Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotaequ Structured version   Visualization version   GIF version

Theorem iotaequ 43178
Description: Theorem *14.2 in [WhiteheadRussell] p. 189. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotaequ (℩𝑥𝑥 = 𝑦) = 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem iotaequ
StepHypRef Expression
1 iotaval 6514 . 2 (∀𝑥(𝑥 = 𝑦𝑥 = 𝑦) → (℩𝑥𝑥 = 𝑦) = 𝑦)
2 biid 260 . 2 (𝑥 = 𝑦𝑥 = 𝑦)
31, 2mpg 1799 1 (℩𝑥𝑥 = 𝑦) = 𝑦
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  cio 6493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-un 3953  df-in 3955  df-ss 3965  df-sn 4629  df-pr 4631  df-uni 4909  df-iota 6495
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator