| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | subsalsal.3 | . . . 4
⊢ 𝑇 = (𝑆 ↾t 𝐷) | 
| 2 | 1 | ovexi 7465 | . . 3
⊢ 𝑇 ∈ V | 
| 3 | 2 | a1i 11 | . 2
⊢ (𝜑 → 𝑇 ∈ V) | 
| 4 |  | subsalsal.1 | . . . 4
⊢ (𝜑 → 𝑆 ∈ SAlg) | 
| 5 |  | subsalsal.2 | . . . 4
⊢ (𝜑 → 𝐷 ∈ 𝑉) | 
| 6 | 4 | 0sald 46365 | . . . 4
⊢ (𝜑 → ∅ ∈ 𝑆) | 
| 7 |  | 0in 4397 | . . . . 5
⊢ (∅
∩ 𝐷) =
∅ | 
| 8 | 7 | eqcomi 2746 | . . . 4
⊢ ∅ =
(∅ ∩ 𝐷) | 
| 9 | 4, 5, 6, 8 | elrestd 45113 | . . 3
⊢ (𝜑 → ∅ ∈ (𝑆 ↾t 𝐷)) | 
| 10 | 9, 1 | eleqtrrdi 2852 | . 2
⊢ (𝜑 → ∅ ∈ 𝑇) | 
| 11 |  | eqid 2737 | . 2
⊢ ∪ 𝑇 =
∪ 𝑇 | 
| 12 |  | id 22 | . . . . . 6
⊢ (𝑥 ∈ 𝑇 → 𝑥 ∈ 𝑇) | 
| 13 | 12, 1 | eleqtrdi 2851 | . . . . 5
⊢ (𝑥 ∈ 𝑇 → 𝑥 ∈ (𝑆 ↾t 𝐷)) | 
| 14 | 13 | adantl 481 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ (𝑆 ↾t 𝐷)) | 
| 15 |  | elrest 17472 | . . . . . 6
⊢ ((𝑆 ∈ SAlg ∧ 𝐷 ∈ 𝑉) → (𝑥 ∈ (𝑆 ↾t 𝐷) ↔ ∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐷))) | 
| 16 | 4, 5, 15 | syl2anc 584 | . . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝑆 ↾t 𝐷) ↔ ∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐷))) | 
| 17 | 16 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑥 ∈ (𝑆 ↾t 𝐷) ↔ ∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐷))) | 
| 18 | 14, 17 | mpbid 232 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐷)) | 
| 19 | 4 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑆 ∈ SAlg) | 
| 20 | 19 | 3adant3 1133 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐷)) → 𝑆 ∈ SAlg) | 
| 21 | 5 | 3ad2ant1 1134 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐷)) → 𝐷 ∈ 𝑉) | 
| 22 |  | simpr 484 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) | 
| 23 | 19, 22 | saldifcld 46362 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (∪ 𝑆 ∖ 𝑦) ∈ 𝑆) | 
| 24 | 23 | 3adant3 1133 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐷)) → (∪
𝑆 ∖ 𝑦) ∈ 𝑆) | 
| 25 |  | eqid 2737 | . . . . . . . 8
⊢ ((∪ 𝑆
∖ 𝑦) ∩ 𝐷) = ((∪ 𝑆
∖ 𝑦) ∩ 𝐷) | 
| 26 | 20, 21, 24, 25 | elrestd 45113 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐷)) → ((∪
𝑆 ∖ 𝑦) ∩ 𝐷) ∈ (𝑆 ↾t 𝐷)) | 
| 27 | 1 | unieqi 4919 | . . . . . . . . . . . . . 14
⊢ ∪ 𝑇 =
∪ (𝑆 ↾t 𝐷) | 
| 28 | 27 | a1i 11 | . . . . . . . . . . . . 13
