MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem4 Structured version   Visualization version   GIF version

Theorem uniioombllem4 24655
Description: Lemma for uniioombl 24658. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
uniioombl.m (𝜑𝑀 ∈ ℕ)
uniioombl.m2 (𝜑 → (abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
uniioombl.k 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
uniioombl.n (𝜑𝑁 ∈ ℕ)
uniioombl.n2 (𝜑 → ∀𝑗 ∈ (1...𝑀)(abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀))
uniioombl.l 𝐿 = (((,) ∘ 𝐹) “ (1...𝑁))
Assertion
Ref Expression
uniioombllem4 (𝜑 → (vol*‘(𝐾𝐴)) ≤ ((vol*‘(𝐾𝐿)) + 𝐶))
Distinct variable groups:   𝑖,𝑗,𝑥,𝐹   𝑖,𝐺,𝑗,𝑥   𝑗,𝐾,𝑥   𝐴,𝑗,𝑥   𝐶,𝑖,𝑗,𝑥   𝑖,𝑀,𝑗,𝑥   𝑖,𝑁,𝑗   𝜑,𝑖,𝑗,𝑥   𝑇,𝑖,𝑗,𝑥
Allowed substitution hints:   𝐴(𝑖)   𝑆(𝑥,𝑖,𝑗)   𝐸(𝑥,𝑖,𝑗)   𝐾(𝑖)   𝐿(𝑥,𝑖,𝑗)   𝑁(𝑥)

Proof of Theorem uniioombllem4
StepHypRef Expression
1 inss1 4159 . . 3 (𝐾𝐴) ⊆ 𝐾
2 uniioombl.k . . . . 5 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
3 imassrn 5969 . . . . . 6 (((,) ∘ 𝐺) “ (1...𝑀)) ⊆ ran ((,) ∘ 𝐺)
43unissi 4845 . . . . 5 (((,) ∘ 𝐺) “ (1...𝑀)) ⊆ ran ((,) ∘ 𝐺)
52, 4eqsstri 3951 . . . 4 𝐾 ran ((,) ∘ 𝐺)
6 uniioombl.g . . . . . . 7 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
76uniiccdif 24647 . . . . . 6 (𝜑 → ( ran ((,) ∘ 𝐺) ⊆ ran ([,] ∘ 𝐺) ∧ (vol*‘( ran ([,] ∘ 𝐺) ∖ ran ((,) ∘ 𝐺))) = 0))
87simpld 494 . . . . 5 (𝜑 ran ((,) ∘ 𝐺) ⊆ ran ([,] ∘ 𝐺))
9 ovolficcss 24538 . . . . . 6 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐺) ⊆ ℝ)
106, 9syl 17 . . . . 5 (𝜑 ran ([,] ∘ 𝐺) ⊆ ℝ)
118, 10sstrd 3927 . . . 4 (𝜑 ran ((,) ∘ 𝐺) ⊆ ℝ)
125, 11sstrid 3928 . . 3 (𝜑𝐾 ⊆ ℝ)
13 uniioombl.1 . . . . . 6 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
14 uniioombl.2 . . . . . 6 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
15 uniioombl.3 . . . . . 6 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
16 uniioombl.a . . . . . 6 𝐴 = ran ((,) ∘ 𝐹)
17 uniioombl.e . . . . . 6 (𝜑 → (vol*‘𝐸) ∈ ℝ)
18 uniioombl.c . . . . . 6 (𝜑𝐶 ∈ ℝ+)
19 uniioombl.s . . . . . 6 (𝜑𝐸 ran ((,) ∘ 𝐺))
20 uniioombl.t . . . . . 6 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
21 uniioombl.v . . . . . 6 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
2213, 14, 15, 16, 17, 18, 6, 19, 20, 21uniioombllem1 24650 . . . . 5 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
23 ssid 3939 . . . . . 6 ran ((,) ∘ 𝐺) ⊆ ran ((,) ∘ 𝐺)
2420ovollb 24548 . . . . . 6 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ran ((,) ∘ 𝐺) ⊆ ran ((,) ∘ 𝐺)) → (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
256, 23, 24sylancl 585 . . . . 5 (𝜑 → (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
26 ovollecl 24552 . . . . 5 (( ran ((,) ∘ 𝐺) ⊆ ℝ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < )) → (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ)
2711, 22, 25, 26syl3anc 1369 . . . 4 (𝜑 → (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ)
28 ovolsscl 24555 . . . 4 ((𝐾 ran ((,) ∘ 𝐺) ∧ ran ((,) ∘ 𝐺) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ) → (vol*‘𝐾) ∈ ℝ)
295, 11, 27, 28mp3an2i 1464 . . 3 (𝜑 → (vol*‘𝐾) ∈ ℝ)
30 ovolsscl 24555 . . 3 (((𝐾𝐴) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐴)) ∈ ℝ)
311, 12, 29, 30mp3an2i 1464 . 2 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℝ)
32 inss1 4159 . . . 4 (𝐾𝐿) ⊆ 𝐾
33 ovolsscl 24555 . . . 4 (((𝐾𝐿) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐿)) ∈ ℝ)
3432, 12, 29, 33mp3an2i 1464 . . 3 (𝜑 → (vol*‘(𝐾𝐿)) ∈ ℝ)
35 ssun2 4103 . . . . . 6 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
36 nnuz 12550 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
37 uniioombl.n . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ)
3837peano2nnd 11920 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 + 1) ∈ ℕ)
3938, 36eleqtrdi 2849 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 + 1) ∈ (ℤ‘1))
40 uzsplit 13257 . . . . . . . . . . . . . . 15 ((𝑁 + 1) ∈ (ℤ‘1) → (ℤ‘1) = ((1...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
4139, 40syl 17 . . . . . . . . . . . . . 14 (𝜑 → (ℤ‘1) = ((1...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
4236, 41syl5eq 2791 . . . . . . . . . . . . 13 (𝜑 → ℕ = ((1...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
4337nncnd 11919 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℂ)
44 ax-1cn 10860 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
