Step | Hyp | Ref
| Expression |
1 | | subsalsal.3 |
. . . 4
⊢ 𝑇 = (𝑆 ↾t 𝐷) |
2 | 1 | ovexi 7289 |
. . 3
⊢ 𝑇 ∈ V |
3 | 2 | a1i 11 |
. 2
⊢ (𝜑 → 𝑇 ∈ V) |
4 | | subsalsal.1 |
. . . 4
⊢ (𝜑 → 𝑆 ∈ SAlg) |
5 | | subsalsal.2 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
6 | 4 | 0sald 43779 |
. . . 4
⊢ (𝜑 → ∅ ∈ 𝑆) |
7 | | 0in 4324 |
. . . . 5
⊢ (∅
∩ 𝐷) =
∅ |
8 | 7 | eqcomi 2747 |
. . . 4
⊢ ∅ =
(∅ ∩ 𝐷) |
9 | 4, 5, 6, 8 | elrestd 42547 |
. . 3
⊢ (𝜑 → ∅ ∈ (𝑆 ↾t 𝐷)) |
10 | 9, 1 | eleqtrrdi 2850 |
. 2
⊢ (𝜑 → ∅ ∈ 𝑇) |
11 | | eqid 2738 |
. 2
⊢ ∪ 𝑇 =
∪ 𝑇 |
12 | | id 22 |
. . . . . 6
⊢ (𝑥 ∈ 𝑇 → 𝑥 ∈ 𝑇) |
13 | 12, 1 | eleqtrdi 2849 |
. . . . 5
⊢ (𝑥 ∈ 𝑇 → 𝑥 ∈ (𝑆 ↾t 𝐷)) |
14 | 13 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ (𝑆 ↾t 𝐷)) |
15 | | elrest 17055 |
. . . . . 6
⊢ ((𝑆 ∈ SAlg ∧ 𝐷 ∈ 𝑉) → (𝑥 ∈ (𝑆 ↾t 𝐷) ↔ ∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐷))) |
16 | 4, 5, 15 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝑆 ↾t 𝐷) ↔ ∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐷))) |
17 | 16 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑥 ∈ (𝑆 ↾t 𝐷) ↔ ∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐷))) |
18 | 14, 17 | mpbid 231 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → ∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐷)) |
19 | 4 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑆 ∈ SAlg) |
20 | 19 | 3adant3 1130 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐷)) → 𝑆 ∈ SAlg) |
21 | 5 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐷)) → 𝐷 ∈ 𝑉) |
22 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) |
23 | 19, 22 | saldifcld 43776 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (∪ 𝑆 ∖ 𝑦) ∈ 𝑆) |
24 | 23 | 3adant3 1130 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐷)) → (∪
𝑆 ∖ 𝑦) ∈ 𝑆) |
25 | | eqid 2738 |
. . . . . . . 8
⊢ ((∪ 𝑆
∖ 𝑦) ∩ 𝐷) = ((∪ 𝑆
∖ 𝑦) ∩ 𝐷) |
26 | 20, 21, 24, 25 | elrestd 42547 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐷)) → ((∪
𝑆 ∖ 𝑦) ∩ 𝐷) ∈ (𝑆 ↾t 𝐷)) |
27 | 1 | unieqi 4849 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝑇 =
∪ (𝑆 ↾t 𝐷) |
28 | 27 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∪ 𝑇 =
∪ (𝑆 ↾t 𝐷)) |
29 | 4, 5 | restuni3 42556 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∪ (𝑆
↾t 𝐷) =
(∪ 𝑆 ∩ 𝐷)) |
30 | 28, 29 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∪ 𝑇 =
(∪ 𝑆 ∩ 𝐷)) |
31 | 30 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = (𝑦 ∩ 𝐷)) → ∪ 𝑇 = (∪
𝑆 ∩ 𝐷)) |
32 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = (𝑦 ∩ 𝐷)) → 𝑥 = (𝑦 ∩ 𝐷)) |
33 | 31, 32 | difeq12d 4054 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = (𝑦 ∩ 𝐷)) → (∪
𝑇 ∖ 𝑥) = ((∪ 𝑆
∩ 𝐷) ∖ (𝑦 ∩ 𝐷))) |
34 | | indifdir 4215 |
. . . . . . . . . . . 12
⊢ ((∪ 𝑆
∖ 𝑦) ∩ 𝐷) = ((∪ 𝑆
∩ 𝐷) ∖ (𝑦 ∩ 𝐷)) |
35 | 34 | eqcomi 2747 |
. . . . . . . . . . 11
⊢ ((∪ 𝑆
∩ 𝐷) ∖ (𝑦 ∩ 𝐷)) = ((∪ 𝑆 ∖ 𝑦) ∩ 𝐷) |
36 | 35 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = (𝑦 ∩ 𝐷)) → ((∪
𝑆 ∩ 𝐷) ∖ (𝑦 ∩ 𝐷)) = ((∪ 𝑆 ∖ 𝑦) ∩ 𝐷)) |
37 | 33, 36 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = (𝑦 ∩ 𝐷)) → (∪
𝑇 ∖ 𝑥) = ((∪ 𝑆
∖ 𝑦) ∩ 𝐷)) |
38 | 1 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = (𝑦 ∩ 𝐷)) → 𝑇 = (𝑆 ↾t 𝐷)) |
39 | 37, 38 | eleq12d 2833 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = (𝑦 ∩ 𝐷)) → ((∪
𝑇 ∖ 𝑥) ∈ 𝑇 ↔ ((∪ 𝑆 ∖ 𝑦) ∩ 𝐷) ∈ (𝑆 ↾t 𝐷))) |
40 | 39 | 3adant2 1129 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐷)) → ((∪
𝑇 ∖ 𝑥) ∈ 𝑇 ↔ ((∪ 𝑆 ∖ 𝑦) ∩ 𝐷) ∈ (𝑆 ↾t 𝐷))) |
41 | 26, 40 | mpbird 256 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆 ∧ 𝑥 = (𝑦 ∩ 𝐷)) → (∪
𝑇 ∖ 𝑥) ∈ 𝑇) |
42 | 41 | 3exp 1117 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝑆 → (𝑥 = (𝑦 ∩ 𝐷) → (∪ 𝑇 ∖ 𝑥) ∈ 𝑇))) |
43 | 42 | rexlimdv 3211 |
. . . 4
⊢ (𝜑 → (∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐷) → (∪ 𝑇 ∖ 𝑥) ∈ 𝑇)) |
44 | 43 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (∃𝑦 ∈ 𝑆 𝑥 = (𝑦 ∩ 𝐷) → (∪ 𝑇 ∖ 𝑥) ∈ 𝑇)) |
45 | 18, 44 | mpd 15 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (∪ 𝑇 ∖ 𝑥) ∈ 𝑇) |
46 | 4 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑓:ℕ⟶𝑇) → 𝑆 ∈ SAlg) |
47 | 5 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑓:ℕ⟶𝑇) → 𝐷 ∈ 𝑉) |
48 | | simpr 484 |
. . 3
⊢ ((𝜑 ∧ 𝑓:ℕ⟶𝑇) → 𝑓:ℕ⟶𝑇) |
49 | 46, 47, 1, 48 | subsaliuncl 43787 |
. 2
⊢ ((𝜑 ∧ 𝑓:ℕ⟶𝑇) → ∪
𝑛 ∈ ℕ (𝑓‘𝑛) ∈ 𝑇) |
50 | 3, 10, 11, 45, 49 | issalnnd 43774 |
1
⊢ (𝜑 → 𝑇 ∈ SAlg) |