Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iotaequ | Structured version Visualization version GIF version |
Description: Theorem *14.2 in [WhiteheadRussell] p. 189. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotaequ | ⊢ (℩𝑥𝑥 = 𝑦) = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaval 6354 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 ↔ 𝑥 = 𝑦) → (℩𝑥𝑥 = 𝑦) = 𝑦) | |
2 | biid 264 | . 2 ⊢ (𝑥 = 𝑦 ↔ 𝑥 = 𝑦) | |
3 | 1, 2 | mpg 1805 | 1 ⊢ (℩𝑥𝑥 = 𝑦) = 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1543 ℩cio 6336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3410 df-un 3871 df-in 3873 df-ss 3883 df-sn 4542 df-pr 4544 df-uni 4820 df-iota 6338 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |