MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem4 Structured version   Visualization version   GIF version

Theorem uniioombllem4 25520
Description: Lemma for uniioombl 25523. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
uniioombl.m (𝜑𝑀 ∈ ℕ)
uniioombl.m2 (𝜑 → (abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
uniioombl.k 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
uniioombl.n (𝜑𝑁 ∈ ℕ)
uniioombl.n2 (𝜑 → ∀𝑗 ∈ (1...𝑀)(abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀))
uniioombl.l 𝐿 = (((,) ∘ 𝐹) “ (1...𝑁))
Assertion
Ref Expression
uniioombllem4 (𝜑 → (vol*‘(𝐾𝐴)) ≤ ((vol*‘(𝐾𝐿)) + 𝐶))
Distinct variable groups:   𝑖,𝑗,𝑥,𝐹   𝑖,𝐺,𝑗,𝑥   𝑗,𝐾,𝑥   𝐴,𝑗,𝑥   𝐶,𝑖,𝑗,𝑥   𝑖,𝑀,𝑗,𝑥   𝑖,𝑁,𝑗   𝜑,𝑖,𝑗,𝑥   𝑇,𝑖,𝑗,𝑥
Allowed substitution hints:   𝐴(𝑖)   𝑆(𝑥,𝑖,𝑗)   𝐸(𝑥,𝑖,𝑗)   𝐾(𝑖)   𝐿(𝑥,𝑖,𝑗)   𝑁(𝑥)

Proof of Theorem uniioombllem4
StepHypRef Expression
1 inss1 4196 . . 3 (𝐾𝐴) ⊆ 𝐾
2 uniioombl.k . . . . 5 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
3 imassrn 6031 . . . . . 6 (((,) ∘ 𝐺) “ (1...𝑀)) ⊆ ran ((,) ∘ 𝐺)
43unissi 4876 . . . . 5 (((,) ∘ 𝐺) “ (1...𝑀)) ⊆ ran ((,) ∘ 𝐺)
52, 4eqsstri 3990 . . . 4 𝐾 ran ((,) ∘ 𝐺)
6 uniioombl.g . . . . . . 7 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
76uniiccdif 25512 . . . . . 6 (𝜑 → ( ran ((,) ∘ 𝐺) ⊆ ran ([,] ∘ 𝐺) ∧ (vol*‘( ran ([,] ∘ 𝐺) ∖ ran ((,) ∘ 𝐺))) = 0))
87simpld 494 . . . . 5 (𝜑 ran ((,) ∘ 𝐺) ⊆ ran ([,] ∘ 𝐺))
9 ovolficcss 25403 . . . . . 6 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐺) ⊆ ℝ)
106, 9syl 17 . . . . 5 (𝜑 ran ([,] ∘ 𝐺) ⊆ ℝ)
118, 10sstrd 3954 . . . 4 (𝜑 ran ((,) ∘ 𝐺) ⊆ ℝ)
125, 11sstrid 3955 . . 3 (𝜑𝐾 ⊆ ℝ)
13 uniioombl.1 . . . . . 6 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
14 uniioombl.2 . . . . . 6 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
15 uniioombl.3 . . . . . 6 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
16 uniioombl.a . . . . . 6 𝐴 = ran ((,) ∘ 𝐹)
17 uniioombl.e . . . . . 6 (𝜑 → (vol*‘𝐸) ∈ ℝ)
18 uniioombl.c . . . . . 6 (𝜑𝐶 ∈ ℝ+)
19 uniioombl.s . . . . . 6 (𝜑𝐸 ran ((,) ∘ 𝐺))
20 uniioombl.t . . . . . 6 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
21 uniioombl.v . . . . . 6 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
2213, 14, 15, 16, 17, 18, 6, 19, 20, 21uniioombllem1 25515 . . . . 5 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
23 ssid 3966 . . . . . 6 ran ((,) ∘ 𝐺) ⊆ ran ((,) ∘ 𝐺)
2420ovollb 25413 . . . . . 6 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ran ((,) ∘ 𝐺) ⊆ ran ((,) ∘ 𝐺)) → (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
256, 23, 24sylancl 586 . . . . 5 (𝜑 → (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
26 ovollecl 25417 . . . . 5 (( ran ((,) ∘ 𝐺) ⊆ ℝ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < )) → (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ)
2711, 22, 25, 26syl3anc 1373 . . . 4 (𝜑 → (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ)
28 ovolsscl 25420 . . . 4 ((𝐾 ran ((,) ∘ 𝐺) ∧ ran ((,) ∘ 𝐺) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ) → (vol*‘𝐾) ∈ ℝ)
295, 11, 27, 28mp3an2i 1468 . . 3 (𝜑 → (vol*‘𝐾) ∈ ℝ)
30 ovolsscl 25420 . . 3 (((𝐾𝐴) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐴)) ∈ ℝ)
311, 12, 29, 30mp3an2i 1468 . 2 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℝ)
32 inss1 4196 . . . 4 (𝐾𝐿) ⊆ 𝐾
33 ovolsscl 25420 . . . 4 (((𝐾𝐿) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐿)) ∈ ℝ)
3432, 12, 29, 33mp3an2i 1468 . . 3 (𝜑 → (vol*‘(𝐾𝐿)) ∈ ℝ)
35 ssun2 4138 . . . . . 6 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
36 nnuz 12812 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
37 uniioombl.n . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ)
3837peano2nnd 12179 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 + 1) ∈ ℕ)
3938, 36eleqtrdi 2838 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 + 1) ∈ (ℤ‘1))
40 uzsplit 13533 . . . . . . . . . . . . . . 15 ((𝑁 + 1) ∈ (ℤ‘1) → (ℤ‘1) = ((1...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
4139, 40syl 17 . . . . . . . . . . . . . 14 (𝜑 → (ℤ‘1) = ((1...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
4236, 41eqtrid 2776 . . . . . . . . . . . . 13 (𝜑 → ℕ = ((1...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
4337nncnd 12178 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℂ)
44 ax-1cn 11102 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