45 pncan 11157 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
4643, 44, 45sylancl 585 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
4746oveq2d 7271 . . . . . . . . . . . . . 14 (𝜑 → (1...((𝑁 + 1) − 1)) = (1...𝑁))
4847uneq1d 4092 . . . . . . . . . . . . 13 (𝜑 → ((1...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))) = ((1...𝑁) ∪ (ℤ‘(𝑁 + 1))))
4942, 48eqtrd 2778 . . . . . . . . . . . 12 (𝜑 → ℕ = ((1...𝑁) ∪ (ℤ‘(𝑁 + 1))))
5049iuneq1d 4948 . . . . . . . . . . 11 (𝜑 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)) = 𝑖 ∈ ((1...𝑁) ∪ (ℤ‘(𝑁 + 1)))((,)‘(𝐹𝑖)))
51 iunxun 5019 . . . . . . . . . . 11 𝑖 ∈ ((1...𝑁) ∪ (ℤ‘(𝑁 + 1)))((,)‘(𝐹𝑖)) = ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∪ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
5250, 51eqtrdi 2795 . . . . . . . . . 10 (𝜑 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)) = ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∪ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
53 ioof 13108 . . . . . . . . . . . . . 14 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
54 inss2 4160 . . . . . . . . . . . . . . . 16 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
55 rexpssxrxp 10951 . . . . . . . . . . . . . . . 16 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
5654, 55sstri 3926 . . . . . . . . . . . . . . 15 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
57 fss 6601 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
5813, 56, 57sylancl 585 . . . . . . . . . . . . . 14 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
59 fco 6608 . . . . . . . . . . . . . 14 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
6053, 58, 59sylancr 586 . . . . . . . . . . . . 13 (𝜑 → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
61 ffn 6584 . . . . . . . . . . . . 13 (((,) ∘ 𝐹):ℕ⟶𝒫 ℝ → ((,) ∘ 𝐹) Fn ℕ)
62 fniunfv 7102 . . . . . . . . . . . . 13 (((,) ∘ 𝐹) Fn ℕ → 𝑖 ∈ ℕ (((,) ∘ 𝐹)‘𝑖) = ran ((,) ∘ 𝐹))
6360, 61, 623syl 18 . . . . . . . . . . . 12 (𝜑 𝑖 ∈ ℕ (((,) ∘ 𝐹)‘𝑖) = ran ((,) ∘ 𝐹))
64 fvco3 6849 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑖 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑖) = ((,)‘(𝐹𝑖)))
6513, 64sylan 579 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑖) = ((,)‘(𝐹𝑖)))
6665iuneq2dv 4945 . . . . . . . . . . . 12 (𝜑 𝑖 ∈ ℕ (((,) ∘ 𝐹)‘𝑖) = 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
6763, 66eqtr3d 2780 . . . . . . . . . . 11 (𝜑 ran ((,) ∘ 𝐹) = 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
6816, 67syl5eq 2791 . . . . . . . . . 10 (𝜑𝐴 = 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
69 uniioombl.l . . . . . . . . . . . 12 𝐿 = (((,) ∘ 𝐹) “ (1...𝑁))
70 ffun 6587 . . . . . . . . . . . . . 14 (((,) ∘ 𝐹):ℕ⟶𝒫 ℝ → Fun ((,) ∘ 𝐹))
71 funiunfv 7103 . . . . . . . . . . . . . 14 (Fun ((,) ∘ 𝐹) → 𝑖 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑖) = (((,) ∘ 𝐹) “ (1...𝑁)))
7260, 70, 713syl 18 . . . . . . . . . . . . 13 (𝜑 𝑖 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑖) = (((,) ∘ 𝐹) “ (1...𝑁)))
73 elfznn 13214 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1...𝑁) → 𝑖 ∈ ℕ)
7413, 73, 64syl2an 595 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑁)) → (((,) ∘ 𝐹)‘𝑖) = ((,)‘(𝐹𝑖)))
7574iuneq2dv 4945 . . . . . . . . . . . . 13 (𝜑 𝑖 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑖) = 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)))
7672, 75eqtr3d 2780 . . . . . . . . . . . 12 (𝜑 (((,) ∘ 𝐹) “ (1...𝑁)) = 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)))
7769, 76syl5eq 2791 . . . . . . . . . . 11 (𝜑𝐿 = 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)))
7877uneq1d 4092 . . . . . . . . . 10 (𝜑 → (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∪ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
7952, 68, 783eqtr4d 2788 . . . . . . . . 9 (𝜑𝐴 = (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
8079ineq2d 4143 . . . . . . . 8 (𝜑 → (𝐾𝐴) = (𝐾 ∩ (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))))
81 indi 4204 . . . . . . . 8 (𝐾 ∩ (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))) = ((𝐾𝐿) ∪ (𝐾 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
8280, 81eqtrdi 2795 . . . . . . 7 (𝜑 → (𝐾𝐴) = ((𝐾𝐿) ∪ (𝐾 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))))
83 fss 6601 . . . . . . . . . . . . . . 15 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐺:ℕ⟶(ℝ* × ℝ*))
846, 56, 83sylancl 585 . . . . . . . . . . . . . 14 (𝜑𝐺:ℕ⟶(ℝ* × ℝ*))
85 fco 6608 . . . . . . . . . . . . . 14 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐺:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
8653, 84, 85sylancr 586 . . . . . . . . . . . . 13 (𝜑 → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
87 ffun 6587 . . . . . . . . . . . . 13 (((,) ∘ 𝐺):ℕ⟶𝒫 ℝ → Fun ((,) ∘ 𝐺))
88 funiunfv 7103 . . . . . . . . . . . . 13 (Fun ((,) ∘ 𝐺) → 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = (((,) ∘ 𝐺) “ (1...𝑀)))
8986, 87, 883syl 18 . . . . . . . . . . . 12 (𝜑 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = (((,) ∘ 𝐺) “ (1...𝑀)))
90 elfznn 13214 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℕ)
91 fvco3 6849 . . . . . . . . . . . . . 14 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (((,) ∘ 𝐺)‘𝑗) = ((,)‘(𝐺𝑗)))
926, 90, 91syl2an 595 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (((,) ∘ 𝐺)‘𝑗) = ((,)‘(𝐺𝑗)))
9392iuneq2dv 4945 . . . . . . . . . . . 12 (𝜑 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
9489, 93eqtr3d 2780 . . . . . . . . . . 11 (𝜑 (((,) ∘ 𝐺) “ (1...𝑀)) = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
952, 94syl5eq 2791 . . . . . . . . . 10 (𝜑𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
9695ineq2d 4143 . . . . . . . . 9 (𝜑 → ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ 𝐾) = ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗))))
97 incom 4131 . . . . . . . . 9 (𝐾 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ 𝐾)
98 iunin2 4996 . . . . . . . . . . . . 13 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖))) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
99 incom 4131 . . . . . . . . . . . . . . 15 (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖)))
10099a1i 11 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ‘(𝑁 + 1)) → (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖))))
101100iuneq2i 4942 . . . . . . . . . . . . 13 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖)))
102 incom 4131 . . . . . . . . . . . . 13 ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
10398, 101, 1023eqtr4ri 2777 . . . . . . . . . . . 12 ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))
104103a1i 11 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
105104iuneq2i 4942 . . . . . . . . . 10 𝑗 ∈ (1...𝑀)( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))
106 iunin2 4996 . . . . . . . . . 10 𝑗 ∈ (1...𝑀)( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
107105, 106eqtr3i 2768 . . . . . . . . 9 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
10896, 97, 1073eqtr4g 2804 . . . . . . . 8 (𝜑 → (𝐾 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
109108uneq2d 4093 . . . . . . 7 (𝜑 → ((𝐾𝐿) ∪ (𝐾 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))) = ((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
11082, 109eqtrd 2778 . . . . . 6 (𝜑 → (𝐾𝐴) = ((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
11135, 110sseqtrrid 3970 . . . . 5 (𝜑 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ (𝐾𝐴))
112111, 1sstrdi 3929 . . . 4 (𝜑 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾)
113 ovolsscl 24555 . . . 4 (( 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
114112, 12, 29, 113syl3anc 1369 . . 3 (𝜑 → (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
11534, 114readdcld 10935 . 2 (𝜑 → ((vol*‘(𝐾𝐿)) + (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ∈ ℝ)
11618rpred 12701 . . 3 (𝜑𝐶 ∈ ℝ)
11734, 116readdcld 10935 . 2 (𝜑 → ((vol*‘(𝐾𝐿)) + 𝐶) ∈ ℝ)
118110fveq2d 6760 . . 3 (𝜑 → (vol*‘(𝐾𝐴)) = (vol*‘((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
11932, 12sstrid 3928 . . . 4 (𝜑 → (𝐾𝐿) ⊆ ℝ)
120112, 12sstrd 3927 . . . 4 (𝜑 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ)
121 ovolun 24568 . . . 4 ((((𝐾𝐿) ⊆ ℝ ∧ (vol*‘(𝐾𝐿)) ∈ ℝ) ∧ ( 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ ∧ (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)) → (vol*‘((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ≤ ((vol*‘(𝐾𝐿)) + (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
122119, 34, 120, 114, 121syl22anc 835 . . 3 (𝜑 → (vol*‘((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ≤ ((vol*‘(𝐾𝐿)) + (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
