Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum4primesoddALTV Structured version   Visualization version   GIF version

Theorem nnsum4primesoddALTV 44315
Description: If the (strong) ternary Goldbach conjecture is valid, then every odd integer greater than 7 is the sum of 3 primes. (Contributed by AV, 26-Jul-2020.)
Assertion
Ref Expression
nnsum4primesoddALTV (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
Distinct variable group:   𝑓,𝑁,𝑘,𝑚

Proof of Theorem nnsum4primesoddALTV
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5034 . . . . . 6 (𝑚 = 𝑁 → (7 < 𝑚 ↔ 7 < 𝑁))
2 eleq1 2877 . . . . . 6 (𝑚 = 𝑁 → (𝑚 ∈ GoldbachOdd ↔ 𝑁 ∈ GoldbachOdd ))
31, 2imbi12d 348 . . . . 5 (𝑚 = 𝑁 → ((7 < 𝑚𝑚 ∈ GoldbachOdd ) ↔ (7 < 𝑁𝑁 ∈ GoldbachOdd )))
43rspcv 3566 . . . 4 (𝑁 ∈ Odd → (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → (7 < 𝑁𝑁 ∈ GoldbachOdd )))
54adantl 485 . . 3 ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → (7 < 𝑁𝑁 ∈ GoldbachOdd )))
6 eluz2 12237 . . . . . 6 (𝑁 ∈ (ℤ‘8) ↔ (8 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 8 ≤ 𝑁))
7 7lt8 11817 . . . . . . . . 9 7 < 8
8 7re 11718 . . . . . . . . . . 11 7 ∈ ℝ
98a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℤ → 7 ∈ ℝ)
10 8re 11721 . . . . . . . . . . 11 8 ∈ ℝ
1110a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℤ → 8 ∈ ℝ)
12 zre 11973 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
13 ltletr 10721 . . . . . . . . . 10 ((7 ∈ ℝ ∧ 8 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((7 < 8 ∧ 8 ≤ 𝑁) → 7 < 𝑁))
149, 11, 12, 13syl3anc 1368 . . . . . . . . 9 (𝑁 ∈ ℤ → ((7 < 8 ∧ 8 ≤ 𝑁) → 7 < 𝑁))
157, 14mpani 695 . . . . . . . 8 (𝑁 ∈ ℤ → (8 ≤ 𝑁 → 7 < 𝑁))
1615imp 410 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 8 ≤ 𝑁) → 7 < 𝑁)
17163adant1 1127 . . . . . 6 ((8 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 8 ≤ 𝑁) → 7 < 𝑁)
186, 17sylbi 220 . . . . 5 (𝑁 ∈ (ℤ‘8) → 7 < 𝑁)
1918adantr 484 . . . 4 ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → 7 < 𝑁)
20 pm2.27 42 . . . 4 (7 < 𝑁 → ((7 < 𝑁𝑁 ∈ GoldbachOdd ) → 𝑁 ∈ GoldbachOdd ))
2119, 20syl 17 . . 3 ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → ((7 < 𝑁𝑁 ∈ GoldbachOdd ) → 𝑁 ∈ GoldbachOdd ))
22 isgbo 44271 . . . . 5 (𝑁 ∈ GoldbachOdd ↔ (𝑁 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑁 = ((𝑝 + 𝑞) + 𝑟))))
23 1ex 10626 . . . . . . . . . . . . . . . 16 1 ∈ V
24 2ex 11702 . . . . . . . . . . . . . . . 16 2 ∈ V
25 3ex 11707 . . . . . . . . . . . . . . . 16 3 ∈ V
26 vex 3444 . . . . . . . . . . . . . . . 16 𝑝 ∈ V
27 vex 3444 . . . . . . . . . . . . . . . 16 𝑞 ∈ V
28 vex 3444 . . . . . . . . . . . . . . . 16 𝑟 ∈ V
29 1ne2 11833 . . . . . . . . . . . . . . . 16 1 ≠ 2
30 1re 10630 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
31 1lt3 11798 . . . . . . . . . . . . . . . . 17 1 < 3
3230, 31ltneii 10742 . . . . . . . . . . . . . . . 16 1 ≠ 3
33 2re 11699 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
34 2lt3 11797 . . . . . . . . . . . . . . . . 17 2 < 3
3533, 34ltneii 10742 . . . . . . . . . . . . . . . 16 2 ≠ 3
3623, 24, 25, 26, 27, 28, 29, 32, 35ftp 6896 . . . . . . . . . . . . . . 15 {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:{1, 2, 3}⟶{𝑝, 𝑞, 𝑟}
3736a1i 11 . . . . . . . . . . . . . 14 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:{1, 2, 3}⟶{𝑝, 𝑞, 𝑟})
38 1p2e3 11768 . . . . . . . . . . . . . . . . . 18 (1 + 2) = 3
3938eqcomi 2807 . . . . . . . . . . . . . . . . 17 3 = (1 + 2)
4039oveq2i 7146 . . . . . . . . . . . . . . . 16 (1...3) = (1...(1 + 2))
41 1z 12000 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
42 fztp 12958 . . . . . . . . . . . . . . . . 17 (1 ∈ ℤ → (1...(1 + 2)) = {1, (1 + 1), (1 + 2)})
4341, 42ax-mp 5 . . . . . . . . . . . . . . . 16 (1...(1 + 2)) = {1, (1 + 1), (1 + 2)}
44 eqid 2798 . . . . . . . . . . . . . . . . 17 1 = 1
45 id 22 . . . . . . . . . . . . . . . . . 18 (1 = 1 → 1 = 1)
46 1p1e2 11750 . . . . . . . . . . . . . . . . . . 19 (1 + 1) = 2
4746a1i 11 . . . . . . . . . . . . . . . . . 18 (1 = 1 → (1 + 1) = 2)
4838a1i 11 . . . . . . . . . . . . . . . . . 18 (1 = 1 → (1 + 2) = 3)
4945, 47, 48tpeq123d 4644 . . . . . . . . . . . . . . . . 17 (1 = 1 → {1, (1 + 1), (1 + 2)} = {1, 2, 3})
5044, 49ax-mp 5 . . . . . . . . . . . . . . . 16 {1, (1 + 1), (1 + 2)} = {1, 2, 3}
5140, 43, 503eqtri 2825 . . . . . . . . . . . . . . 15 (1...3) = {1, 2, 3}
5251feq2i 6479 . . . . . . . . . . . . . 14 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:(1...3)⟶{𝑝, 𝑞, 𝑟} ↔ {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:{1, 2, 3}⟶{𝑝, 𝑞, 𝑟})
5337, 52sylibr 237 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:(1...3)⟶{𝑝, 𝑞, 𝑟})
54 df-3an 1086 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ↔ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ))
5526, 27, 28tpss 4728 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ↔ {𝑝, 𝑞, 𝑟} ⊆ ℙ)
5654, 55sylbb1 240 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {𝑝, 𝑞, 𝑟} ⊆ ℙ)
5753, 56fssd 6502 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:(1...3)⟶ℙ)
58 prmex 16011 . . . . . . . . . . . . . 14 ℙ ∈ V
59 ovex 7168 . . . . . . . . . . . . . 14 (1...3) ∈ V
6058, 59pm3.2i 474 . . . . . . . . . . . . 13 (ℙ ∈ V ∧ (1...3) ∈ V)
61 elmapg 8402 . . . . . . . . . . . . 13 ((ℙ ∈ V ∧ (1...3) ∈ V) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} ∈ (ℙ ↑m (1...3)) ↔ {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:(1...3)⟶ℙ))
6260, 61mp1i 13 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} ∈ (ℙ ↑m (1...3)) ↔ {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:(1...3)⟶ℙ))
6357, 62mpbird 260 . . . . . . . . . . 11 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} ∈ (ℙ ↑m (1...3)))
64 fveq1 6644 . . . . . . . . . . . . . 14 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} → (𝑓𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘))
6564sumeq2sdv 15053 . . . . . . . . . . . . 13 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} → Σ𝑘 ∈ (1...3)(𝑓𝑘) = Σ𝑘 ∈ (1...3)({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘))
6665eqeq2d 2809 . . . . . . . . . . . 12 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} → (((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓𝑘) ↔ ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘)))
6766adantl 485 . . . . . . . . . . 11 ((((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) ∧ 𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}) → (((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓𝑘) ↔ ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘)))
6851a1i 11 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (1...3) = {1, 2, 3})
6968sumeq1d 15050 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → Σ𝑘 ∈ (1...3)({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = Σ𝑘 ∈ {1, 2, 3} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘))
70 fveq2 6645 . . . . . . . . . . . . . 14 (𝑘 = 1 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘1))
7123, 26fvtp1 6934 . . . . . . . . . . . . . . 15 ((1 ≠ 2 ∧ 1 ≠ 3) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘1) = 𝑝)
7229, 32, 71mp2an 691 . . . . . . . . . . . . . 14 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘1) = 𝑝
7370, 72eqtrdi 2849 . . . . . . . . . . . . 13 (𝑘 = 1 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = 𝑝)
74 fveq2 6645 . . . . . . . . . . . . . 14 (𝑘 = 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘2))
7524, 27fvtp2 6935 . . . . . . . . . . . . . . 15 ((1 ≠ 2 ∧ 2 ≠ 3) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘2) = 𝑞)
7629, 35, 75mp2an 691 . . . . . . . . . . . . . 14 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘2) = 𝑞
7774, 76eqtrdi 2849 . . . . . . . . . . . . 13 (𝑘 = 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = 𝑞)
78 fveq2 6645 . . . . . . . . . . . . . 14 (𝑘 = 3 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘3))