45 pncan 11403 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
4643, 44, 45sylancl 586 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
4746oveq2d 7385 . . . . . . . . . . . . . 14 (𝜑 → (1...((𝑁 + 1) − 1)) = (1...𝑁))
4847uneq1d 4126 . . . . . . . . . . . . 13 (𝜑 → ((1...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))) = ((1...𝑁) ∪ (ℤ‘(𝑁 + 1))))
4942, 48eqtrd 2764 . . . . . . . . . . . 12 (𝜑 → ℕ = ((1...𝑁) ∪ (ℤ‘(𝑁 + 1))))
5049iuneq1d 4979 . . . . . . . . . . 11 (𝜑 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)) = 𝑖 ∈ ((1...𝑁) ∪ (ℤ‘(𝑁 + 1)))((,)‘(𝐹𝑖)))
51 iunxun 5053 . . . . . . . . . . 11 𝑖 ∈ ((1...𝑁) ∪ (ℤ‘(𝑁 + 1)))((,)‘(𝐹𝑖)) = ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∪ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
5250, 51eqtrdi 2780 . . . . . . . . . 10 (𝜑 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)) = ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∪ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
53 ioof 13384 . . . . . . . . . . . . . 14 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
54 inss2 4197 . . . . . . . . . . . . . . . 16 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
55 rexpssxrxp 11195 . . . . . . . . . . . . . . . 16 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
5654, 55sstri 3953 . . . . . . . . . . . . . . 15 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
57 fss 6686 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
5813, 56, 57sylancl 586 . . . . . . . . . . . . . 14 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
59 fco 6694 . . . . . . . . . . . . . 14 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
6053, 58, 59sylancr 587 . . . . . . . . . . . . 13 (𝜑 → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
61 ffn 6670 . . . . . . . . . . . . 13 (((,) ∘ 𝐹):ℕ⟶𝒫 ℝ → ((,) ∘ 𝐹) Fn ℕ)
62 fniunfv 7203 . . . . . . . . . . . . 13 (((,) ∘ 𝐹) Fn ℕ → 𝑖 ∈ ℕ (((,) ∘ 𝐹)‘𝑖) = ran ((,) ∘ 𝐹))
6360, 61, 623syl 18 . . . . . . . . . . . 12 (𝜑 𝑖 ∈ ℕ (((,) ∘ 𝐹)‘𝑖) = ran ((,) ∘ 𝐹))
64 fvco3 6942 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑖 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑖) = ((,)‘(𝐹𝑖)))
6513, 64sylan 580 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑖) = ((,)‘(𝐹𝑖)))
6665iuneq2dv 4976 . . . . . . . . . . . 12 (𝜑 𝑖 ∈ ℕ (((,) ∘ 𝐹)‘𝑖) = 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
6763, 66eqtr3d 2766 . . . . . . . . . . 11 (𝜑 ran ((,) ∘ 𝐹) = 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
6816, 67eqtrid 2776 . . . . . . . . . 10 (𝜑𝐴 = 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
69 uniioombl.l . . . . . . . . . . . 12 𝐿 = (((,) ∘ 𝐹) “ (1...𝑁))
70 ffun 6673 . . . . . . . . . . . . . 14 (((,) ∘ 𝐹):ℕ⟶𝒫 ℝ → Fun ((,) ∘ 𝐹))
71 funiunfv 7204 . . . . . . . . . . . . . 14 (Fun ((,) ∘ 𝐹) → 𝑖 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑖) = (((,) ∘ 𝐹) “ (1...𝑁)))
7260, 70, 713syl 18 . . . . . . . . . . . . 13 (𝜑 𝑖 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑖) = (((,) ∘ 𝐹) “ (1...𝑁)))
73 elfznn 13490 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1...𝑁) → 𝑖 ∈ ℕ)
7413, 73, 64syl2an 596 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑁)) → (((,) ∘ 𝐹)‘𝑖) = ((,)‘(𝐹𝑖)))
7574iuneq2dv 4976 . . . . . . . . . . . . 13 (𝜑 𝑖 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑖) = 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)))
7672, 75eqtr3d 2766 . . . . . . . . . . . 12 (𝜑 (((,) ∘ 𝐹) “ (1...𝑁)) = 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)))
7769, 76eqtrid 2776 . . . . . . . . . . 11 (𝜑𝐿 = 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)))
7877uneq1d 4126 . . . . . . . . . 10 (𝜑 → (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∪ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
7952, 68, 783eqtr4d 2774 . . . . . . . . 9 (𝜑𝐴 = (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
8079ineq2d 4179 . . . . . . . 8 (𝜑 → (𝐾𝐴) = (𝐾 ∩ (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))))
81 indi 4243 . . . . . . . 8 (𝐾 ∩ (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))) = ((𝐾𝐿) ∪ (𝐾 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
8280, 81eqtrdi 2780 . . . . . . 7 (𝜑 → (𝐾𝐴) = ((𝐾𝐿) ∪ (𝐾 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))))
83 fss 6686 . . . . . . . . . . . . . . 15 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐺:ℕ⟶(ℝ* × ℝ*))
846, 56, 83sylancl 586 . . . . . . . . . . . . . 14 (𝜑𝐺:ℕ⟶(ℝ* × ℝ*))
