Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subsalsal Structured version   Visualization version   GIF version

Theorem subsalsal 45526
Description: A subspace sigma-algebra is a sigma algebra. This is Lemma 121A of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
subsalsal.1 (𝜑𝑆 ∈ SAlg)
subsalsal.2 (𝜑𝐷𝑉)
subsalsal.3 𝑇 = (𝑆t 𝐷)
Assertion
Ref Expression
subsalsal (𝜑𝑇 ∈ SAlg)

Proof of Theorem subsalsal
Dummy variables 𝑛 𝑦 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subsalsal.3 . . . 4 𝑇 = (𝑆t 𝐷)
21ovexi 7435 . . 3 𝑇 ∈ V
32a1i 11 . 2 (𝜑𝑇 ∈ V)
4 subsalsal.1 . . . 4 (𝜑𝑆 ∈ SAlg)
5 subsalsal.2 . . . 4 (𝜑𝐷𝑉)
640sald 45517 . . . 4 (𝜑 → ∅ ∈ 𝑆)
7 0in 4385 . . . . 5 (∅ ∩ 𝐷) = ∅
87eqcomi 2733 . . . 4 ∅ = (∅ ∩ 𝐷)
94, 5, 6, 8elrestd 44251 . . 3 (𝜑 → ∅ ∈ (𝑆t 𝐷))
109, 1eleqtrrdi 2836 . 2 (𝜑 → ∅ ∈ 𝑇)
11 eqid 2724 . 2 𝑇 = 𝑇
12 id 22 . . . . . 6 (𝑥𝑇𝑥𝑇)
1312, 1eleqtrdi 2835 . . . . 5 (𝑥𝑇𝑥 ∈ (𝑆t 𝐷))
1413adantl 481 . . . 4 ((𝜑𝑥𝑇) → 𝑥 ∈ (𝑆t 𝐷))
15 elrest 17371 . . . . . 6 ((𝑆 ∈ SAlg ∧ 𝐷𝑉) → (𝑥 ∈ (𝑆t 𝐷) ↔ ∃𝑦𝑆 𝑥 = (𝑦𝐷)))
164, 5, 15syl2anc 583 . . . . 5 (𝜑 → (𝑥 ∈ (𝑆t 𝐷) ↔ ∃𝑦𝑆 𝑥 = (𝑦𝐷)))
1716adantr 480 . . . 4 ((𝜑𝑥𝑇) → (𝑥 ∈ (𝑆t 𝐷) ↔ ∃𝑦𝑆 𝑥 = (𝑦𝐷)))
1814, 17mpbid 231 . . 3 ((𝜑𝑥𝑇) → ∃𝑦𝑆 𝑥 = (𝑦𝐷))
194adantr 480 . . . . . . . . 9 ((𝜑𝑦𝑆) → 𝑆 ∈ SAlg)
20193adant3 1129 . . . . . . . 8 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → 𝑆 ∈ SAlg)
2153ad2ant1 1130 . . . . . . . 8 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → 𝐷𝑉)
22 simpr 484 . . . . . . . . . 10 ((𝜑𝑦𝑆) → 𝑦𝑆)
2319, 22saldifcld 45514 . . . . . . . . 9 ((𝜑𝑦𝑆) → ( 𝑆𝑦) ∈ 𝑆)
24233adant3 1129 . . . . . . . 8 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → ( 𝑆𝑦) ∈ 𝑆)
25 eqid 2724 . . . . . . . 8 (( 𝑆𝑦) ∩ 𝐷) = (( 𝑆𝑦) ∩ 𝐷)
2620, 21, 24, 25elrestd 44251 . . . . . . 7 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → (( 𝑆𝑦) ∩ 𝐷) ∈ (𝑆t 𝐷))
271unieqi 4911 . . . . . . . . . . . . . 14 𝑇 = (𝑆t 𝐷)
2827a1i 11 . . . . . . . . . . . . 13 (𝜑 𝑇 = (𝑆t 𝐷))
294, 5restuni3 44261 . . . . . . . . . . . . 13 (𝜑 (𝑆t 𝐷) = ( 𝑆𝐷))
3028, 29eqtrd 2764 . . . . . . . . . . . 12 (𝜑 𝑇 = ( 𝑆𝐷))