7925, 28fvtp3 6936 . . . . . . . . . . . . . . 15 ((1 ≠ 3 ∧ 2 ≠ 3) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘3) = 𝑟)
8032, 35, 79mp2an 691 . . . . . . . . . . . . . 14 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘3) = 𝑟
8178, 80eqtrdi 2849 . . . . . . . . . . . . 13 (𝑘 = 3 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = 𝑟)
82 prmz 16009 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
8382zcnd 12076 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → 𝑝 ∈ ℂ)
84 prmz 16009 . . . . . . . . . . . . . . . 16 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
8584zcnd 12076 . . . . . . . . . . . . . . 15 (𝑞 ∈ ℙ → 𝑞 ∈ ℂ)
86 prmz 16009 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ℙ → 𝑟 ∈ ℤ)
8786zcnd 12076 . . . . . . . . . . . . . . 15 (𝑟 ∈ ℙ → 𝑟 ∈ ℂ)
8883, 85, 873anim123i 1148 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) → (𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ ∧ 𝑟 ∈ ℂ))
89883expa 1115 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ ∧ 𝑟 ∈ ℂ))
90 2z 12002 . . . . . . . . . . . . . . 15 2 ∈ ℤ
91 3z 12003 . . . . . . . . . . . . . . 15 3 ∈ ℤ
9241, 90, 913pm3.2i 1336 . . . . . . . . . . . . . 14 (1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ)
9392a1i 11 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ))
9429a1i 11 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → 1 ≠ 2)
9532a1i 11 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → 1 ≠ 3)
9635a1i 11 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → 2 ≠ 3)
9773, 77, 81, 89, 93, 94, 95, 96sumtp 15096 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → Σ𝑘 ∈ {1, 2, 3} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = ((𝑝 + 𝑞) + 𝑟))
9869, 97eqtr2d 2834 . . . . . . . . . . 11 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘))
9963, 67, 98rspcedvd 3574 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → ∃𝑓 ∈ (ℙ ↑m (1...3))((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓𝑘))
100 eqeq1 2802 . . . . . . . . . . 11 (𝑁 = ((𝑝 + 𝑞) + 𝑟) → (𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘) ↔ ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
101100rexbidv 3256 . . . . . . . . . 10 (𝑁 = ((𝑝 + 𝑞) + 𝑟) → (∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘) ↔ ∃𝑓 ∈ (ℙ ↑m (1...3))((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
10299, 101syl5ibrcom 250 . . . . . . . . 9 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑁 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
103102adantld 494 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑁 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
104103rexlimdva 3243 . . . . . . 7 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑁 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
105104rexlimivv 3251 . . . . . 6 (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑁 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘))
106105adantl 485 . . . . 5 ((𝑁 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑁 = ((𝑝 + 𝑞) + 𝑟))) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘))
10722, 106sylbi 220 . . . 4 (𝑁 ∈ GoldbachOdd → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘))
108107a1i 11 . . 3 ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → (𝑁 ∈ GoldbachOdd → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
1095, 21, 1083syld 60 . 2 ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
110109com12 32 1 (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  wss 3881  {ctp 4529  cop 4531   class class class wbr 5030  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  cc 10524  cr 10525  1c1 10527   + caddc 10529   < clt 10664  cle 10665  2c2 11680  3c3 11681  7c7 11685  8c8 11686  cz 11969  cuz 12231  ...cfz 12885  Σcsu 15034  cprime 16005   Odd codd 44143   GoldbachOdd cgbo 44265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-prm 16006  df-gbo 44268
This theorem is referenced by:  nnsum4primesevenALTV  44319
  Copyright terms: Public domain W3C validator