MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem4 Structured version   Visualization version   GIF version

Theorem uniioombllem4 23890
Description: Lemma for uniioombl 23893. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
uniioombl.m (𝜑𝑀 ∈ ℕ)
uniioombl.m2 (𝜑 → (abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
uniioombl.k 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
uniioombl.n (𝜑𝑁 ∈ ℕ)
uniioombl.n2 (𝜑 → ∀𝑗 ∈ (1...𝑀)(abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀))
uniioombl.l 𝐿 = (((,) ∘ 𝐹) “ (1...𝑁))
Assertion
Ref Expression
uniioombllem4 (𝜑 → (vol*‘(𝐾𝐴)) ≤ ((vol*‘(𝐾𝐿)) + 𝐶))
Distinct variable groups:   𝑖,𝑗,𝑥,𝐹   𝑖,𝐺,𝑗,𝑥   𝑗,𝐾,𝑥   𝐴,𝑗,𝑥   𝐶,𝑖,𝑗,𝑥   𝑖,𝑀,𝑗,𝑥   𝑖,𝑁,𝑗   𝜑,𝑖,𝑗,𝑥   𝑇,𝑖,𝑗,𝑥
Allowed substitution hints:   𝐴(𝑖)   𝑆(𝑥,𝑖,𝑗)   𝐸(𝑥,𝑖,𝑗)   𝐾(𝑖)   𝐿(𝑥,𝑖,𝑗)   𝑁(𝑥)

Proof of Theorem uniioombllem4
StepHypRef Expression
1 inss1 4092 . . 3 (𝐾𝐴) ⊆ 𝐾
2 uniioombl.k . . . . 5 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
3 imassrn 5781 . . . . . 6 (((,) ∘ 𝐺) “ (1...𝑀)) ⊆ ran ((,) ∘ 𝐺)
43unissi 4735 . . . . 5 (((,) ∘ 𝐺) “ (1...𝑀)) ⊆ ran ((,) ∘ 𝐺)
52, 4eqsstri 3891 . . . 4 𝐾 ran ((,) ∘ 𝐺)
6 uniioombl.g . . . . . . 7 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
76uniiccdif 23882 . . . . . 6 (𝜑 → ( ran ((,) ∘ 𝐺) ⊆ ran ([,] ∘ 𝐺) ∧ (vol*‘( ran ([,] ∘ 𝐺) ∖ ran ((,) ∘ 𝐺))) = 0))
87simpld 487 . . . . 5 (𝜑 ran ((,) ∘ 𝐺) ⊆ ran ([,] ∘ 𝐺))
9 ovolficcss 23773 . . . . . 6 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐺) ⊆ ℝ)
106, 9syl 17 . . . . 5 (𝜑 ran ([,] ∘ 𝐺) ⊆ ℝ)
118, 10sstrd 3868 . . . 4 (𝜑 ran ((,) ∘ 𝐺) ⊆ ℝ)
125, 11syl5ss 3869 . . 3 (𝜑𝐾 ⊆ ℝ)
13 uniioombl.1 . . . . . 6 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
14 uniioombl.2 . . . . . 6 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
15 uniioombl.3 . . . . . 6 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
16 uniioombl.a . . . . . 6 𝐴 = ran ((,) ∘ 𝐹)
17 uniioombl.e . . . . . 6 (𝜑 → (vol*‘𝐸) ∈ ℝ)
18 uniioombl.c . . . . . 6 (𝜑𝐶 ∈ ℝ+)
19 uniioombl.s . . . . . 6 (𝜑𝐸 ran ((,) ∘ 𝐺))
20 uniioombl.t . . . . . 6 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
21 uniioombl.v . . . . . 6 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
2213, 14, 15, 16, 17, 18, 6, 19, 20, 21uniioombllem1 23885 . . . . 5 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
23 ssid 3879 . . . . . 6 ran ((,) ∘ 𝐺) ⊆ ran ((,) ∘ 𝐺)
2420ovollb 23783 . . . . . 6 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ran ((,) ∘ 𝐺) ⊆ ran ((,) ∘ 𝐺)) → (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
256, 23, 24sylancl 577 . . . . 5 (𝜑 → (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < ))
26 ovollecl 23787 . . . . 5 (( ran ((,) ∘ 𝐺) ⊆ ℝ ∧ sup(ran 𝑇, ℝ*, < ) ∈ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ≤ sup(ran 𝑇, ℝ*, < )) → (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ)
2711, 22, 25, 26syl3anc 1351 . . . 4 (𝜑 → (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ)
28 ovolsscl 23790 . . . 4 ((𝐾 ran ((,) ∘ 𝐺) ∧ ran ((,) ∘ 𝐺) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝐺)) ∈ ℝ) → (vol*‘𝐾) ∈ ℝ)
295, 11, 27, 28mp3an2i 1445 . . 3 (𝜑 → (vol*‘𝐾) ∈ ℝ)
30 ovolsscl 23790 . . 3 (((𝐾𝐴) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐴)) ∈ ℝ)
311, 12, 29, 30mp3an2i 1445 . 2 (𝜑 → (vol*‘(𝐾𝐴)) ∈ ℝ)
32 inss1 4092 . . . 4 (𝐾𝐿) ⊆ 𝐾
33 ovolsscl 23790 . . . 4 (((𝐾𝐿) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘(𝐾𝐿)) ∈ ℝ)
3432, 12, 29, 33mp3an2i 1445 . . 3 (𝜑 → (vol*‘(𝐾𝐿)) ∈ ℝ)
35 ssun2 4038 . . . . . 6 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
36 nnuz 12095 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
37 uniioombl.n . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ)
3837peano2nnd 11458 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 + 1) ∈ ℕ)
3938, 36syl6eleq 2876 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 + 1) ∈ (ℤ‘1))
40 uzsplit 12795 . . . . . . . . . . . . . . 15 ((𝑁 + 1) ∈ (ℤ‘1) → (ℤ‘1) = ((1...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
4139, 40syl 17 . . . . . . . . . . . . . 14 (𝜑 → (ℤ‘1) = ((1...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
4236, 41syl5eq 2826 . . . . . . . . . . . . 13 (𝜑 → ℕ = ((1...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
4337nncnd 11457 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℂ)
44 ax-1cn 10393 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
45 pncan 10692 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
4643, 44, 45sylancl 577 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
4746oveq2d 6992 . . . . . . . . . . . . . 14 (𝜑 → (1...((𝑁 + 1) − 1)) = (1...𝑁))
