Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subsalsal Structured version   Visualization version   GIF version

Theorem subsalsal 46355
Description: A subspace sigma-algebra is a sigma algebra. This is Lemma 121A of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
subsalsal.1 (𝜑𝑆 ∈ SAlg)
subsalsal.2 (𝜑𝐷𝑉)
subsalsal.3 𝑇 = (𝑆t 𝐷)
Assertion
Ref Expression
subsalsal (𝜑𝑇 ∈ SAlg)

Proof of Theorem subsalsal
Dummy variables 𝑛 𝑦 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subsalsal.3 . . . 4 𝑇 = (𝑆t 𝐷)
21ovexi 7444 . . 3 𝑇 ∈ V
32a1i 11 . 2 (𝜑𝑇 ∈ V)
4 subsalsal.1 . . . 4 (𝜑𝑆 ∈ SAlg)
5 subsalsal.2 . . . 4 (𝜑𝐷𝑉)
640sald 46346 . . . 4 (𝜑 → ∅ ∈ 𝑆)
7 0in 4377 . . . . 5 (∅ ∩ 𝐷) = ∅
87eqcomi 2745 . . . 4 ∅ = (∅ ∩ 𝐷)
94, 5, 6, 8elrestd 45099 . . 3 (𝜑 → ∅ ∈ (𝑆t 𝐷))
109, 1eleqtrrdi 2846 . 2 (𝜑 → ∅ ∈ 𝑇)
11 eqid 2736 . 2 𝑇 = 𝑇
12 id 22 . . . . . 6 (𝑥𝑇𝑥𝑇)
1312, 1eleqtrdi 2845 . . . . 5 (𝑥𝑇𝑥 ∈ (𝑆t 𝐷))
1413adantl 481 . . . 4 ((𝜑𝑥𝑇) → 𝑥 ∈ (𝑆t 𝐷))
15 elrest 17446 . . . . . 6 ((𝑆 ∈ SAlg ∧ 𝐷𝑉) → (𝑥 ∈ (𝑆t 𝐷) ↔ ∃𝑦𝑆 𝑥 = (𝑦𝐷)))
164, 5, 15syl2anc 584 . . . . 5 (𝜑 → (𝑥 ∈ (𝑆t 𝐷) ↔ ∃𝑦𝑆 𝑥 = (𝑦𝐷)))
1716adantr 480 . . . 4 ((𝜑𝑥𝑇) → (𝑥 ∈ (𝑆t 𝐷) ↔ ∃𝑦𝑆 𝑥 = (𝑦𝐷)))
1814, 17mpbid 232 . . 3 ((𝜑𝑥𝑇) → ∃𝑦𝑆 𝑥 = (𝑦𝐷))
194adantr 480 . . . . . . . . 9 ((𝜑𝑦𝑆) → 𝑆 ∈ SAlg)
20193adant3 1132 . . . . . . . 8 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → 𝑆 ∈ SAlg)
2153ad2ant1 1133 . . . . . . . 8 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → 𝐷𝑉)
22 simpr 484 . . . . . . . . . 10 ((𝜑𝑦𝑆) → 𝑦𝑆)
2319, 22saldifcld 46343 . . . . . . . . 9 ((𝜑𝑦𝑆) → ( 𝑆𝑦) ∈ 𝑆)
24233adant3 1132 . . . . . . . 8 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → ( 𝑆𝑦) ∈ 𝑆)
25 eqid 2736 . . . . . . . 8 (( 𝑆𝑦) ∩ 𝐷) = (( 𝑆𝑦) ∩ 𝐷)
2620, 21, 24, 25elrestd 45099 . . . . . . 7 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → (( 𝑆𝑦) ∩ 𝐷) ∈ (𝑆t 𝐷))
271unieqi 4900 . . . . . . . . . . . . . 14 𝑇 = (𝑆t 𝐷)
2827a1i 11 . . . . . . . . . . . . 13 (𝜑 𝑇 = (𝑆t 𝐷))
294, 5restuni3 45109 . . . . . . . . . . . . 13 (𝜑 (𝑆t 𝐷) = ( 𝑆𝐷))
3028, 29eqtrd 2771 . . . . . . . . . . . 12 (𝜑 𝑇 = ( 𝑆𝐷))