⊢ (𝜑 → ∪ 𝑇 =
∪ (𝑆 ↾t 𝐷)) | 
| 29 | 4, 5 | restuni3 45123 | . . . . . . . . . . . . 13
⊢ (𝜑 → ∪ (𝑆
↾t 𝐷) =
(∪ 𝑆 ∩ 𝐷)) | 
| 30 | 28, 29 | eqtrd 2777 | . . . . . . . . . . . 12
⊢ (𝜑 → ∪ 𝑇 =
(∪ 𝑆 ∩ 𝐷)) | 
| 31 | 30 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = (𝑦 ∩ 𝐷)) → ∪ 𝑇 = (∪
𝑆 ∩ 𝐷)) | 
| 32 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = (𝑦 ∩ 𝐷)) → 𝑥 = (𝑦 ∩ 𝐷)) | 
| 33 | 31, 32 | difeq12d 4127 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = (𝑦 ∩ 𝐷)) → (∪
𝑇 ∖ 𝑥) = ((∪ 𝑆
∩ 𝐷) ∖ (𝑦 ∩ 𝐷))) | 
| 34 |  | indifdir 4295 | . . . . . . . . . . . 12
⊢ ((∪ 𝑆
∖ 𝑦) ∩ 𝐷) = ((∪ 𝑆
∩ 𝐷) ∖ (𝑦 ∩ 𝐷)) | 
| 35 | 34 | eqcomi 2746 | . . . . . . . . . . 11
⊢ ((∪ 𝑆
∩ 𝐷) ∖ (𝑦 ∩ 𝐷)) = ((∪ 𝑆 ∖ 𝑦) ∩ 𝐷) | 
| 36 | 35 | a1i 11 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = (𝑦 ∩ 𝐷)) → ((∪
𝑆 ∩ 𝐷) ∖ (𝑦 ∩ 𝐷)) = ((∪ 𝑆 ∖ 𝑦) ∩ 𝐷)) | 
| 37 | 33, 36 | eqtrd 2777 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = (𝑦 ∩ 𝐷)) → (∪
𝑇 ∖ 𝑥) = ((∪ 𝑆
∖ 𝑦) ∩ 𝐷)) | 
| 38 | 1 | a1i 11 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = (𝑦 ∩ 𝐷)) → 𝑇 = (𝑆 ↾t 𝐷)) | 
| 39 | 37, 38 | eleq12d 2835 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = (𝑦 ∩ 𝐷)) → ((∪
𝑇 ∖ 𝑥) ∈ 𝑇 ↔ ((∪ 𝑆 ∖ 𝑦) ∩ 𝐷) ∈ (𝑆 ↾t 𝐷))) | 
| 40 | 39 | 3adant2 1132 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐷)) → ((∪
𝑇 ∖ 𝑥) ∈ 𝑇 ↔ ((∪ 𝑆 ∖ 𝑦) ∩ 𝐷) ∈ (𝑆 ↾t 𝐷))) | 
| 41 | 26, 40 | mpbird 257 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐷)) → (∪
𝑇 ∖ 𝑥) ∈ 𝑇) | 
| 42 | 41 | 3exp 1120 | . . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝑆 → (𝑥 = (𝑦 ∩ 𝐷) → (∪ 𝑇 ∖ 𝑥) ∈ 𝑇))) | 
| 43 | 42 | rexlimdv 3153 | . . . 4
⊢ (𝜑 → (∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐷) → (∪ 𝑇 ∖ 𝑥) ∈ 𝑇)) | 
| 44 | 43 | adantr 480 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐷) → (∪ 𝑇 ∖ 𝑥) ∈ 𝑇)) | 
| 45 | 18, 44 | mpd 15 | . 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (∪ 𝑇 ∖ 𝑥) ∈ 𝑇) | 
| 46 | 4 | adantr 480 | . . 3
⊢ ((𝜑 ∧ 𝑓:ℕ⟶𝑇) → 𝑆 ∈ SAlg) | 
| 47 | 5 | adantr 480 | . . 3
⊢ ((𝜑 ∧ 𝑓:ℕ⟶𝑇) → 𝐷 ∈ 𝑉) | 
| 48 |  | simpr 484 | . . 3
⊢ ((𝜑 ∧ 𝑓:ℕ⟶𝑇) → 𝑓:ℕ⟶𝑇) | 
| 49 | 46, 47, 1, 48 | subsaliuncl 46373 | . 2
⊢ ((𝜑 ∧ 𝑓:ℕ⟶𝑇) → ∪
𝑛 ∈ ℕ (𝑓‘𝑛) ∈ 𝑇) | 
| 50 | 3, 10, 11, 45, 49 | issalnnd 46360 | 1
⊢ (𝜑 → 𝑇 ∈ SAlg) |