4847uneq1d 4027 . . . . . . . . . . . . 13 (𝜑 → ((1...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))) = ((1...𝑁) ∪ (ℤ‘(𝑁 + 1))))
4942, 48eqtrd 2814 . . . . . . . . . . . 12 (𝜑 → ℕ = ((1...𝑁) ∪ (ℤ‘(𝑁 + 1))))
5049iuneq1d 4818 . . . . . . . . . . 11 (𝜑 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)) = 𝑖 ∈ ((1...𝑁) ∪ (ℤ‘(𝑁 + 1)))((,)‘(𝐹𝑖)))
51 iunxun 4882 . . . . . . . . . . 11 𝑖 ∈ ((1...𝑁) ∪ (ℤ‘(𝑁 + 1)))((,)‘(𝐹𝑖)) = ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∪ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
5250, 51syl6eq 2830 . . . . . . . . . 10 (𝜑 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)) = ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∪ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
53 ioof 12651 . . . . . . . . . . . . . 14 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
54 inss2 4093 . . . . . . . . . . . . . . . 16 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
55 rexpssxrxp 10485 . . . . . . . . . . . . . . . 16 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
5654, 55sstri 3867 . . . . . . . . . . . . . . 15 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
57 fss 6357 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
5813, 56, 57sylancl 577 . . . . . . . . . . . . . 14 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
59 fco 6361 . . . . . . . . . . . . . 14 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
6053, 58, 59sylancr 578 . . . . . . . . . . . . 13 (𝜑 → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
61 ffn 6344 . . . . . . . . . . . . 13 (((,) ∘ 𝐹):ℕ⟶𝒫 ℝ → ((,) ∘ 𝐹) Fn ℕ)
62 fniunfv 6831 . . . . . . . . . . . . 13 (((,) ∘ 𝐹) Fn ℕ → 𝑖 ∈ ℕ (((,) ∘ 𝐹)‘𝑖) = ran ((,) ∘ 𝐹))
6360, 61, 623syl 18 . . . . . . . . . . . 12 (𝜑 𝑖 ∈ ℕ (((,) ∘ 𝐹)‘𝑖) = ran ((,) ∘ 𝐹))
64 fvco3 6588 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑖 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑖) = ((,)‘(𝐹𝑖)))
6513, 64sylan 572 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑖) = ((,)‘(𝐹𝑖)))
6665iuneq2dv 4815 . . . . . . . . . . . 12 (𝜑 𝑖 ∈ ℕ (((,) ∘ 𝐹)‘𝑖) = 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
6763, 66eqtr3d 2816 . . . . . . . . . . 11 (𝜑 ran ((,) ∘ 𝐹) = 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
6816, 67syl5eq 2826 . . . . . . . . . 10 (𝜑𝐴 = 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
69 uniioombl.l . . . . . . . . . . . 12 𝐿 = (((,) ∘ 𝐹) “ (1...𝑁))
70 ffun 6347 . . . . . . . . . . . . . 14 (((,) ∘ 𝐹):ℕ⟶𝒫 ℝ → Fun ((,) ∘ 𝐹))
71 funiunfv 6832 . . . . . . . . . . . . . 14 (Fun ((,) ∘ 𝐹) → 𝑖 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑖) = (((,) ∘ 𝐹) “ (1...𝑁)))
7260, 70, 713syl 18 . . . . . . . . . . . . 13 (𝜑 𝑖 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑖) = (((,) ∘ 𝐹) “ (1...𝑁)))
73 elfznn 12752 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1...𝑁) → 𝑖 ∈ ℕ)
7413, 73, 64syl2an 586 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑁)) → (((,) ∘ 𝐹)‘𝑖) = ((,)‘(𝐹𝑖)))
7574iuneq2dv 4815 . . . . . . . . . . . . 13 (𝜑 𝑖 ∈ (1...𝑁)(((,) ∘ 𝐹)‘𝑖) = 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)))
7672, 75eqtr3d 2816 . . . . . . . . . . . 12 (𝜑 (((,) ∘ 𝐹) “ (1...𝑁)) = 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)))
7769, 76syl5eq 2826 . . . . . . . . . . 11 (𝜑𝐿 = 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)))
7877uneq1d 4027 . . . . . . . . . 10 (𝜑 → (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∪ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
7952, 68, 783eqtr4d 2824 . . . . . . . . 9 (𝜑𝐴 = (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
8079ineq2d 4076 . . . . . . . 8 (𝜑 → (𝐾𝐴) = (𝐾 ∩ (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))))
81 indi 4137 . . . . . . . 8 (𝐾 ∩ (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))) = ((𝐾𝐿) ∪ (𝐾 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
8280, 81syl6eq 2830 . . . . . . 7 (𝜑 → (𝐾𝐴) = ((𝐾𝐿) ∪ (𝐾 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))))
83 fss 6357 . . . . . . . . . . . . . . 15 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐺:ℕ⟶(ℝ* × ℝ*))
846, 56, 83sylancl 577 . . . . . . . . . . . . . 14 (𝜑𝐺:ℕ⟶(ℝ* × ℝ*))
85 fco 6361 . . . . . . . . . . . . . 14 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐺:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
8653, 84, 85sylancr 578 . . . . . . . . . . . . 13 (𝜑 → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
87 ffun 6347 . . . . . . . . . . . . 13 (((,) ∘ 𝐺):ℕ⟶𝒫 ℝ → Fun ((,) ∘ 𝐺))
88 funiunfv 6832 . . . . . . . . . . . . 13 (Fun ((,) ∘ 𝐺) → 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = (((,) ∘ 𝐺) “ (1...𝑀)))
8986, 87, 883syl 18 . . . . . . . . . . . 12 (𝜑 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = (((,) ∘ 𝐺) “ (1...𝑀)))
90 elfznn 12752 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℕ)
91 fvco3 6588 . . . . . . . . . . . . . 14 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (((,) ∘ 𝐺)‘𝑗) = ((,)‘(𝐺𝑗)))
926, 90, 91syl2an 586 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (((,) ∘ 𝐺)‘𝑗) = ((,)‘(𝐺𝑗)))
9392iuneq2dv 4815 . . . . . . . . . . . 12 (𝜑 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
9489, 93eqtr3d 2816 . . . . . . . . . . 11 (𝜑 (((,) ∘ 𝐺) “ (1...𝑀)) = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
952, 94syl5eq 2826 . . . . . . . . . 10 (𝜑𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
9695ineq2d 4076 . . . . . . . . 9 (𝜑 → ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ 𝐾) = ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗))))
97 incom 4066 . . . . . . . . 9 (𝐾 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ 𝐾)
98 iunin2 4859 . . . . . . . . . . . . 13 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖))) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
99 incom 4066 . . . . . . . . . . . . . . 15 (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖)))
10099a1i 11 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ‘(𝑁 + 1)) → (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖))))
101100iuneq2i 4812 . . . . . . . . . . . . 13 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖)))
102 incom 4066 . . . . . . . . . . . . 13 ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
10398, 101, 1023eqtr4ri 2813 . . . . . . . . . . . 12 ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))
104103a1i 11 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
105104iuneq2i 4812 . . . . . . . . . 10 𝑗 ∈ (1...𝑀)( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))
106 iunin2 4859 . . . . . . . . . 10 𝑗 ∈ (1...𝑀)( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
107105, 106eqtr3i 2804 . . . . . . . . 9 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = ( 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)) ∩ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
10896, 97, 1073eqtr4g 2839 . . . . . . . 8 (𝜑 → (𝐾 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
109108uneq2d 4028 . . . . . . 7 (𝜑 → ((𝐾𝐿) ∪ (𝐾 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))) = ((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
11082, 109eqtrd 2814 . . . . . 6 (𝜑 → (𝐾𝐴) = ((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
11135, 110syl5sseqr 3910 . . . . 5 (𝜑 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ (𝐾𝐴))
112111, 1syl6ss 3870 . . . 4 (𝜑 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾)
113 ovolsscl 23790 . . . 4 (( 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
114112, 12, 29, 113syl3anc 1351 . . 3 (𝜑 → (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
11534, 114readdcld 10469 . 2 (𝜑 → ((vol*‘(𝐾𝐿)) + (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ∈ ℝ)
11618rpred 12248 . . 3 (𝜑𝐶 ∈ ℝ)
11734, 116readdcld 10469 . 2 (𝜑 → ((vol*‘(𝐾𝐿)) + 𝐶) ∈ ℝ)
118110fveq2d 6503 . . 3 (𝜑 → (vol*‘(𝐾𝐴)) = (vol*‘((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
11932, 12syl5ss 3869 . . . 4 (𝜑 → (𝐾𝐿) ⊆ ℝ)
120112, 12sstrd 3868 . . . 4 (𝜑 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ)
121 ovolun 23803 . . . 4 ((((𝐾𝐿) ⊆ ℝ ∧ (vol*‘(𝐾𝐿)) ∈ ℝ) ∧ ( 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ ∧ (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)) → (vol*‘((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ≤ ((vol*‘(𝐾𝐿)) + (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
122119, 34, 120, 114, 121syl22anc 826 . . 3 (𝜑 → (vol*‘((𝐾𝐿) ∪ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ≤ ((vol*‘(𝐾𝐿)) + (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
123118, 122eqbrtrd 4951 . 2 (𝜑 → (vol*‘(𝐾𝐴)) ≤ ((vol*‘(𝐾𝐿)) + (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
124 fzfid 13156 . . . . 5 (𝜑 → (1...𝑀) ∈ Fin)
125 iunss 4835 . . . . . . . 8 ( 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾 ↔ ∀𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾)
126112, 125sylib 210 . . . . . . 7 (𝜑 → ∀𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾)
127126r19.21bi 3158 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾)
12812adantr 473 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐾 ⊆ ℝ)
12929adantr 473 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘𝐾) ∈ ℝ)
130 ovolsscl 23790 . . . . . 6 (( 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ 𝐾𝐾 ⊆ ℝ ∧ (vol*‘𝐾) ∈ ℝ) → (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
131127, 128, 129, 130syl3anc 1351 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
132124, 131fsumrecl 14951 . . . 4 (𝜑 → Σ𝑗 ∈ (1...𝑀)(vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
133127, 128sstrd 3868 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ)
134133, 131jca 504 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → ( 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ ∧ (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ))
135134ralrimiva 3132 . . . . 5 (𝜑 → ∀𝑗 ∈ (1...𝑀)( 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ ∧ (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ))
136 ovolfiniun 23805 . . . . 5 (((1...𝑀) ∈ Fin ∧ ∀𝑗 ∈ (1...𝑀)( 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ℝ ∧ (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)) → (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
137124, 135, 136syl2anc 576 . . . 4 (𝜑 → (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
138 uniioombl.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
139116, 138nndivred 11494 . . . . . . 7 (𝜑 → (𝐶 / 𝑀) ∈ ℝ)
140139adantr 473 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐶 / 𝑀) ∈ ℝ)
14177ineq2d 4076 . . . . . . . . . . . . 13 (𝜑 → (((,)‘(𝐺𝑗)) ∩ 𝐿) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖))))
142141adantr 473 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ 𝐿) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖))))
14399a1i 11 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑁) → (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖))))
144143iuneq2i 4812 . . . . . . . . . . . . 13 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = 𝑖 ∈ (1...𝑁)(((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖)))
145 iunin2 4859 . . . . . . . . . . . . 13 𝑖 ∈ (1...𝑁)(((,)‘(𝐺𝑗)) ∩ ((,)‘(𝐹𝑖))) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)))
146144, 145eqtri 2802 . . . . . . . . . . . 12 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)))
147142, 146syl6eqr 2832 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ 𝐿) = 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
148 fzfid 13156 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (1...𝑁) ∈ Fin)
149 ffvelrn 6674 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ( ≤ ∩ (ℝ × ℝ)))
15013, 73, 149syl2an 586 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (1...𝑁)) → (𝐹𝑖) ∈ ( ≤ ∩ (ℝ × ℝ)))
151150elin2d 4064 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (1...𝑁)) → (𝐹𝑖) ∈ (ℝ × ℝ))
152 1st2nd2 7540 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑖) ∈ (ℝ × ℝ) → (𝐹𝑖) = ⟨(1st ‘(𝐹𝑖)), (2nd ‘(𝐹𝑖))⟩)
153151, 152syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (1...𝑁)) → (𝐹𝑖) = ⟨(1st ‘(𝐹𝑖)), (2nd ‘(𝐹𝑖))⟩)
154153fveq2d 6503 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑁)) → ((,)‘(𝐹𝑖)) = ((,)‘⟨(1st ‘(𝐹𝑖)), (2nd ‘(𝐹𝑖))⟩))
155 df-ov 6979 . . . . . . . . . . . . . . . . 17 ((1st ‘(𝐹𝑖))(,)(2nd ‘(𝐹𝑖))) = ((,)‘⟨(1st ‘(𝐹𝑖)), (2nd ‘(𝐹𝑖))⟩)
156154, 155syl6eqr 2832 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑁)) → ((,)‘(𝐹𝑖)) = ((1st ‘(𝐹𝑖))(,)(2nd ‘(𝐹𝑖))))
157 ioombl 23869 . . . . . . . . . . . . . . . 16 ((1st ‘(𝐹𝑖))(,)(2nd ‘(𝐹𝑖))) ∈ dom vol
158156, 157syl6eqel 2874 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑁)) → ((,)‘(𝐹𝑖)) ∈ dom vol)
159158adantlr 702 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → ((,)‘(𝐹𝑖)) ∈ dom vol)
160 ffvelrn 6674 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
1616, 90, 160syl2an 586 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
162161elin2d 4064 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ (ℝ × ℝ))
163 1st2nd2 7540 . . . . . . . . . . . . . . . . . . 19 ((𝐺𝑗) ∈ (ℝ × ℝ) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
164162, 163syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
165164fveq2d 6503 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩))
166 df-ov 6979 . . . . . . . . . . . . . . . . 17 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
167165, 166syl6eqr 2832 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))))
168 ioombl 23869 . . . . . . . . . . . . . . . 16 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) ∈ dom vol
169167, 168syl6eqel 2874 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) ∈ dom vol)
170169adantr 473 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → ((,)‘(𝐺𝑗)) ∈ dom vol)