123118, 122eqbrtrd 5092 . 2 (𝜑 → (vol*‘(𝐾𝐴)) ≤ ((vol*‘(𝐾𝐿)) + (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
124 fzfid 13621 . . . . 5 (𝜑 → (1...𝑀) ∈ Fin)
125 iunss 4971 . . . . . . . 8 ( 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾 ↔ ∀𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾)
126112, 125sylib 217 . . . . . . 7 (𝜑 → ∀𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾)
127126r19.21bi 3132 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾)
12812adantr 480 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐾 ⊆ ℝ)
12929adantr 480 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘𝐾) ∈ ℝ)
130 ovolsscl 24555 . . . . . 6 (( 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
131127, 128, 129, 130syl3anc 1369 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
132124, 131fsumrecl 15374 . . . 4 (𝜑 → Σ𝑗 ∈ (1...𝑀)(vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
133127, 128sstrd 3927 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ)
134133, 131jca 511 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → ( 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ ∧ (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ))
135134ralrimiva 3107 . . . . 5 (𝜑 → ∀𝑗 ∈ (1...𝑀)( 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ ∧ (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ))
136 ovolfiniun 24570 . . . . 5 (((1...𝑀) ∈ Fin ∧ ∀𝑗 ∈ (1...𝑀)( 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ ∧ (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)) → (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
137124, 135, 136syl2anc 583 . . . 4 (𝜑 → (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
138 uniioombl.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
139116, 138nndivred 11957 . . . . . . 7 (𝜑 → (𝐶 / 𝑀) ∈ ℝ)
140139adantr 480 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐶 / 𝑀) ∈ ℝ)
14177ineq2d 4143 . . . . . . . . . . . . 13 (𝜑 → (((,)‘(𝐺𝑗)) ∩ 𝐿) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖))))
142141adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ 𝐿) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖))))
14399a1i 11 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑁) → (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖))))
144143iuneq2i 4942 . . . . . . . . . . . . 13 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = 𝑖 ∈ (1...𝑁)(((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖)))
145 iunin2 4996 . . . . . . . . . . . . 13 𝑖 ∈ (1...𝑁)(((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖))) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)))
146144, 145eqtri 2766 . . . . . . . . . . . 12 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)))
147142, 146eqtr4di 2797 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ 𝐿) = 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
148 fzfid 13621 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (1...𝑁) ∈ Fin)
149 ffvelrn 6941 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ( ≤ ∩ (ℝ × ℝ)))
15013, 73, 149syl2an 595 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (1...𝑁)) → (𝐹𝑖) ∈ ( ≤ ∩ (ℝ × ℝ)))
151150elin2d 4129 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (1...𝑁)) → (𝐹𝑖) ∈ (ℝ × ℝ))
152 1st2nd2 7843 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑖) ∈ (ℝ × ℝ) → (𝐹𝑖) = ⟨(1st ‘(𝐹𝑖)), (2nd ‘(𝐹𝑖))⟩)
153151, 152syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (1...𝑁)) → (𝐹𝑖) = ⟨(1st ‘(𝐹𝑖)), (2nd ‘(𝐹𝑖))⟩)
154153fveq2d 6760 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑁)) → ((,)‘(𝐹𝑖)) = ((,)‘⟨(1st ‘(𝐹𝑖)), (2nd ‘(𝐹𝑖))⟩))
155 df-ov 7258 . . . . . . . . . . . . . . . . 17 ((1st ‘(𝐹𝑖))(,)(2nd ‘(𝐹𝑖))) = ((,)‘⟨(1st ‘(𝐹𝑖)), (2nd ‘(𝐹𝑖))⟩)
156154, 155eqtr4di 2797 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑁)) → ((,)‘(𝐹𝑖)) = ((1st ‘(𝐹𝑖))(,)(2nd ‘(𝐹𝑖))))
157 ioombl 24634 . . . . . . . . . . . . . . . 16 ((1st ‘(𝐹𝑖))(,)(2nd ‘(𝐹𝑖))) ∈ dom vol
158156, 157eqeltrdi 2847 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑁)) → ((,)‘(𝐹𝑖)) ∈ dom vol)
159158adantlr 711 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → ((,)‘(𝐹𝑖)) ∈ dom vol)
160 ffvelrn 6941 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
1616, 90, 160syl2an 595 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
162161elin2d 4129 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ (ℝ × ℝ))