85 fco 6694 . . . . . . . . . . . . . 14 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐺:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
8653, 84, 85sylancr 587 . . . . . . . . . . . . 13 (𝜑 → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
87 ffun 6673 . . . . . . . . . . . . 13 (((,) ∘ 𝐺):ℕ⟶𝒫 ℝ → Fun ((,) ∘ 𝐺))
88 funiunfv 7204 . . . . . . . . . . . . 13 (Fun ((,) ∘ 𝐺) → 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = (((,) ∘ 𝐺) “ (1...𝑀)))
8986, 87, 883syl 18 . . . . . . . . . . . 12 (𝜑 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = (((,) ∘ 𝐺) “ (1...𝑀)))
90 elfznn 13490 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℕ)
91 fvco3 6942 . . . . . . . . . . . . . 14 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (((,) ∘ 𝐺)‘𝑗) = ((,)‘(𝐺𝑗)))
926, 90, 91syl2an 596 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (((,) ∘ 𝐺)‘𝑗) = ((,)‘(𝐺𝑗)))
9392iuneq2dv 4976 . . . . . . . . . . . 12 (𝜑 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
9489, 93eqtr3d 2766 . . . . . . . . . . 11 (𝜑 (((,) ∘ 𝐺) “ (1...𝑀)) = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
952, 94eqtrid 2776 . . . . . . . . . 10 (𝜑𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
9695ineq2d 4179 . . . . . . . . 9 (𝜑 → ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ 𝐾) = ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗))))
97 incom 4168 . . . . . . . . 9 (𝐾 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ 𝐾)
98 iunin2 5030 . . . . . . . . . . . . 13 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖))) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
99 incom 4168 . . . . . . . . . . . . . . 15 (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖)))
10099a1i 11 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ‘(𝑁 + 1)) → (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖))))
101100iuneq2i 4973 . . . . . . . . . . . . 13 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖)))
102 incom 4168 . . . . . . . . . . . . 13 ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
10398, 101, 1023eqtr4ri 2763 . . . . . . . . . . . 12 ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))
104103a1i 11 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
105104iuneq2i 4973 . . . . . . . . . 10 𝑗 ∈ (1...𝑀)( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))
106 iunin2 5030 . . . . . . . . . 10 𝑗 ∈ (1...𝑀)( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
107105, 106eqtr3i 2754 . . . . . . . . 9 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
10896, 97, 1073eqtr4g 2789 . . . . . . . 8 (𝜑 → (𝐾 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
109108uneq2d 4127 . . . . . . 7 (𝜑 → ((𝐾𝐿) ∪ (𝐾 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))) = ((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
11082, 109eqtrd 2764 . . . . . 6 (𝜑 → (𝐾𝐴) = ((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
11135, 110sseqtrrid 3987 . . . . 5 (𝜑 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ (𝐾𝐴))
112111, 1sstrdi 3956 . . . 4 (𝜑 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾)
113 ovolsscl 25420 . . . 4 (( 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
114112, 12, 29, 113syl3anc 1373 . . 3 (𝜑 → (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
11534, 114readdcld 11179 . 2 (𝜑 → ((vol*‘(𝐾𝐿)) + (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ∈ ℝ)
11618rpred 12971 . . 3 (𝜑𝐶 ∈ ℝ)
11734, 116readdcld 11179 . 2 (𝜑 → ((vol*‘(𝐾𝐿)) + 𝐶) ∈ ℝ)
118110fveq2d 6844 . . 3 (𝜑 → (vol*‘(𝐾𝐴)) = (vol*‘((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
11932, 12sstrid 3955 . . . 4 (𝜑 → (𝐾𝐿) ⊆ ℝ)
120112, 12sstrd 3954 . . . 4 (𝜑 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ)
121 ovolun 25433 . . . 4 ((((𝐾𝐿) ⊆ ℝ ∧ (vol*‘(𝐾𝐿)) ∈ ℝ) ∧ ( 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ ∧ (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)) → (vol*‘((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ≤ ((vol*‘(𝐾𝐿)) + (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
122119, 34, 120, 114, 121syl22anc 838 . . 3 (𝜑 → (vol*‘((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ≤ ((vol*‘(𝐾𝐿)) + (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
123118, 122eqbrtrd 5124 . 2 (𝜑 → (vol*‘(𝐾𝐴)) ≤ ((vol*‘(𝐾𝐿)) + (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
124 fzfid 13914 . . . . 5 (𝜑 → (1...𝑀) ∈ Fin)
