Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum4primesoddALTV Structured version   Visualization version   GIF version

Theorem nnsum4primesoddALTV 47921
Description: If the (strong) ternary Goldbach conjecture is valid, then every odd integer greater than 7 is the sum of 3 primes. (Contributed by AV, 26-Jul-2020.)
Assertion
Ref Expression
nnsum4primesoddALTV (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
Distinct variable group:   𝑓,𝑁,𝑘,𝑚

Proof of Theorem nnsum4primesoddALTV
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5097 . . . . . 6 (𝑚 = 𝑁 → (7 < 𝑚 ↔ 7 < 𝑁))
2 eleq1 2821 . . . . . 6 (𝑚 = 𝑁 → (𝑚 ∈ GoldbachOdd ↔ 𝑁 ∈ GoldbachOdd ))
31, 2imbi12d 344 . . . . 5 (𝑚 = 𝑁 → ((7 < 𝑚𝑚 ∈ GoldbachOdd ) ↔ (7 < 𝑁𝑁 ∈ GoldbachOdd )))
43rspcv 3569 . . . 4 (𝑁 ∈ Odd → (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → (7 < 𝑁𝑁 ∈ GoldbachOdd )))
54adantl 481 . . 3 ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → (7 < 𝑁𝑁 ∈ GoldbachOdd )))
6 eluz2 12744 . . . . . 6 (𝑁 ∈ (ℤ‘8) ↔ (8 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 8 ≤ 𝑁))
7 7lt8 12319 . . . . . . . . 9 7 < 8
8 7re 12225 . . . . . . . . . . 11 7 ∈ ℝ
98a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℤ → 7 ∈ ℝ)
10 8re 12228 . . . . . . . . . . 11 8 ∈ ℝ
1110a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℤ → 8 ∈ ℝ)
12 zre 12479 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
13 ltletr 11212 . . . . . . . . . 10 ((7 ∈ ℝ ∧ 8 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((7 < 8 ∧ 8 ≤ 𝑁) → 7 < 𝑁))
149, 11, 12, 13syl3anc 1373 . . . . . . . . 9 (𝑁 ∈ ℤ → ((7 < 8 ∧ 8 ≤ 𝑁) → 7 < 𝑁))
157, 14mpani 696 . . . . . . . 8 (𝑁 ∈ ℤ → (8 ≤ 𝑁 → 7 < 𝑁))
1615imp 406 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 8 ≤ 𝑁) → 7 < 𝑁)
17163adant1 1130 . . . . . 6 ((8 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 8 ≤ 𝑁) → 7 < 𝑁)
186, 17sylbi 217 . . . . 5 (𝑁 ∈ (ℤ‘8) → 7 < 𝑁)
1918adantr 480 . . . 4 ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → 7 < 𝑁)
20 pm2.27 42 . . . 4 (7 < 𝑁 → ((7 < 𝑁𝑁 ∈ GoldbachOdd ) → 𝑁 ∈ GoldbachOdd ))
2119, 20syl 17 . . 3 ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → ((7 < 𝑁𝑁 ∈ GoldbachOdd ) → 𝑁 ∈ GoldbachOdd ))
22 isgbo 47877 . . . . 5 (𝑁 ∈ GoldbachOdd ↔ (𝑁 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑁 = ((𝑝 + 𝑞) + 𝑟))))
23 1ex 11115 . . . . . . . . . . . . . . . 16 1 ∈ V
24 2ex 12209 . . . . . . . . . . . . . . . 16 2 ∈ V
25 3ex 12214 . . . . . . . . . . . . . . . 16 3 ∈ V
26 vex 3441 . . . . . . . . . . . . . . . 16 𝑝 ∈ V
27 vex 3441 . . . . . . . . . . . . . . . 16 𝑞 ∈ V
28 vex 3441 . . . . . . . . . . . . . . . 16 𝑟 ∈ V
29 1ne2 12335 . . . . . . . . . . . . . . . 16 1 ≠ 2
30 1re 11119 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
31 1lt3 12300 . . . . . . . . . . . . . . . . 17 1 < 3
3230, 31ltneii 11233 . . . . . . . . . . . . . . . 16 1 ≠ 3
33 2re 12206 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
34 2lt3 12299 . . . . . . . . . . . . . . . . 17 2 < 3
3533, 34ltneii 11233 . . . . . . . . . . . . . . . 16 2 ≠ 3
3623, 24, 25, 26, 27, 28, 29, 32, 35ftp 7096 . . . . . . . . . . . . . . 15 {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:{1, 2, 3}⟶{𝑝, 𝑞, 𝑟}
3736a1i 11 . . . . . . . . . . . . . 14 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:{1, 2, 3}⟶{𝑝, 𝑞, 𝑟})
38 1p2e3 12270 . . . . . . . . . . . . . . . . . 18 (1 + 2) = 3
3938eqcomi 2742 . . . . . . . . . . . . . . . . 17 3 = (1 + 2)
4039oveq2i 7363 . . . . . . . . . . . . . . . 16 (1...3) = (1...(1 + 2))
41 1z 12508 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
42 fztp 13482 . . . . . . . . . . . . . . . . 17 (1 ∈ ℤ → (1...(1 + 2)) = {1, (1 + 1), (1 + 2)})
4341, 42ax-mp 5 . . . . . . . . . . . . . . . 16 (1...(1 + 2)) = {1, (1 + 1), (1 + 2)}
44 eqid 2733 . . . . . . . . . . . . . . . . 17 1 = 1
45 id 22 . . . . . . . . . . . . . . . . . 18 (1 = 1 → 1 = 1)
46 1p1e2 12252 . . . . . . . . . . . . . . . . . . 19 (1 + 1) = 2