163 1st2nd2 7843 . . . . . . . . . . . . . . . . . . 19 ((𝐺𝑗) ∈ (ℝ × ℝ) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
164162, 163syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
165164fveq2d 6760 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩))
166 df-ov 7258 . . . . . . . . . . . . . . . . 17 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
167165, 166eqtr4di 2797 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))))
168 ioombl 24634 . . . . . . . . . . . . . . . 16 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) ∈ dom vol
169167, 168eqeltrdi 2847 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) ∈ dom vol)
170169adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → ((,)‘(𝐺𝑗)) ∈ dom vol)
171 inmbl 24611 . . . . . . . . . . . . . 14 ((((,)‘(𝐹𝑖)) ∈ dom vol ∧ ((,)‘(𝐺𝑗)) ∈ dom vol) → (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol)
172159, 170, 171syl2anc 583 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol)
173172ralrimiva 3107 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → ∀𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol)
174 finiunmbl 24613 . . . . . . . . . . . 12 (((1...𝑁) ∈ Fin ∧ ∀𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol) → 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol)
175148, 173, 174syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol)
176147, 175eqeltrd 2839 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ 𝐿) ∈ dom vol)
177 inss2 4160 . . . . . . . . . . 11 (((,)‘(𝐺𝑗)) ∩ 𝐴) ⊆ 𝐴
17813uniiccdif 24647 . . . . . . . . . . . . . . 15 (𝜑 → ( ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹) ∧ (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0))
179178simpld 494 . . . . . . . . . . . . . 14 (𝜑 ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹))
180 ovolficcss 24538 . . . . . . . . . . . . . . 15 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
18113, 180syl 17 . . . . . . . . . . . . . 14 (𝜑 ran ([,] ∘ 𝐹) ⊆ ℝ)
182179, 181sstrd 3927 . . . . . . . . . . . . 13 (𝜑 ran ((,) ∘ 𝐹) ⊆ ℝ)
18316, 182eqsstrid 3965 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℝ)
184183adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐴 ⊆ ℝ)
185177, 184sstrid 3928 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ 𝐴) ⊆ ℝ)
186 inss1 4159 . . . . . . . . . . 11 (((,)‘(𝐺𝑗)) ∩ 𝐴) ⊆ ((,)‘(𝐺𝑗))
187 ioossre 13069 . . . . . . . . . . . 12 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) ⊆ ℝ
188167, 187eqsstrdi 3971 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
189167fveq2d 6760 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) = (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))))
190 ovolfcl 24535 . . . . . . . . . . . . . . 15 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
1916, 90, 190syl2an 595 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑀)) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
192 ovolioo 24637 . . . . . . . . . . . . . 14 (((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
193191, 192syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
194189, 193eqtrd 2778 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
195191simp2d 1141 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (2nd ‘(𝐺𝑗)) ∈ ℝ)
196191simp1d 1140 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (1st ‘(𝐺𝑗)) ∈ ℝ)
197195, 196resubcld 11333 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
198194, 197eqeltrd 2839 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
199 ovolsscl 24555 . . . . . . . . . . 11 (((((,)‘(𝐺𝑗)) ∩ 𝐴) ⊆ ((,)‘(𝐺𝑗)) ∧ ((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) ∈ ℝ)
200186, 188, 198, 199mp3an2i 1464 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) ∈ ℝ)
201 mblsplit 24601 . . . . . . . . . 10 (((((,)‘(𝐺𝑗)) ∩ 𝐿) ∈ dom vol ∧ (((,)‘(𝐺𝑗)) ∩ 𝐴) ⊆ ℝ ∧ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) ∈ ℝ) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) = ((vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿))) + (vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿)))))
202176, 185, 200, 201syl3anc 1369 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) = ((vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿))) + (vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿)))))
203 imassrn 5969 . . . . . . . . . . . . . . 15 (((,) ∘ 𝐹) “ (1...𝑁)) ⊆ ran ((,) ∘ 𝐹)