171 inmbl 23846 . . . . . . . . . . . . . 14 ((((,)‘(𝐹𝑖)) ∈ dom vol ∧ ((,)‘(𝐺𝑗)) ∈ dom vol) → (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol)
172159, 170, 171syl2anc 576 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol)
173172ralrimiva 3132 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → ∀𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol)
174 finiunmbl 23848 . . . . . . . . . . . 12 (((1...𝑁) ∈ Fin ∧ ∀𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol) → 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol)
175148, 173, 174syl2anc 576 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol)
176147, 175eqeltrd 2866 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ 𝐿) ∈ dom vol)
177 inss2 4093 . . . . . . . . . . 11 (((,)‘(𝐺𝑗)) ∩ 𝐴) ⊆ 𝐴
17813uniiccdif 23882 . . . . . . . . . . . . . . 15 (𝜑 → ( ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹) ∧ (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0))
179178simpld 487 . . . . . . . . . . . . . 14 (𝜑 ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹))
180 ovolficcss 23773 . . . . . . . . . . . . . . 15 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
18113, 180syl 17 . . . . . . . . . . . . . 14 (𝜑 ran ([,] ∘ 𝐹) ⊆ ℝ)
182179, 181sstrd 3868 . . . . . . . . . . . . 13 (𝜑 ran ((,) ∘ 𝐹) ⊆ ℝ)
18316, 182syl5eqss 3905 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℝ)
184183adantr 473 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐴 ⊆ ℝ)
185177, 184syl5ss 3869 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ 𝐴) ⊆ ℝ)
186 inss1 4092 . . . . . . . . . . 11 (((,)‘(𝐺𝑗)) ∩ 𝐴) ⊆ ((,)‘(𝐺𝑗))
187 ioossre 12614 . . . . . . . . . . . 12 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) ⊆ ℝ
188167, 187syl6eqss 3911 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
189167fveq2d 6503 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) = (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))))
190 ovolfcl 23770 . . . . . . . . . . . . . . 15 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
1916, 90, 190syl2an 586 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑀)) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
192 ovolioo 23872 . . . . . . . . . . . . . 14 (((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
193191, 192syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
194189, 193eqtrd 2814 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
195191simp2d 1123 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (2nd ‘(𝐺𝑗)) ∈ ℝ)
196191simp1d 1122 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (1st ‘(𝐺𝑗)) ∈ ℝ)
197195, 196resubcld 10869 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
198194, 197eqeltrd 2866 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
199 ovolsscl 23790 . . . . . . . . . . 11 (((((,)‘(𝐺𝑗)) ∩ 𝐴) ⊆ ((,)‘(𝐺𝑗)) ∧ ((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) ∈ ℝ)
200186, 188, 198, 199mp3an2i 1445 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) ∈ ℝ)
201 mblsplit 23836 . . . . . . . . . 10 (((((,)‘(𝐺𝑗)) ∩ 𝐿) ∈ dom vol ∧ (((,)‘(𝐺𝑗)) ∩ 𝐴) ⊆ ℝ ∧ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) ∈ ℝ) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) = ((vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿))) + (vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿)))))
202176, 185, 200, 201syl3anc 1351 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) = ((vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿))) + (vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿)))))
203 imassrn 5781 . . . . . . . . . . . . . . 15 (((,) ∘ 𝐹) “ (1...𝑁)) ⊆ ran ((,) ∘ 𝐹)
204203unissi 4735 . . . . . . . . . . . . . 14 (((,) ∘ 𝐹) “ (1...𝑁)) ⊆ ran ((,) ∘ 𝐹)
205204, 69, 163sstr4i 3900 . . . . . . . . . . . . 13 𝐿𝐴
206 sslin 4098 . . . . . . . . . . . . 13 (𝐿𝐴 → (((,)‘(𝐺𝑗)) ∩ 𝐿) ⊆ (((,)‘(𝐺𝑗)) ∩ 𝐴))
207205, 206mp1i 13 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ 𝐿) ⊆ (((,)‘(𝐺𝑗)) ∩ 𝐴))
208 sseqin2 4079 . . . . . . . . . . . 12 ((((,)‘(𝐺𝑗)) ∩ 𝐿) ⊆ (((,)‘(𝐺𝑗)) ∩ 𝐴) ↔ ((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿)) = (((,)‘(𝐺𝑗)) ∩ 𝐿))
209207, 208sylib 210 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿)) = (((,)‘(𝐺𝑗)) ∩ 𝐿))
210209fveq2d 6503 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿))) = (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)))
211 indifdir 4147 . . . . . . . . . . . . 13 ((𝐴𝐿) ∩ ((,)‘(𝐺𝑗))) = ((𝐴 ∩ ((,)‘(𝐺𝑗))) ∖ (𝐿 ∩ ((,)‘(𝐺𝑗))))
212 incom 4066 . . . . . . . . . . . . . 14 (𝐴 ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ 𝐴)
