![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iotaequ | Structured version Visualization version GIF version |
Description: Theorem *14.2 in [WhiteheadRussell] p. 189. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotaequ | ⊢ (℩𝑥𝑥 = 𝑦) = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaval 6514 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 ↔ 𝑥 = 𝑦) → (℩𝑥𝑥 = 𝑦) = 𝑦) | |
2 | biid 260 | . 2 ⊢ (𝑥 = 𝑦 ↔ 𝑥 = 𝑦) | |
3 | 1, 2 | mpg 1799 | 1 ⊢ (℩𝑥𝑥 = 𝑦) = 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ℩cio 6493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-un 3953 df-in 3955 df-ss 3965 df-sn 4629 df-pr 4631 df-uni 4909 df-iota 6495 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |