Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subsalsal Structured version   Visualization version   GIF version

Theorem subsalsal 42649
Description: A subspace sigma-algebra is a sigma algebra. This is Lemma 121A of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
subsalsal.1 (𝜑𝑆 ∈ SAlg)
subsalsal.2 (𝜑𝐷𝑉)
subsalsal.3 𝑇 = (𝑆t 𝐷)
Assertion
Ref Expression
subsalsal (𝜑𝑇 ∈ SAlg)

Proof of Theorem subsalsal
Dummy variables 𝑛 𝑦 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subsalsal.3 . . . 4 𝑇 = (𝑆t 𝐷)
21ovexi 7193 . . 3 𝑇 ∈ V
32a1i 11 . 2 (𝜑𝑇 ∈ V)
4 subsalsal.1 . . . 4 (𝜑𝑆 ∈ SAlg)
5 subsalsal.2 . . . 4 (𝜑𝐷𝑉)
640sald 42640 . . . 4 (𝜑 → ∅ ∈ 𝑆)
7 0in 4350 . . . . 5 (∅ ∩ 𝐷) = ∅
87eqcomi 2833 . . . 4 ∅ = (∅ ∩ 𝐷)
94, 5, 6, 8elrestd 41380 . . 3 (𝜑 → ∅ ∈ (𝑆t 𝐷))
109, 1eleqtrrdi 2927 . 2 (𝜑 → ∅ ∈ 𝑇)
11 eqid 2824 . 2 𝑇 = 𝑇
12 id 22 . . . . . 6 (𝑥𝑇𝑥𝑇)
1312, 1eleqtrdi 2926 . . . . 5 (𝑥𝑇𝑥 ∈ (𝑆t 𝐷))
1413adantl 484 . . . 4 ((𝜑𝑥𝑇) → 𝑥 ∈ (𝑆t 𝐷))
15 elrest 16704 . . . . . 6 ((𝑆 ∈ SAlg ∧ 𝐷𝑉) → (𝑥 ∈ (𝑆t 𝐷) ↔ ∃𝑦𝑆 𝑥 = (𝑦𝐷)))
164, 5, 15syl2anc 586 . . . . 5 (𝜑 → (𝑥 ∈ (𝑆t 𝐷) ↔ ∃𝑦𝑆 𝑥 = (𝑦𝐷)))
1716adantr 483 . . . 4 ((𝜑𝑥𝑇) → (𝑥 ∈ (𝑆t 𝐷) ↔ ∃𝑦𝑆 𝑥 = (𝑦𝐷)))
1814, 17mpbid 234 . . 3 ((𝜑𝑥𝑇) → ∃𝑦𝑆 𝑥 = (𝑦𝐷))
194adantr 483 . . . . . . . . 9 ((𝜑𝑦𝑆) → 𝑆 ∈ SAlg)
20193adant3 1128 . . . . . . . 8 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → 𝑆 ∈ SAlg)
2153ad2ant1 1129 . . . . . . . 8 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → 𝐷𝑉)
22 simpr 487 . . . . . . . . . 10 ((𝜑𝑦𝑆) → 𝑦𝑆)
2319, 22saldifcld 42637 . . . . . . . . 9 ((𝜑𝑦𝑆) → ( 𝑆𝑦) ∈ 𝑆)
24233adant3 1128 . . . . . . . 8 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → ( 𝑆𝑦) ∈ 𝑆)
25 eqid 2824 . . . . . . . 8 (( 𝑆𝑦) ∩ 𝐷) = (( 𝑆𝑦) ∩ 𝐷)
2620, 21, 24, 25elrestd 41380 . . . . . . 7 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → (( 𝑆𝑦) ∩ 𝐷) ∈ (𝑆t 𝐷))
271unieqi 4854 . . . . . . . . . . . . . 14 𝑇 = (𝑆t 𝐷)
2827a1i 11 . . . . . . . . . . . . 13 (𝜑 𝑇 = (𝑆t 𝐷))
294, 5restuni3 41390 . . . . . . . . . . . . 13 (𝜑 (𝑆t 𝐷) = ( 𝑆𝐷))
3028, 29eqtrd 2859 . . . . . . . . . . . 12 (𝜑 𝑇 = ( 𝑆𝐷))