125 iunss 5004 . . . . . . . 8 ( 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾 ↔ ∀𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾)
126112, 125sylib 218 . . . . . . 7 (𝜑 → ∀𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾)
127126r19.21bi 3227 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾)
12812adantr 480 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐾 ⊆ ℝ)
12929adantr 480 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘𝐾) ∈ ℝ)
130 ovolsscl 25420 . . . . . 6 (( 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
131127, 128, 129, 130syl3anc 1373 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
132124, 131fsumrecl 15676 . . . 4 (𝜑 → Σ𝑗 ∈ (1...𝑀)(vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
133127, 128sstrd 3954 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ)
134133, 131jca 511 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → ( 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ ∧ (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ))
135134ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑗 ∈ (1...𝑀)( 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ ∧ (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ))
136 ovolfiniun 25435 . . . . 5 (((1...𝑀) ∈ Fin ∧ ∀𝑗 ∈ (1...𝑀)( 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ ∧ (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)) → (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
137124, 135, 136syl2anc 584 . . . 4 (𝜑 → (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
138 uniioombl.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
139116, 138nndivred 12216 . . . . . . 7 (𝜑 → (𝐶 / 𝑀) ∈ ℝ)
140139adantr 480 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐶 / 𝑀) ∈ ℝ)
14177ineq2d 4179 . . . . . . . . . . . . 13 (𝜑 → (((,)‘(𝐺𝑗)) ∩ 𝐿) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖))))
142141adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ 𝐿) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖))))
14399a1i 11 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑁) → (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖))))
144143iuneq2i 4973 . . . . . . . . . . . . 13 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = 𝑖 ∈ (1...𝑁)(((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖)))
145 iunin2 5030 . . . . . . . . . . . . 13 𝑖 ∈ (1...𝑁)(((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖))) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)))
146144, 145eqtri 2752 . . . . . . . . . . . 12 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)))
147142, 146eqtr4di 2782 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ 𝐿) = 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
148 fzfid 13914 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (1...𝑁) ∈ Fin)
149 ffvelcdm 7035 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ( ≤ ∩ (ℝ × ℝ)))
15013, 73, 149syl2an 596 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (1...𝑁)) → (𝐹𝑖) ∈ ( ≤ ∩ (ℝ × ℝ)))
151150elin2d 4164 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (1...𝑁)) → (𝐹𝑖) ∈ (ℝ × ℝ))
152 1st2nd2 7986 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑖) ∈ (ℝ × ℝ) → (𝐹𝑖) = ⟨(1st ‘(𝐹𝑖)), (2nd ‘(𝐹𝑖))⟩)
153151, 152syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (1...𝑁)) → (𝐹𝑖) = ⟨(1st ‘(𝐹𝑖)), (2nd ‘(𝐹𝑖))⟩)
154153fveq2d 6844 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑁)) → ((,)‘(𝐹𝑖)) = ((,)‘⟨(1st ‘(𝐹𝑖)), (2nd ‘(𝐹𝑖))⟩))
155 df-ov 7372 . . . . . . . . . . . . . . . . 17 ((1st ‘(𝐹𝑖))(,)(2nd ‘(𝐹𝑖))) = ((,)‘⟨(1st ‘(𝐹𝑖)), (2nd ‘(𝐹𝑖))⟩)
156154, 155eqtr4di 2782 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑁)) → ((,)‘(𝐹𝑖)) = ((1st ‘(𝐹𝑖))(,)(2nd ‘(𝐹𝑖))))
157 ioombl 25499 . . . . . . . . . . . . . . . 16 ((1st ‘(𝐹𝑖))(,)(2nd ‘(𝐹𝑖))) ∈ dom vol
158156, 157eqeltrdi 2836 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑁)) → ((,)‘(𝐹𝑖)) ∈ dom vol)
159158adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → ((,)‘(𝐹𝑖)) ∈ dom vol)
160 ffvelcdm 7035 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
1616, 90, 160syl2an 596 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
162161elin2d 4164 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ (ℝ × ℝ))
163 1st2nd2 7986 . . . . . . . . . . . . . . . . . . 19 ((𝐺𝑗) ∈ (ℝ × ℝ) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
164162, 163syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
165164fveq2d 6844 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩))
166 df-ov 7372 . . . . . . . . . . . . . . . . 17 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
167165, 166eqtr4di 2782 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))))
168 ioombl 25499 . . . . . . . . . . . . . . . 16 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) ∈ dom vol
169167, 168eqeltrdi 2836 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) ∈ dom vol)
170169adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → ((,)‘(𝐺𝑗)) ∈ dom vol)
171 inmbl 25476 . . . . . . . . . . . . . 14 ((((,)‘(𝐹𝑖)) ∈ dom vol ∧ ((,)‘(𝐺𝑗)) ∈ dom vol) → (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol)
172159, 170, 171syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol)
173172ralrimiva 3125 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → ∀𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol)
174 finiunmbl 25478 . . . . . . . . . . . 12 (((1...𝑁) ∈ Fin ∧ ∀𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol) → 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol)
175148, 173, 174syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol)
176147, 175eqeltrd 2828 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ 𝐿) ∈ dom vol)
177 inss2 4197 . . . . . . . . . . 11 (((,)‘(𝐺𝑗)) ∩ 𝐴) ⊆ 𝐴
17813uniiccdif 25512 . . . . . . . . . . . . . . 15 (𝜑 → ( ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹) ∧ (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0))
179178simpld 494 . . . . . . . . . . . . . 14 (𝜑 ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹))
180 ovolficcss 25403 . . . . . . . . . . . . . . 15 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
18113, 180syl 17 . . . . . . . . . . . . . 14 (𝜑 ran ([,] ∘ 𝐹) ⊆ ℝ)
182179, 181sstrd 3954 . . . . . . . . . . . . 13 (𝜑 ran ((,) ∘ 𝐹) ⊆ ℝ)
18316, 182eqsstrid 3982 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℝ)
184183adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐴 ⊆ ℝ)
185177, 184sstrid 3955 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ 𝐴) ⊆ ℝ)
186 inss1 4196 . . . . . . . . . . 11 (((,)‘(𝐺𝑗)) ∩ 𝐴) ⊆ ((,)‘(𝐺𝑗))
187 ioossre 13344 . . . . . . . . . . . 12 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) ⊆ ℝ
188167, 187eqsstrdi 3988 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
189167fveq2d 6844 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) = (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))))
190 ovolfcl 25400 . . . . . . . . . . . . . . 15 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
1916, 90, 190syl2an 596 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑀)) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
192 ovolioo 25502 . . . . . . . . . . . . . 14 (((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
193191, 192syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
194189, 193eqtrd 2764 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
195191simp2d 1143 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (2nd ‘(𝐺𝑗)) ∈ ℝ)
196191simp1d 1142 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (1st ‘(𝐺𝑗)) ∈ ℝ)
197195, 196resubcld 11582 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
198194, 197eqeltrd 2828 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
199 ovolsscl 25420 . . . . . . . . . . 11 (((((,)‘(𝐺𝑗)) ∩ 𝐴) ⊆ ((,)‘(𝐺𝑗)) ∧ ((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) ∈ ℝ)
200186, 188, 198, 199mp3an2i 1468 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) ∈ ℝ)
201 mblsplit 25466 . . . . . . . . . 10 (((((,)‘(𝐺𝑗)) ∩ 𝐿) ∈ dom vol ∧ (((,)‘(𝐺𝑗)) ∩ 𝐴) ⊆ ℝ ∧ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) ∈ ℝ) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) = ((vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿))) + (vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿)))))
202176, 185, 200, 201syl3anc 1373 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) = ((vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿))) + (vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿)))))
203 imassrn 6031 . . . . . . . . . . . . . . 15 (((,) ∘ 𝐹) “ (1...𝑁)) ⊆ ran ((,) ∘ 𝐹)
204203unissi 4876 . . . . . . . . . . . . . 14 (((,) ∘ 𝐹) “ (1...𝑁)) ⊆ ran ((,) ∘ 𝐹)
205204, 69, 163sstr4i 3995 . . . . . . . . . . . . 13 𝐿𝐴
206 sslin 4202 . . . . . . . . . . . . 13 (𝐿𝐴 → (((,)‘(𝐺𝑗)) ∩ 𝐿) ⊆ (((,)‘(𝐺𝑗)) ∩ 𝐴))