204203unissi 4845 . . . . . . . . . . . . . 14 (((,) ∘ 𝐹) “ (1...𝑁)) ⊆ ran ((,) ∘ 𝐹)
205204, 69, 163sstr4i 3960 . . . . . . . . . . . . 13 𝐿𝐴
206 sslin 4165 . . . . . . . . . . . . 13 (𝐿𝐴 → (((,)‘(𝐺𝑗)) ∩ 𝐿) ⊆ (((,)‘(𝐺𝑗)) ∩ 𝐴))
207205, 206mp1i 13 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ 𝐿) ⊆ (((,)‘(𝐺𝑗)) ∩ 𝐴))
208 sseqin2 4146 . . . . . . . . . . . 12 ((((,)‘(𝐺𝑗)) ∩ 𝐿) ⊆ (((,)‘(𝐺𝑗)) ∩ 𝐴) ↔ ((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿)) = (((,)‘(𝐺𝑗)) ∩ 𝐿))
209207, 208sylib 217 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿)) = (((,)‘(𝐺𝑗)) ∩ 𝐿))
210209fveq2d 6760 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿))) = (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)))
211 indifdir 4215 . . . . . . . . . . . . 13 ((𝐴𝐿) ∩ ((,)‘(𝐺𝑗))) = ((𝐴 ∩ ((,)‘(𝐺𝑗))) ∖ (𝐿 ∩ ((,)‘(𝐺𝑗))))
212 incom 4131 . . . . . . . . . . . . . 14 (𝐴 ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ 𝐴)
213 incom 4131 . . . . . . . . . . . . . 14 (𝐿 ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ 𝐿)
214212, 213difeq12i 4051 . . . . . . . . . . . . 13 ((𝐴 ∩ ((,)‘(𝐺𝑗))) ∖ (𝐿 ∩ ((,)‘(𝐺𝑗)))) = ((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿))
215211, 214eqtri 2766 . . . . . . . . . . . 12 ((𝐴𝐿) ∩ ((,)‘(𝐺𝑗))) = ((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿))
21679eqcomd 2744 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = 𝐴)
21777ineq1d 4142 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
218 2fveq3 6761 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑖 → ((,)‘(𝐹𝑥)) = ((,)‘(𝐹𝑖)))
219218cbvdisjv 5046 . . . . . . . . . . . . . . . . . . . 20 (Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)) ↔ Disj 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
22014, 219sylib 217 . . . . . . . . . . . . . . . . . . 19 (𝜑Disj 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
221 fz1ssnn 13216 . . . . . . . . . . . . . . . . . . . 20 (1...𝑁) ⊆ ℕ
222221a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1...𝑁) ⊆ ℕ)
223 uzss 12534 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 + 1) ∈ (ℤ‘1) → (ℤ‘(𝑁 + 1)) ⊆ (ℤ‘1))
22439, 223syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (ℤ‘(𝑁 + 1)) ⊆ (ℤ‘1))
225224, 36sseqtrrdi 3968 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℤ‘(𝑁 + 1)) ⊆ ℕ)
22647ineq1d 4142 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((1...((𝑁 + 1) − 1)) ∩ (ℤ‘(𝑁 + 1))) = ((1...𝑁) ∩ (ℤ‘(𝑁 + 1))))
227 uzdisj 13258 . . . . . . . . . . . . . . . . . . . 20 ((1...((𝑁 + 1) − 1)) ∩ (ℤ‘(𝑁 + 1))) = ∅
228226, 227eqtr3di 2794 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅)
229 disjiun 5057 . . . . . . . . . . . . . . . . . . 19 ((Disj 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)) ∧ ((1...𝑁) ⊆ ℕ ∧ (ℤ‘(𝑁 + 1)) ⊆ ℕ ∧ ((1...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅)) → ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ∅)
230220, 222, 225, 228, 229syl13anc 1370 . . . . . . . . . . . . . . . . . 18 (𝜑 → ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ∅)
231217, 230eqtrd 2778 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ∅)
232 uneqdifeq 4420 . . . . . . . . . . . . . . . . 17 ((𝐿𝐴 ∧ (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ∅) → ((𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = 𝐴 ↔ (𝐴𝐿) = 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
233205, 231, 232sylancr 586 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = 𝐴 ↔ (𝐴𝐿) = 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
234216, 233mpbid 231 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐿) = 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
235234adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐴𝐿) = 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
236235ineq2d 4143 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ (𝐴𝐿)) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
237 incom 4131 . . . . . . . . . . . . 13 ((𝐴𝐿) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ (𝐴𝐿))
238101, 98eqtri 2766 . . . . . . . . . . . . 13 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
239236, 237, 2383eqtr4g 2804 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → ((𝐴𝐿) ∩ ((,)‘(𝐺𝑗))) = 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
240215, 239eqtr3id 2793 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿)) = 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