3130adantr 483 . . . . . . . . . . 11 ((𝜑𝑥 = (𝑦𝐷)) → 𝑇 = ( 𝑆𝐷))
32 simpr 487 . . . . . . . . . . 11 ((𝜑𝑥 = (𝑦𝐷)) → 𝑥 = (𝑦𝐷))
3331, 32difeq12d 4103 . . . . . . . . . 10 ((𝜑𝑥 = (𝑦𝐷)) → ( 𝑇𝑥) = (( 𝑆𝐷) ∖ (𝑦𝐷)))
34 indifdir 4263 . . . . . . . . . . . 12 (( 𝑆𝑦) ∩ 𝐷) = (( 𝑆𝐷) ∖ (𝑦𝐷))
3534eqcomi 2833 . . . . . . . . . . 11 (( 𝑆𝐷) ∖ (𝑦𝐷)) = (( 𝑆𝑦) ∩ 𝐷)
3635a1i 11 . . . . . . . . . 10 ((𝜑𝑥 = (𝑦𝐷)) → (( 𝑆𝐷) ∖ (𝑦𝐷)) = (( 𝑆𝑦) ∩ 𝐷))
3733, 36eqtrd 2859 . . . . . . . . 9 ((𝜑𝑥 = (𝑦𝐷)) → ( 𝑇𝑥) = (( 𝑆𝑦) ∩ 𝐷))
381a1i 11 . . . . . . . . 9 ((𝜑𝑥 = (𝑦𝐷)) → 𝑇 = (𝑆t 𝐷))
3937, 38eleq12d 2910 . . . . . . . 8 ((𝜑𝑥 = (𝑦𝐷)) → (( 𝑇𝑥) ∈ 𝑇 ↔ (( 𝑆𝑦) ∩ 𝐷) ∈ (𝑆t 𝐷)))
40393adant2 1127 . . . . . . 7 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → (( 𝑇𝑥) ∈ 𝑇 ↔ (( 𝑆𝑦) ∩ 𝐷) ∈ (𝑆t 𝐷)))
4126, 40mpbird 259 . . . . . 6 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → ( 𝑇𝑥) ∈ 𝑇)
42413exp 1115 . . . . 5 (𝜑 → (𝑦𝑆 → (𝑥 = (𝑦𝐷) → ( 𝑇𝑥) ∈ 𝑇)))
4342rexlimdv 3286 . . . 4 (𝜑 → (∃𝑦𝑆 𝑥 = (𝑦𝐷) → ( 𝑇𝑥) ∈ 𝑇))
4443adantr 483 . . 3 ((𝜑𝑥𝑇) → (∃𝑦𝑆 𝑥 = (𝑦𝐷) → ( 𝑇𝑥) ∈ 𝑇))
4518, 44mpd 15 . 2 ((𝜑𝑥𝑇) → ( 𝑇𝑥) ∈ 𝑇)
464adantr 483 . . 3 ((𝜑𝑓:ℕ⟶𝑇) → 𝑆 ∈ SAlg)
475adantr 483 . . 3 ((𝜑𝑓:ℕ⟶𝑇) → 𝐷𝑉)
48 simpr 487 . . 3 ((𝜑𝑓:ℕ⟶𝑇) → 𝑓:ℕ⟶𝑇)
4946, 47, 1, 48subsaliuncl 42648 . 2 ((𝜑𝑓:ℕ⟶𝑇) → 𝑛 ∈ ℕ (𝑓𝑛) ∈ 𝑇)
503, 10, 11, 45, 49issalnnd 42635 1 (𝜑𝑇 ∈ SAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wrex 3142  Vcvv 3497  cdif 3936  cin 3938  c0 4294   cuni 4841  wf 6354  (class class class)co 7159  cn 11641  t crest 16697  SAlgcsalg 42600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cc 9860  ax-ac2 9888  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-card 9371  df-acn 9374  df-ac 9545  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-n0 11901  df-z 11985  df-uz 12247  df-rest 16699  df-salg 42601
This theorem is referenced by:  subsaluni  42650  issmflelem  43028  issmfle  43029  smfpimltxr  43031  smfconst  43033  issmfgtlem  43039  issmfgt  43040  smfaddlem2  43047  issmfgelem  43052  issmfge  43053  smfpimgtxr  43063  smfpimioompt  43068  smfresal  43070  smfrec  43071  smfmullem4  43076
  Copyright terms: Public domain W3C validator