207205, 206mp1i 13 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ 𝐿) ⊆ (((,)‘(𝐺𝑗)) ∩ 𝐴))
208 sseqin2 4182 . . . . . . . . . . . 12 ((((,)‘(𝐺𝑗)) ∩ 𝐿) ⊆ (((,)‘(𝐺𝑗)) ∩ 𝐴) ↔ ((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿)) = (((,)‘(𝐺𝑗)) ∩ 𝐿))
209207, 208sylib 218 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿)) = (((,)‘(𝐺𝑗)) ∩ 𝐿))
210209fveq2d 6844 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿))) = (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)))
211 indifdir 4254 . . . . . . . . . . . . 13 ((𝐴𝐿) ∩ ((,)‘(𝐺𝑗))) = ((𝐴 ∩ ((,)‘(𝐺𝑗))) ∖ (𝐿 ∩ ((,)‘(𝐺𝑗))))
212 incom 4168 . . . . . . . . . . . . . 14 (𝐴 ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ 𝐴)
213 incom 4168 . . . . . . . . . . . . . 14 (𝐿 ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ 𝐿)
214212, 213difeq12i 4083 . . . . . . . . . . . . 13 ((𝐴 ∩ ((,)‘(𝐺𝑗))) ∖ (𝐿 ∩ ((,)‘(𝐺𝑗)))) = ((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿))
215211, 214eqtri 2752 . . . . . . . . . . . 12 ((𝐴𝐿) ∩ ((,)‘(𝐺𝑗))) = ((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿))
21679eqcomd 2735 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = 𝐴)
21777ineq1d 4178 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
218 2fveq3 6845 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑖 → ((,)‘(𝐹𝑥)) = ((,)‘(𝐹𝑖)))
219218cbvdisjv 5080 . . . . . . . . . . . . . . . . . . . 20 (Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)) ↔ Disj 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
22014, 219sylib 218 . . . . . . . . . . . . . . . . . . 19 (𝜑Disj 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
221 fz1ssnn 13492 . . . . . . . . . . . . . . . . . . . 20 (1...𝑁) ⊆ ℕ
222221a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1...𝑁) ⊆ ℕ)
223 uzss 12792 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 + 1) ∈ (ℤ‘1) → (ℤ‘(𝑁 + 1)) ⊆ (ℤ‘1))
22439, 223syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (ℤ‘(𝑁 + 1)) ⊆ (ℤ‘1))
225224, 36sseqtrrdi 3985 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℤ‘(𝑁 + 1)) ⊆ ℕ)
22647ineq1d 4178 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((1...((𝑁 + 1) − 1)) ∩ (ℤ‘(𝑁 + 1))) = ((1...𝑁) ∩ (ℤ‘(𝑁 + 1))))
227 uzdisj 13534 . . . . . . . . . . . . . . . . . . . 20 ((1...((𝑁 + 1) − 1)) ∩ (ℤ‘(𝑁 + 1))) = ∅
228226, 227eqtr3di 2779 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅)
229 disjiun 5090 . . . . . . . . . . . . . . . . . . 19 ((Disj 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)) ∧ ((1...𝑁) ⊆ ℕ ∧ (ℤ‘(𝑁 + 1)) ⊆ ℕ ∧ ((1...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅)) → ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ∅)
230220, 222, 225, 228, 229syl13anc 1374 . . . . . . . . . . . . . . . . . 18 (𝜑 → ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ∅)
231217, 230eqtrd 2764 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ∅)
232 uneqdifeq 4452 . . . . . . . . . . . . . . . . 17 ((𝐿𝐴 ∧ (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ∅) → ((𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = 𝐴 ↔ (𝐴𝐿) = 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
233205, 231, 232sylancr 587 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = 𝐴 ↔ (𝐴𝐿) = 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
234216, 233mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐿) = 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
235234adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐴𝐿) = 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
236235ineq2d 4179 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ (𝐴𝐿)) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
237 incom 4168 . . . . . . . . . . . . 13 ((𝐴𝐿) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ (𝐴𝐿))
238101, 98eqtri 2752 . . . . . . . . . . . . 13 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
239236, 237, 2383eqtr4g 2789 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → ((𝐴𝐿) ∩ ((,)‘(𝐺𝑗))) = 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
240215, 239eqtr3id 2778 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿)) = 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
241240fveq2d 6844 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿))) = (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