241240fveq2d 6760 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿))) = (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
242210, 241oveq12d 7273 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿))) + (vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿)))) = ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
243202, 242eqtrd 2778 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) = ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
244200, 140resubcld 11333 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) ∈ ℝ)
245 inss2 4160 . . . . . . . . . . . . 13 (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐺𝑗))
246188adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
247198adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
248 ovolsscl 24555 . . . . . . . . . . . . 13 (((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐺𝑗)) ∧ ((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ) → (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
249245, 246, 247, 248mp3an2i 1464 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
250148, 249fsumrecl 15374 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
251 uniioombl.n2 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑗 ∈ (1...𝑀)(abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀))
252251r19.21bi 3132 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀))
253250, 200, 140absdifltd 15073 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → ((abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀) ↔ (((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) < Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∧ Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) < ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) + (𝐶 / 𝑀)))))
254252, 253mpbid 231 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) < Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∧ Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) < ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) + (𝐶 / 𝑀))))
255254simpld 494 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) < Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
256244, 250, 255ltled 11053 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) ≤ Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
257147fveq2d 6760 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) = (vol*‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
258 mblvol 24599 . . . . . . . . . . . . . . . . 17 ((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol → (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
259172, 258syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
260259, 249eqeltrd 2839 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
261172, 260jca 511 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → ((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol ∧ (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ))
262261ralrimiva 3107 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → ∀𝑖 ∈ (1...𝑁)((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol ∧ (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ))
263 inss1 4159 . . . . . . . . . . . . . . . 16 (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐹𝑖))
264263rgenw 3075 . . . . . . . . . . . . . . 15 𝑖 ∈ ℕ (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐹𝑖))
265220adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑀)) → Disj 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
266 disjss2 5038 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ ℕ (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐹𝑖)) → (Disj 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)) → Disj 𝑖 ∈ ℕ (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
267264, 265, 266mpsyl 68 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑀)) → Disj 𝑖 ∈ ℕ (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
268 disjss1 5041 . . . . . . . . . . . . . 14 ((1...𝑁) ⊆ ℕ → (Disj 𝑖 ∈ ℕ (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) → Disj 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
269221, 267, 268mpsyl 68 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → Disj 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