3130adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 = (𝑦𝐷)) → 𝑇 = ( 𝑆𝐷))
32 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 = (𝑦𝐷)) → 𝑥 = (𝑦𝐷))
3331, 32difeq12d 4115 . . . . . . . . . 10 ((𝜑𝑥 = (𝑦𝐷)) → ( 𝑇𝑥) = (( 𝑆𝐷) ∖ (𝑦𝐷)))
34 indifdir 4276 . . . . . . . . . . . 12 (( 𝑆𝑦) ∩ 𝐷) = (( 𝑆𝐷) ∖ (𝑦𝐷))
3534eqcomi 2733 . . . . . . . . . . 11 (( 𝑆𝐷) ∖ (𝑦𝐷)) = (( 𝑆𝑦) ∩ 𝐷)
3635a1i 11 . . . . . . . . . 10 ((𝜑𝑥 = (𝑦𝐷)) → (( 𝑆𝐷) ∖ (𝑦𝐷)) = (( 𝑆𝑦) ∩ 𝐷))
3733, 36eqtrd 2764 . . . . . . . . 9 ((𝜑𝑥 = (𝑦𝐷)) → ( 𝑇𝑥) = (( 𝑆𝑦) ∩ 𝐷))
381a1i 11 . . . . . . . . 9 ((𝜑𝑥 = (𝑦𝐷)) → 𝑇 = (𝑆t 𝐷))
3937, 38eleq12d 2819 . . . . . . . 8 ((𝜑𝑥 = (𝑦𝐷)) → (( 𝑇𝑥) ∈ 𝑇 ↔ (( 𝑆𝑦) ∩ 𝐷) ∈ (𝑆t 𝐷)))
40393adant2 1128 . . . . . . 7 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → (( 𝑇𝑥) ∈ 𝑇 ↔ (( 𝑆𝑦) ∩ 𝐷) ∈ (𝑆t 𝐷)))
4126, 40mpbird 257 . . . . . 6 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → ( 𝑇𝑥) ∈ 𝑇)
42413exp 1116 . . . . 5 (𝜑 → (𝑦𝑆 → (𝑥 = (𝑦𝐷) → ( 𝑇𝑥) ∈ 𝑇)))
4342rexlimdv 3145 . . . 4 (𝜑 → (∃𝑦𝑆 𝑥 = (𝑦𝐷) → ( 𝑇𝑥) ∈ 𝑇))
4443adantr 480 . . 3 ((𝜑𝑥𝑇) → (∃𝑦𝑆 𝑥 = (𝑦𝐷) → ( 𝑇𝑥) ∈ 𝑇))
4518, 44mpd 15 . 2 ((𝜑𝑥𝑇) → ( 𝑇𝑥) ∈ 𝑇)
464adantr 480 . . 3 ((𝜑𝑓:ℕ⟶𝑇) → 𝑆 ∈ SAlg)
475adantr 480 . . 3 ((𝜑𝑓:ℕ⟶𝑇) → 𝐷𝑉)
48 simpr 484 . . 3 ((𝜑𝑓:ℕ⟶𝑇) → 𝑓:ℕ⟶𝑇)
4946, 47, 1, 48subsaliuncl 45525 . 2 ((𝜑𝑓:ℕ⟶𝑇) → 𝑛 ∈ ℕ (𝑓𝑛) ∈ 𝑇)
503, 10, 11, 45, 49issalnnd 45512 1 (𝜑𝑇 ∈ SAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wrex 3062  Vcvv 3466  cdif 3937  cin 3939  c0 4314   cuni 4899  wf 6529  (class class class)co 7401  cn 12208  t crest 17364  SAlgcsalg 45475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9631  ax-cc 10425  ax-ac2 10453  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-card 9929  df-acn 9932  df-ac 10106  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-rest 17366  df-salg 45476
This theorem is referenced by:  subsaluni  45527  issmflelem  45911  issmfle  45912  smfpimltxr  45914  smfconst  45916  issmfgtlem  45922  issmfgt  45923  smfaddlem2  45931  issmfgelem  45936  issmfge  45937  smfpimgtxr  45947  smfpimioompt  45953  smfresal  45955  smfrec  45956  smfmullem4  45961  smfpimne  46006
  Copyright terms: Public domain W3C validator