4746a1i 11 . . . . . . . . . . . . . . . . . 18 (1 = 1 → (1 + 1) = 2)
4838a1i 11 . . . . . . . . . . . . . . . . . 18 (1 = 1 → (1 + 2) = 3)
4945, 47, 48tpeq123d 4700 . . . . . . . . . . . . . . . . 17 (1 = 1 → {1, (1 + 1), (1 + 2)} = {1, 2, 3})
5044, 49ax-mp 5 . . . . . . . . . . . . . . . 16 {1, (1 + 1), (1 + 2)} = {1, 2, 3}
5140, 43, 503eqtri 2760 . . . . . . . . . . . . . . 15 (1...3) = {1, 2, 3}
5251feq2i 6648 . . . . . . . . . . . . . 14 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:(1...3)⟶{𝑝, 𝑞, 𝑟} ↔ {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:{1, 2, 3}⟶{𝑝, 𝑞, 𝑟})
5337, 52sylibr 234 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:(1...3)⟶{𝑝, 𝑞, 𝑟})
54 df-3an 1088 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ↔ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ))
5526, 27, 28tpss 4788 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ↔ {𝑝, 𝑞, 𝑟} ⊆ ℙ)
5654, 55sylbb1 237 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {𝑝, 𝑞, 𝑟} ⊆ ℙ)
5753, 56fssd 6673 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:(1...3)⟶ℙ)
58 prmex 16590 . . . . . . . . . . . . . 14 ℙ ∈ V
59 ovex 7385 . . . . . . . . . . . . . 14 (1...3) ∈ V
6058, 59pm3.2i 470 . . . . . . . . . . . . 13 (ℙ ∈ V ∧ (1...3) ∈ V)
61 elmapg 8769 . . . . . . . . . . . . 13 ((ℙ ∈ V ∧ (1...3) ∈ V) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} ∈ (ℙ ↑m (1...3)) ↔ {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:(1...3)⟶ℙ))
6260, 61mp1i 13 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} ∈ (ℙ ↑m (1...3)) ↔ {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:(1...3)⟶ℙ))
6357, 62mpbird 257 . . . . . . . . . . 11 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} ∈ (ℙ ↑m (1...3)))
64 fveq1 6827 . . . . . . . . . . . . . 14 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} → (𝑓𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘))
6564sumeq2sdv 15612 . . . . . . . . . . . . 13 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} → Σ𝑘 ∈ (1...3)(𝑓𝑘) = Σ𝑘 ∈ (1...3)({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘))
6665eqeq2d 2744 . . . . . . . . . . . 12 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} → (((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓𝑘) ↔ ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘)))
6766adantl 481 . . . . . . . . . . 11 ((((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) ∧ 𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}) → (((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓𝑘) ↔ ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘)))
6851a1i 11 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (1...3) = {1, 2, 3})
6968sumeq1d 15609 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → Σ𝑘 ∈ (1...3)({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = Σ𝑘 ∈ {1, 2, 3} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘))
70 fveq2 6828 . . . . . . . . . . . . . 14 (𝑘 = 1 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘1))
7123, 26fvtp1 7135 . . . . . . . . . . . . . . 15 ((1 ≠ 2 ∧ 1 ≠ 3) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘1) = 𝑝)
7229, 32, 71mp2an 692 . . . . . . . . . . . . . 14 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘1) = 𝑝
7370, 72eqtrdi 2784 . . . . . . . . . . . . 13 (𝑘 = 1 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = 𝑝)
74 fveq2 6828 . . . . . . . . . . . . . 14 (𝑘 = 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘2))
7524, 27fvtp2 7136 . . . . . . . . . . . . . . 15 ((1 ≠ 2 ∧ 2 ≠ 3) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘2) = 𝑞)
7629, 35, 75mp2an 692 . . . . . . . . . . . . . 14 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘2) = 𝑞
7774, 76eqtrdi 2784 . . . . . . . . . . . . 13 (𝑘 = 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = 𝑞)
78 fveq2 6828 . . . . . . . . . . . . . 14 (𝑘 = 3 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘3))
7925, 28fvtp3 7137 . . . . . . . . . . . . . . 15 ((1 ≠ 3 ∧ 2 ≠ 3) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘3) = 𝑟)