3130adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 = (𝑦𝐷)) → 𝑇 = ( 𝑆𝐷))
32 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 = (𝑦𝐷)) → 𝑥 = (𝑦𝐷))
3331, 32difeq12d 4107 . . . . . . . . . 10 ((𝜑𝑥 = (𝑦𝐷)) → ( 𝑇𝑥) = (( 𝑆𝐷) ∖ (𝑦𝐷)))
34 indifdir 4275 . . . . . . . . . . . 12 (( 𝑆𝑦) ∩ 𝐷) = (( 𝑆𝐷) ∖ (𝑦𝐷))
3534eqcomi 2745 . . . . . . . . . . 11 (( 𝑆𝐷) ∖ (𝑦𝐷)) = (( 𝑆𝑦) ∩ 𝐷)
3635a1i 11 . . . . . . . . . 10 ((𝜑𝑥 = (𝑦𝐷)) → (( 𝑆𝐷) ∖ (𝑦𝐷)) = (( 𝑆𝑦) ∩ 𝐷))
3733, 36eqtrd 2771 . . . . . . . . 9 ((𝜑𝑥 = (𝑦𝐷)) → ( 𝑇𝑥) = (( 𝑆𝑦) ∩ 𝐷))
381a1i 11 . . . . . . . . 9 ((𝜑𝑥 = (𝑦𝐷)) → 𝑇 = (𝑆t 𝐷))
3937, 38eleq12d 2829 . . . . . . . 8 ((𝜑𝑥 = (𝑦𝐷)) → (( 𝑇𝑥) ∈ 𝑇 ↔ (( 𝑆𝑦) ∩ 𝐷) ∈ (𝑆t 𝐷)))
40393adant2 1131 . . . . . . 7 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → (( 𝑇𝑥) ∈ 𝑇 ↔ (( 𝑆𝑦) ∩ 𝐷) ∈ (𝑆t 𝐷)))
4126, 40mpbird 257 . . . . . 6 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → ( 𝑇𝑥) ∈ 𝑇)
42413exp 1119 . . . . 5 (𝜑 → (𝑦𝑆 → (𝑥 = (𝑦𝐷) → ( 𝑇𝑥) ∈ 𝑇)))
4342rexlimdv 3140 . . . 4 (𝜑 → (∃𝑦𝑆 𝑥 = (𝑦𝐷) → ( 𝑇𝑥) ∈ 𝑇))
4443adantr 480 . . 3 ((𝜑𝑥𝑇) → (∃𝑦𝑆 𝑥 = (𝑦𝐷) → ( 𝑇𝑥) ∈ 𝑇))
4518, 44mpd 15 . 2 ((𝜑𝑥𝑇) → ( 𝑇𝑥) ∈ 𝑇)
464adantr 480 . . 3 ((𝜑𝑓:ℕ⟶𝑇) → 𝑆 ∈ SAlg)
475adantr 480 . . 3 ((𝜑𝑓:ℕ⟶𝑇) → 𝐷𝑉)
48 simpr 484 . . 3 ((𝜑𝑓:ℕ⟶𝑇) → 𝑓:ℕ⟶𝑇)
4946, 47, 1, 48subsaliuncl 46354 . 2 ((𝜑𝑓:ℕ⟶𝑇) → 𝑛 ∈ ℕ (𝑓𝑛) ∈ 𝑇)
503, 10, 11, 45, 49issalnnd 46341 1 (𝜑𝑇 ∈ SAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3061  Vcvv 3464  cdif 3928  cin 3930  c0 4313   cuni 4888  wf 6532  (class class class)co 7410  cn 12245  t crest 17439  SAlgcsalg 46304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cc 10454  ax-ac2 10482  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-acn 9961  df-ac 10135  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-rest 17441  df-salg 46305
This theorem is referenced by:  subsaluni  46356  issmflelem  46740  issmfle  46741  smfpimltxr  46743  smfconst  46745  issmfgtlem  46751  issmfgt  46752  smfaddlem2  46760  issmfgelem  46765  issmfge  46766  smfpimgtxr  46776  smfpimioompt  46782  smfresal  46784  smfrec  46785  smfmullem4  46790  smfpimne  46835
  Copyright terms: Public domain W3C validator