213 incom 4066 . . . . . . . . . . . . . 14 (𝐿 ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ 𝐿)
214212, 213difeq12i 3987 . . . . . . . . . . . . 13 ((𝐴 ∩ ((,)‘(𝐺𝑗))) ∖ (𝐿 ∩ ((,)‘(𝐺𝑗)))) = ((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿))
215211, 214eqtri 2802 . . . . . . . . . . . 12 ((𝐴𝐿) ∩ ((,)‘(𝐺𝑗))) = ((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿))
21679eqcomd 2784 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = 𝐴)
21777ineq1d 4075 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
218 2fveq3 6504 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑖 → ((,)‘(𝐹𝑥)) = ((,)‘(𝐹𝑖)))
219218cbvdisjv 4908 . . . . . . . . . . . . . . . . . . . 20 (Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)) ↔ Disj 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
22014, 219sylib 210 . . . . . . . . . . . . . . . . . . 19 (𝜑Disj 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
221 fz1ssnn 12754 . . . . . . . . . . . . . . . . . . . 20 (1...𝑁) ⊆ ℕ
222221a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1...𝑁) ⊆ ℕ)
223 uzss 12079 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 + 1) ∈ (ℤ‘1) → (ℤ‘(𝑁 + 1)) ⊆ (ℤ‘1))
22439, 223syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (ℤ‘(𝑁 + 1)) ⊆ (ℤ‘1))
225224, 36syl6sseqr 3908 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℤ‘(𝑁 + 1)) ⊆ ℕ)
226 uzdisj 12796 . . . . . . . . . . . . . . . . . . . 20 ((1...((𝑁 + 1) − 1)) ∩ (ℤ‘(𝑁 + 1))) = ∅
22747ineq1d 4075 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((1...((𝑁 + 1) − 1)) ∩ (ℤ‘(𝑁 + 1))) = ((1...𝑁) ∩ (ℤ‘(𝑁 + 1))))
228226, 227syl5reqr 2829 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅)
229 disjiun 4917 . . . . . . . . . . . . . . . . . . 19 ((Disj 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)) ∧ ((1...𝑁) ⊆ ℕ ∧ (ℤ‘(𝑁 + 1)) ⊆ ℕ ∧ ((1...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅)) → ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ∅)
230220, 222, 225, 228, 229syl13anc 1352 . . . . . . . . . . . . . . . . . 18 (𝜑 → ( 𝑖 ∈ (1...𝑁)((,)‘(𝐹𝑖)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ∅)
231217, 230eqtrd 2814 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ∅)
232 uneqdifeq 4321 . . . . . . . . . . . . . . . . 17 ((𝐿𝐴 ∧ (𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = ∅) → ((𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = 𝐴 ↔ (𝐴𝐿) = 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
233205, 231, 232sylancr 578 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐿 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))) = 𝐴 ↔ (𝐴𝐿) = 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
234216, 233mpbid 224 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐿) = 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
235234adantr 473 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐴𝐿) = 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
236235ineq2d 4076 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ∩ (𝐴𝐿)) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖))))
237 incom 4066 . . . . . . . . . . . . 13 ((𝐴𝐿) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ (𝐴𝐿))
238101, 98eqtri 2802 . . . . . . . . . . . . 13 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) = (((,)‘(𝐺𝑗)) ∩ 𝑖 ∈ (ℤ‘(𝑁 + 1))((,)‘(𝐹𝑖)))
239236, 237, 2383eqtr4g 2839 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → ((𝐴𝐿) ∩ ((,)‘(𝐺𝑗))) = 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
240215, 239syl5eqr 2828 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿)) = 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
241240fveq2d 6503 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿))) = (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
242210, 241oveq12d 6994 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∩ (((,)‘(𝐺𝑗)) ∩ 𝐿))) + (vol*‘((((,)‘(𝐺𝑗)) ∩ 𝐴) ∖ (((,)‘(𝐺𝑗)) ∩ 𝐿)))) = ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
243202, 242eqtrd 2814 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) = ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))))
244200, 140resubcld 10869 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) ∈ ℝ)
245 inss2 4093 . . . . . . . . . . . . 13 (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐺𝑗))
246188adantr 473 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
247198adantr 473 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
248 ovolsscl 23790 . . . . . . . . . . . . 13 (((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐺𝑗)) ∧ ((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ) → (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