8032, 35, 79mp2an 692 . . . . . . . . . . . . . 14 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘3) = 𝑟
8178, 80eqtrdi 2784 . . . . . . . . . . . . 13 (𝑘 = 3 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = 𝑟)
82 prmz 16588 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
8382zcnd 12584 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → 𝑝 ∈ ℂ)
84 prmz 16588 . . . . . . . . . . . . . . . 16 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
8584zcnd 12584 . . . . . . . . . . . . . . 15 (𝑞 ∈ ℙ → 𝑞 ∈ ℂ)
86 prmz 16588 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ℙ → 𝑟 ∈ ℤ)
8786zcnd 12584 . . . . . . . . . . . . . . 15 (𝑟 ∈ ℙ → 𝑟 ∈ ℂ)
8883, 85, 873anim123i 1151 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) → (𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ ∧ 𝑟 ∈ ℂ))
89883expa 1118 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ ∧ 𝑟 ∈ ℂ))
90 2z 12510 . . . . . . . . . . . . . . 15 2 ∈ ℤ
91 3z 12511 . . . . . . . . . . . . . . 15 3 ∈ ℤ
9241, 90, 913pm3.2i 1340 . . . . . . . . . . . . . 14 (1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ)
9392a1i 11 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ))
9429a1i 11 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → 1 ≠ 2)
9532a1i 11 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → 1 ≠ 3)
9635a1i 11 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → 2 ≠ 3)
9773, 77, 81, 89, 93, 94, 95, 96sumtp 15658 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → Σ𝑘 ∈ {1, 2, 3} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = ((𝑝 + 𝑞) + 𝑟))
9869, 97eqtr2d 2769 . . . . . . . . . . 11 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘))
9963, 67, 98rspcedvd 3575 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → ∃𝑓 ∈ (ℙ ↑m (1...3))((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓𝑘))
100 eqeq1 2737 . . . . . . . . . . 11 (𝑁 = ((𝑝 + 𝑞) + 𝑟) → (𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘) ↔ ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
101100rexbidv 3157 . . . . . . . . . 10 (𝑁 = ((𝑝 + 𝑞) + 𝑟) → (∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘) ↔ ∃𝑓 ∈ (ℙ ↑m (1...3))((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
10299, 101syl5ibrcom 247 . . . . . . . . 9 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑁 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
103102adantld 490 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑁 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
104103rexlimdva 3134 . . . . . . 7 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑁 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
105104rexlimivv 3175 . . . . . 6 (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑁 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘))
106105adantl 481 . . . . 5 ((𝑁 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑁 = ((𝑝 + 𝑞) + 𝑟))) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘))
10722, 106sylbi 217 . . . 4 (𝑁 ∈ GoldbachOdd → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘))
108107a1i 11 . . 3 ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → (𝑁 ∈ GoldbachOdd → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
1095, 21, 1083syld 60 . 2 ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
110109com12 32 1 (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  Vcvv 3437  wss 3898  {ctp 4579  cop 4581   class class class wbr 5093  wf 6482  cfv 6486  (class class class)co 7352  m cmap 8756  cc 11011  cr 11012  1c1 11014   + caddc 11016   < clt 11153  cle 11154  2c2 12187  3c3 12188  7c7 12192  8c8 12193  cz 12475  cuz 12738  ...cfz 13409  Σcsu 15595  cprime 16584   Odd codd 47749   GoldbachOdd cgbo 47871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-sum 15596  df-prm 16585  df-gbo 47874
This theorem is referenced by:  nnsum4primesevenALTV  47925
  Copyright terms: Public domain W3C validator