242210, 241oveq12d 7387 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿))) + (vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿)))) = ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
243202, 242eqtrd 2764 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) = ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
244200, 140resubcld 11582 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) ∈ ℝ)
245 inss2 4197 . . . . . . . . . . . . 13 (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐺𝑗))
246188adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
247198adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
248 ovolsscl 25420 . . . . . . . . . . . . 13 (((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐺𝑗)) ∧ ((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ) → (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
249245, 246, 247, 248mp3an2i 1468 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
250148, 249fsumrecl 15676 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
251 uniioombl.n2 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑗 ∈ (1...𝑀)(abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀))
252251r19.21bi 3227 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀))
253250, 200, 140absdifltd 15378 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → ((abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀) ↔ (((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) < Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∧ Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) < ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) + (𝐶 / 𝑀)))))
254252, 253mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) < Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∧ Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) < ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) + (𝐶 / 𝑀))))
255254simpld 494 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) < Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
256244, 250, 255ltled 11298 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) ≤ Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
257147fveq2d 6844 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) = (vol*‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
258 mblvol 25464 . . . . . . . . . . . . . . . . 17 ((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol → (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
259172, 258syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
260259, 249eqeltrd 2828 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
261172, 260jca 511 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → ((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol ∧ (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ))
262261ralrimiva 3125 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → ∀𝑖 ∈ (1...𝑁)((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol ∧ (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ))
263 inss1 4196 . . . . . . . . . . . . . . . 16 (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐹𝑖))
264263rgenw 3048 . . . . . . . . . . . . . . 15 𝑖 ∈ ℕ (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐹𝑖))
265220adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑀)) → Disj 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
266 disjss2 5072 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ ℕ (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐹𝑖)) → (Disj 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)) → Disj 𝑖 ∈ ℕ (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
267264, 265, 266mpsyl 68 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑀)) → Disj 𝑖 ∈ ℕ (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
268 disjss1 5075 . . . . . . . . . . . . . 14 ((1...𝑁) ⊆ ℕ → (Disj 𝑖 ∈ ℕ (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) → Disj 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
269221, 267, 268mpsyl 68 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → Disj 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
270 volfiniun 25481 . . . . . . . . . . . . 13 (((1...𝑁) ∈ Fin ∧ ∀𝑖 ∈ (1...𝑁)((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol ∧ (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ) ∧ Disj 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) → (vol‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑖 ∈ (1...𝑁)(vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