249245, 246, 247, 248mp3an2i 1445 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
250148, 249fsumrecl 14951 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
251 uniioombl.n2 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑗 ∈ (1...𝑀)(abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀))
252251r19.21bi 3158 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀))
253250, 200, 140absdifltd 14654 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → ((abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) − (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀) ↔ (((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) < Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∧ Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) < ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) + (𝐶 / 𝑀)))))
254252, 253mpbid 224 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) < Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∧ Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) < ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) + (𝐶 / 𝑀))))
255254simpld 487 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) < Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
256244, 250, 255ltled 10588 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) ≤ Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
257147fveq2d 6503 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) = (vol*‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
258 mblvol 23834 . . . . . . . . . . . . . . . . 17 ((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol → (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
259172, 258syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
260259, 249eqeltrd 2866 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ)
261172, 260jca 504 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (1...𝑀)) ∧ 𝑖 ∈ (1...𝑁)) → ((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol ∧ (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ))
262261ralrimiva 3132 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → ∀𝑖 ∈ (1...𝑁)((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol ∧ (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ))
263 inss1 4092 . . . . . . . . . . . . . . . 16 (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐹𝑖))
264263rgenw 3100 . . . . . . . . . . . . . . 15 𝑖 ∈ ℕ (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐹𝑖))
265220adantr 473 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑀)) → Disj 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)))
266 disjss2 4900 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ ℕ (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ⊆ ((,)‘(𝐹𝑖)) → (Disj 𝑖 ∈ ℕ ((,)‘(𝐹𝑖)) → Disj 𝑖 ∈ ℕ (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
267264, 265, 266mpsyl 68 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑀)) → Disj 𝑖 ∈ ℕ (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
268 disjss1 4903 . . . . . . . . . . . . . 14 ((1...𝑁) ⊆ ℕ → (Disj 𝑖 ∈ ℕ (((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) → Disj 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
269221, 267, 268mpsyl 68 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → Disj 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))
270 volfiniun 23851 . . . . . . . . . . . . 13 (((1...𝑁) ∈ Fin ∧ ∀𝑖 ∈ (1...𝑁)((((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol ∧ (vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ∈ ℝ) ∧ Disj 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) → (vol‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑖 ∈ (1...𝑁)(vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
271148, 262, 269, 270syl3anc 1351 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (vol‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑖 ∈ (1...𝑁)(vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
272 mblvol 23834 . . . . . . . . . . . . 13 ( 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))) ∈ dom vol → (vol‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
273175, 272syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (vol‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = (vol*‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
274259sumeq2dv 14920 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → Σ𝑖 ∈ (1...𝑁)(vol‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
275271, 273, 2743eqtr3d 2822 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘ 𝑖 ∈ (1...𝑁)(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) = Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
