Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotaequ Structured version   Visualization version   GIF version

Theorem iotaequ 44393
Description: Theorem *14.2 in [WhiteheadRussell] p. 189. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotaequ (℩𝑥𝑥 = 𝑦) = 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem iotaequ
StepHypRef Expression
1 iotaval 6539 . 2 (∀𝑥(𝑥 = 𝑦𝑥 = 𝑦) → (℩𝑥𝑥 = 𝑦) = 𝑦)
2 biid 261 . 2 (𝑥 = 𝑦𝑥 = 𝑦)
31, 2mpg 1795 1 (℩𝑥𝑥 = 𝑦) = 𝑦
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  cio 6518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-un 3981  df-ss 3993  df-sn 4649  df-pr 4651  df-uni 4932  df-iota 6520
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator