𝑖))
264263rgenw 3051 . . . . . . . . . . . . . . 15 𝑖 ∈ ℕ (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐹𝑖))
265220adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑀)) → Disj 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
266 disjss2 5059 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ ℕ (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐹𝑖)) → (Disj 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)) → Disj 𝑖 ∈ ℕ (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
267264, 265, 266mpsyl 68 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑀)) → Disj 𝑖 ∈ ℕ (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
268 disjss1 5062 . . . . . . . . . . . . . 14 ((1...𝑁) ⊆ ℕ → (Disj 𝑖 ∈ ℕ (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) → Disj 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
269221, 267, 268mpsyl 68 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → Disj 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
270 volfiniun 25475 . . . . . . . . . . . . 13 (((1...𝑁) ∈ Fin ∧ ∀𝑖 ∈ (1...𝑁)((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol ∧ (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ) ∧ Disj 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) → (vol‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑖 ∈ (1...𝑁)(vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
271148, 262, 269, 270syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (vol‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑖 ∈ (1...𝑁)(vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
272 mblvol 25458 . . . . . . . . . . . . 13 ( 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol → (vol‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
273175, 272syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (vol‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
274259sumeq2dv 15609 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → Σ𝑖 ∈ (1...𝑁)(vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
275271, 273, 2743eqtr3d 2774 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
276257, 275eqtrd 2766 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) = Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
277256, 276breqtrrd 5117 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) ≤ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)))
278276, 250eqeltrd 2831 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) ∈ ℝ)
279200, 140, 278lesubaddd 11714 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → (((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) ≤ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) ↔ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) ≤ ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (𝐶 / 𝑀))))
280277, 279mpbid 232 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) ≤ ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (𝐶 / 𝑀)))
281243, 280eqbrtrrd 5113 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ≤ ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (𝐶 / 𝑀)))
282131, 140, 278leadd2d 11712 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ (𝐶 / 𝑀) ↔ ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ≤ ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (𝐶 / 𝑀))))
283281, 282mpbird 257 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ (𝐶 / 𝑀))
284124, 131, 140, 283fsumle 15706 . . . . 5 (𝜑 → Σ𝑗 ∈ (1...𝑀)(vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ Σ𝑗 ∈ (1...𝑀)(𝐶 / 𝑀))
285139recnd 11140 . . . . . . 7 (𝜑 → (𝐶 / 𝑀) ∈ ℂ)
286 fsumconst 15697 . . . . . . 7 (((1...𝑀) ∈ Fin ∧ (𝐶 / 𝑀) ∈ ℂ) → Σ𝑗 ∈ (1...𝑀)(𝐶 / 𝑀) = ((♯‘(1...𝑀)) · (𝐶 / 𝑀)))
287124, 285, 286syl2anc 584 . . . . . 6 (𝜑 → Σ𝑗 ∈ (1...𝑀)(𝐶 / 𝑀) = ((♯‘(1...𝑀)) · (𝐶 / 𝑀)))
288 nnnn0 12388 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
289 hashfz1 14253 . . . . . . . 8 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
290138, 288, 2893syl 18 . . . . . . 7 (𝜑 → (♯‘(1...𝑀)) = 𝑀)
291290oveq1d 7361 . . . . . 6 (𝜑 → ((♯‘(1...𝑀)) · (𝐶 / 𝑀)) = (𝑀 · (𝐶 / 𝑀)))
292116recnd 11140 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
293138nncnd 12141 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
294138nnne0d 12175 . . . . . . 7 (𝜑𝑀 ≠ 0)
295292, 293, 294divcan2d 11899 . . . . . 6 (𝜑 → (𝑀 · (𝐶 / 𝑀)) = 𝐶)
296287, 291, 2953eqtrd 2770 . . . . 5 (𝜑 → Σ𝑗 ∈ (1...𝑀)(𝐶 / 𝑀) = 𝐶)
297284, 296breqtrd 5115 . . . 4 (𝜑 → Σ𝑗 ∈ (1...𝑀)(vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ 𝐶)
298114, 132, 116, 137, 297letrd 11270 . . 3 (𝜑 → (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ 𝐶)
299114, 116, 34, 298leadd2dd 11732 . 2 (𝜑 → ((vol*‘(𝐾𝐿)) + (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ≤ ((vol*‘(𝐾𝐿)) + 𝐶))
30031, 115, 117, 123, 299letrd 11270 1 (𝜑 → (vol*‘(𝐾𝐴)) ≤ ((vol*‘(𝐾𝐿)) + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cdif 3894  cun 3895  cin 3896  wss 3897  c0 4280  𝒫 cpw 4547  cop 4579   cuni 4856   ciun 4939  Disj wdisj 5056   class class class wbr 5089   × cxp 5612  dom cdm 5614  ran crn 5615  cima 5617  ccom 5618  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  Fincfn 8869  supcsup 9324  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  *cxr 11145   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cn 12125  0cn0 12381  cuz 12732  +crp 12890  (,)cioo 13245  [,]cicc 13248  ...cfz 13407  seqcseq 13908  chash 14237  abscabs 15141  Σcsu 15593  vol*covol 25390  volcvol 25391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-rest 17326  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-top 22809  df-topon 22826  df-bases 22861  df-cmp 23302  df-ovol 25392  df-vol 25393
This theorem is referenced by:  uniioombllem5  25515
  Copyright terms: Public domain W3C validator