270 volfiniun 24616 . . . . . . . . . . . . 13 (((1...𝑁) ∈ Fin ∧ ∀𝑖 ∈ (1...𝑁)((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol ∧ (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ) ∧ Disj 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) → (vol‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑖 ∈ (1...𝑁)(vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
271148, 262, 269, 270syl3anc 1369 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (vol‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑖 ∈ (1...𝑁)(vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
272 mblvol 24599 . . . . . . . . . . . . 13 ( 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol → (vol‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
273175, 272syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (vol‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
274259sumeq2dv 15343 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → Σ𝑖 ∈ (1...𝑁)(vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
275271, 273, 2743eqtr3d 2786 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
276257, 275eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) = Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
277256, 276breqtrrd 5098 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) ≤ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)))
278276, 250eqeltrd 2839 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) ∈ ℝ)
279200, 140, 278lesubaddd 11502 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → (((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) ≤ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) ↔ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) ≤ ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (𝐶 / 𝑀))))
280277, 279mpbid 231 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) ≤ ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (𝐶 / 𝑀)))
281243, 280eqbrtrrd 5094 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ≤ ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (𝐶 / 𝑀)))
282131, 140, 278leadd2d 11500 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ (𝐶 / 𝑀) ↔ ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ≤ ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (𝐶 / 𝑀))))
283281, 282mpbird 256 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ (𝐶 / 𝑀))
284124, 131, 140, 283fsumle 15439 . . . . 5 (𝜑 → Σ𝑗 ∈ (1...𝑀)(vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ Σ𝑗 ∈ (1...𝑀)(𝐶 / 𝑀))
285139recnd 10934 . . . . . . 7 (𝜑 → (𝐶 / 𝑀) ∈ ℂ)
286 fsumconst 15430 . . . . . . 7 (((1...𝑀) ∈ Fin ∧ (𝐶 / 𝑀) ∈ ℂ) → Σ𝑗 ∈ (1...𝑀)(𝐶 / 𝑀) = ((♯‘(1...𝑀)) · (𝐶 / 𝑀)))
287124, 285, 286syl2anc 583 . . . . . 6 (𝜑 → Σ𝑗 ∈ (1...𝑀)(𝐶 / 𝑀) = ((♯‘(1...𝑀)) · (𝐶 / 𝑀)))
288 nnnn0 12170 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
289 hashfz1 13988 . . . . . . . 8 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
290138, 288, 2893syl 18 . . . . . . 7 (𝜑 → (♯‘(1...𝑀)) = 𝑀)
291290oveq1d 7270 . . . . . 6 (𝜑 → ((♯‘(1...𝑀)) · (𝐶 / 𝑀)) = (𝑀 · (𝐶 / 𝑀)))
292116recnd 10934 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
293138nncnd 11919 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
294138nnne0d 11953 . . . . . . 7 (𝜑𝑀 ≠ 0)
295292, 293, 294divcan2d 11683 . . . . . 6 (𝜑 → (𝑀 · (𝐶 / 𝑀)) = 𝐶)
296287, 291, 2953eqtrd 2782 . . . . 5 (𝜑 → Σ𝑗 ∈ (1...𝑀)(𝐶 / 𝑀) = 𝐶)
297284, 296breqtrd 5096 . . . 4 (𝜑 → Σ𝑗 ∈ (1...𝑀)(vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ 𝐶)
298114, 132, 116, 137, 297letrd 11062 . . 3 (𝜑 → (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ 𝐶)
299114, 116, 34, 298leadd2dd 11520 . 2 (𝜑 → ((vol*‘(𝐾𝐿)) + (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ≤ ((vol*‘(𝐾𝐿)) + 𝐶))
30031, 115, 117, 123, 299letrd 11062 1 (𝜑 → (vol*‘(𝐾𝐴)) ≤ ((vol*‘(𝐾𝐿)) + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530  cop 4564   cuni 4836   ciun 4921  Disj wdisj 5035   class class class wbr 5070   × cxp 5578  dom cdm 5580  ran crn 5581  cima 5583  ccom 5584  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  Fincfn 8691  supcsup 9129  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  0cn0 12163  cuz 12511  +crp 12659  (,)cioo 13008  [,]cicc 13011  ...cfz 13168  seqcseq 13649  chash 13972  abscabs 14873  Σcsu 15325  vol*covol 24531  volcvol 24532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533  df-vol 24534
This theorem is referenced by:  uniioombllem5  24656
  Copyright terms: Public domain W3C validator