271148, 262, 269, 270syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (vol‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑖 ∈ (1...𝑁)(vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
272 mblvol 25464 . . . . . . . . . . . . 13 ( 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol → (vol‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
273175, 272syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (vol‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
274259sumeq2dv 15644 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → Σ𝑖 ∈ (1...𝑁)(vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
275271, 273, 2743eqtr3d 2772 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
276257, 275eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) = Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
277256, 276breqtrrd 5130 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) ≤ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)))
278276, 250eqeltrd 2828 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) ∈ ℝ)
279200, 140, 278lesubaddd 11751 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → (((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) ≤ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) ↔ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) ≤ ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (𝐶 / 𝑀))))
280277, 279mpbid 232 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) ≤ ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (𝐶 / 𝑀)))
281243, 280eqbrtrrd 5126 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ≤ ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (𝐶 / 𝑀)))
282131, 140, 278leadd2d 11749 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ (𝐶 / 𝑀) ↔ ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ≤ ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (𝐶 / 𝑀))))
283281, 282mpbird 257 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ (𝐶 / 𝑀))
284124, 131, 140, 283fsumle 15741 . . . . 5 (𝜑 → Σ𝑗 ∈ (1...𝑀)(vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ Σ𝑗 ∈ (1...𝑀)(𝐶 / 𝑀))
285139recnd 11178 . . . . . . 7 (𝜑 → (𝐶 / 𝑀) ∈ ℂ)
286 fsumconst 15732 . . . . . . 7 (((1...𝑀) ∈ Fin ∧ (𝐶 / 𝑀) ∈ ℂ) → Σ𝑗 ∈ (1...𝑀)(𝐶 / 𝑀) = ((♯‘(1...𝑀)) · (𝐶 / 𝑀)))
287124, 285, 286syl2anc 584 . . . . . 6 (𝜑 → Σ𝑗 ∈ (1...𝑀)(𝐶 / 𝑀) = ((♯‘(1...𝑀)) · (𝐶 / 𝑀)))
288 nnnn0 12425 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
289 hashfz1 14287 . . . . . . . 8 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
290138, 288, 2893syl 18 . . . . . . 7 (𝜑 → (♯‘(1...𝑀)) = 𝑀)
291290oveq1d 7384 . . . . . 6 (𝜑 → ((♯‘(1...𝑀)) · (𝐶 / 𝑀)) = (𝑀 · (𝐶 / 𝑀)))
292116recnd 11178 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
293138nncnd 12178 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
294138nnne0d 12212 . . . . . . 7 (𝜑𝑀 ≠ 0)
295292, 293, 294divcan2d 11936 . . . . . 6 (𝜑 → (𝑀 · (𝐶 / 𝑀)) = 𝐶)
296287, 291, 2953eqtrd 2768 . . . . 5 (𝜑 → Σ𝑗 ∈ (1...𝑀)(𝐶 / 𝑀) = 𝐶)
297284, 296breqtrd 5128 . . . 4 (𝜑 → Σ𝑗 ∈ (1...𝑀)(vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ 𝐶)
298114, 132, 116, 137, 297letrd 11307 . . 3 (𝜑 → (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ 𝐶)
299114, 116, 34, 298leadd2dd 11769 . 2 (𝜑 → ((vol*‘(𝐾𝐿)) + (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ≤ ((vol*‘(𝐾𝐿)) + 𝐶))
30031, 115, 117, 123, 299letrd 11307 1 (𝜑 → (vol*‘(𝐾𝐴)) ≤ ((vol*‘(𝐾𝐿)) + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cdif 3908  cun 3909  cin 3910  wss 3911  c0 4292  𝒫 cpw 4559  cop 4591   cuni 4867   ciun 4951  Disj wdisj 5069   class class class wbr 5102   × cxp 5629  dom cdm 5631  ran crn 5632  cima 5634  ccom 5635  Fun wfun 6493   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  Fincfn 8895  supcsup 9367  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  *cxr 11183   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  0cn0 12418  cuz 12769  +crp 12927  (,)cioo 13282  [,]cicc 13285  ...cfz 13444  seqcseq 13942  chash 14271  abscabs 15176  Σcsu 15628  vol*covol 25396  volcvol 25397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-rest 17361  df-topgen 17382  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-top 22814  df-topon 22831  df-bases 22866  df-cmp 23307  df-ovol 25398  df-vol 25399
This theorem is referenced by:  uniioombllem5  25521
  Copyright terms: Public domain W3C validator