276257, 275eqtrd 2814 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) = Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))))
277256, 276breqtrrd 4957 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) ≤ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)))
278276, 250eqeltrd 2866 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) ∈ ℝ)
279200, 140, 278lesubaddd 11038 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → (((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) − (𝐶 / 𝑀)) ≤ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) ↔ (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) ≤ ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (𝐶 / 𝑀))))
280277, 279mpbid 224 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐴)) ≤ ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (𝐶 / 𝑀)))
281243, 280eqbrtrrd 4953 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ≤ ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (𝐶 / 𝑀)))
282131, 140, 278leadd2d 11036 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → ((vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ (𝐶 / 𝑀) ↔ ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ≤ ((vol*‘(((,)‘(𝐺𝑗)) ∩ 𝐿)) + (𝐶 / 𝑀))))
283281, 282mpbird 249 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ (𝐶 / 𝑀))
284124, 131, 140, 283fsumle 15014 . . . . 5 (𝜑 → Σ𝑗 ∈ (1...𝑀)(vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ Σ𝑗 ∈ (1...𝑀)(𝐶 / 𝑀))
285139recnd 10468 . . . . . . 7 (𝜑 → (𝐶 / 𝑀) ∈ ℂ)
286 fsumconst 15005 . . . . . . 7 (((1...𝑀) ∈ Fin ∧ (𝐶 / 𝑀) ∈ ℂ) → Σ𝑗 ∈ (1...𝑀)(𝐶 / 𝑀) = ((♯‘(1...𝑀)) · (𝐶 / 𝑀)))
287124, 285, 286syl2anc 576 . . . . . 6 (𝜑 → Σ𝑗 ∈ (1...𝑀)(𝐶 / 𝑀) = ((♯‘(1...𝑀)) · (𝐶 / 𝑀)))
288 nnnn0 11715 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
289 hashfz1 13521 . . . . . . . 8 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
290138, 288, 2893syl 18 . . . . . . 7 (𝜑 → (♯‘(1...𝑀)) = 𝑀)
291290oveq1d 6991 . . . . . 6 (𝜑 → ((♯‘(1...𝑀)) · (𝐶 / 𝑀)) = (𝑀 · (𝐶 / 𝑀)))
292116recnd 10468 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
293138nncnd 11457 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
294138nnne0d 11490 . . . . . . 7 (𝜑𝑀 ≠ 0)
295292, 293, 294divcan2d 11219 . . . . . 6 (𝜑 → (𝑀 · (𝐶 / 𝑀)) = 𝐶)
296287, 291, 2953eqtrd 2818 . . . . 5 (𝜑 → Σ𝑗 ∈ (1...𝑀)(𝐶 / 𝑀) = 𝐶)
297284, 296breqtrd 4955 . . . 4 (𝜑 → Σ𝑗 ∈ (1...𝑀)(vol*‘ 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ 𝐶)
298114, 132, 116, 137, 297letrd 10597 . . 3 (𝜑 → (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗)))) ≤ 𝐶)
299114, 116, 34, 298leadd2dd 11056 . 2 (𝜑 → ((vol*‘(𝐾𝐿)) + (vol*‘ 𝑗 ∈ (1...𝑀) 𝑖 ∈ (ℤ‘(𝑁 + 1))(((,)‘(𝐹𝑖)) ∩ ((,)‘(𝐺𝑗))))) ≤ ((vol*‘(𝐾𝐿)) + 𝐶))
30031, 115, 117, 123, 299letrd 10597 1 (𝜑 → (vol*‘(𝐾𝐴)) ≤ ((vol*‘(𝐾𝐿)) + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wral 3088  cdif 3826  cun 3827  cin 3828  wss 3829  c0 4178  𝒫 cpw 4422  cop 4447   cuni 4712   ciun 4792  Disj wdisj 4897   class class class wbr 4929   × cxp 5405  dom cdm 5407  ran crn 5408  cima 5410  ccom 5411  Fun wfun 6182   Fn wfn 6183  wf 6184  cfv 6188  (class class class)co 6976  1st c1st 7499  2nd c2nd 7500  Fincfn 8306  supcsup 8699  cc 10333  cr 10334  0cc0 10335  1c1 10336   + caddc 10338   · cmul 10340  *cxr 10473   < clt 10474  cle 10475  cmin 10670   / cdiv 11098  cn 11439  0cn0 11707  cuz 12058  +crp 12204  (,)cioo 12554  [,]cicc 12557  ...cfz 12708  seqcseq 13184  chash 13505  abscabs 14454  Σcsu 14903  vol*covol 23766  volcvol 23767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-disj 4898  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-of 7227  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-2o 7906  df-oadd 7909  df-er 8089  df-map 8208  df-pm 8209  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-fi 8670  df-sup 8701  df-inf 8702  df-oi 8769  df-dju 9124  df-card 9162  df-acn 9165  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-n0 11708  df-z 11794  df-uz 12059  df-q 12163  df-rp 12205  df-xneg 12324  df-xadd 12325  df-xmul 12326  df-ioo 12558  df-ico 12560  df-icc 12561  df-fz 12709  df-fzo 12850  df-fl 12977  df-seq 13185  df-exp 13245  df-hash 13506  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-clim 14706  df-rlim 14707  df-sum 14904  df-rest 16552  df-topgen 16573  df-psmet 20239  df-xmet 20240  df-met 20241  df-bl 20242  df-mopn 20243  df-top 21206  df-topon 21223  df-bases 21258  df-cmp 21699  df-ovol 23768  df-vol 23769
This theorem is referenced by:  uniioombllem5  23891
  Copyright terms: Public domain W3C validator