Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum4primesoddALTV Structured version   Visualization version   GIF version

Theorem nnsum4primesoddALTV 47060
Description: If the (strong) ternary Goldbach conjecture is valid, then every odd integer greater than 7 is the sum of 3 primes. (Contributed by AV, 26-Jul-2020.)
Assertion
Ref Expression
nnsum4primesoddALTV (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
Distinct variable group:   𝑓,𝑁,𝑘,𝑚

Proof of Theorem nnsum4primesoddALTV
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5146 . . . . . 6 (𝑚 = 𝑁 → (7 < 𝑚 ↔ 7 < 𝑁))
2 eleq1 2816 . . . . . 6 (𝑚 = 𝑁 → (𝑚 ∈ GoldbachOdd ↔ 𝑁 ∈ GoldbachOdd ))
31, 2imbi12d 344 . . . . 5 (𝑚 = 𝑁 → ((7 < 𝑚𝑚 ∈ GoldbachOdd ) ↔ (7 < 𝑁𝑁 ∈ GoldbachOdd )))
43rspcv 3603 . . . 4 (𝑁 ∈ Odd → (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → (7 < 𝑁𝑁 ∈ GoldbachOdd )))
54adantl 481 . . 3 ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → (7 < 𝑁𝑁 ∈ GoldbachOdd )))
6 eluz2 12850 . . . . . 6 (𝑁 ∈ (ℤ‘8) ↔ (8 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 8 ≤ 𝑁))
7 7lt8 12426 . . . . . . . . 9 7 < 8
8 7re 12327 . . . . . . . . . . 11 7 ∈ ℝ
98a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℤ → 7 ∈ ℝ)
10 8re 12330 . . . . . . . . . . 11 8 ∈ ℝ
1110a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℤ → 8 ∈ ℝ)
12 zre 12584 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
13 ltletr 11328 . . . . . . . . . 10 ((7 ∈ ℝ ∧ 8 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((7 < 8 ∧ 8 ≤ 𝑁) → 7 < 𝑁))
149, 11, 12, 13syl3anc 1369 . . . . . . . . 9 (𝑁 ∈ ℤ → ((7 < 8 ∧ 8 ≤ 𝑁) → 7 < 𝑁))
157, 14mpani 695 . . . . . . . 8 (𝑁 ∈ ℤ → (8 ≤ 𝑁 → 7 < 𝑁))
1615imp 406 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 8 ≤ 𝑁) → 7 < 𝑁)
17163adant1 1128 . . . . . 6 ((8 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 8 ≤ 𝑁) → 7 < 𝑁)
186, 17sylbi 216 . . . . 5 (𝑁 ∈ (ℤ‘8) → 7 < 𝑁)
1918adantr 480 . . . 4 ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → 7 < 𝑁)
20 pm2.27 42 . . . 4 (7 < 𝑁 → ((7 < 𝑁𝑁 ∈ GoldbachOdd ) → 𝑁 ∈ GoldbachOdd ))
2119, 20syl 17 . . 3 ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → ((7 < 𝑁𝑁 ∈ GoldbachOdd ) → 𝑁 ∈ GoldbachOdd ))
22 isgbo 47016 . . . . 5 (𝑁 ∈ GoldbachOdd ↔ (𝑁 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑁 = ((𝑝 + 𝑞) + 𝑟))))
23 1ex 11232 . . . . . . . . . . . . . . . 16 1 ∈ V
24 2ex 12311 . . . . . . . . . . . . . . . 16 2 ∈ V
25 3ex 12316 . . . . . . . . . . . . . . . 16 3 ∈ V
26 vex 3473 . . . . . . . . . . . . . . . 16 𝑝 ∈ V
27 vex 3473 . . . . . . . . . . . . . . . 16 𝑞 ∈ V
28 vex 3473 . . . . . . . . . . . . . . . 16 𝑟 ∈ V
29 1ne2 12442 . . . . . . . . . . . . . . . 16 1 ≠ 2
30 1re 11236 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
31 1lt3 12407 . . . . . . . . . . . . . . . . 17 1 < 3
3230, 31ltneii 11349 . . . . . . . . . . . . . . . 16 1 ≠ 3
33 2re 12308 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
34 2lt3 12406 . . . . . . . . . . . . . . . . 17 2 < 3
3533, 34ltneii 11349 . . . . . . . . . . . . . . . 16 2 ≠ 3
3623, 24, 25, 26, 27, 28, 29, 32, 35ftp 7160 . . . . . . . . . . . . . . 15 {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:{1, 2, 3}⟶{𝑝, 𝑞, 𝑟}
3736a1i 11 . . . . . . . . . . . . . 14 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:{1, 2, 3}⟶{𝑝, 𝑞, 𝑟})
38 1p2e3 12377 . . . . . . . . . . . . . . . . . 18 (1 + 2) = 3
3938eqcomi 2736 . . . . . . . . . . . . . . . . 17 3 = (1 + 2)
4039oveq2i 7425 . . . . . . . . . . . . . . . 16 (1...3) = (1...(1 + 2))
41 1z 12614 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
42 fztp 13581 . . . . . . . . . . . . . . . . 17 (1 ∈ ℤ → (1...(1 + 2)) = {1, (1 + 1), (1 + 2)})
4341, 42ax-mp 5 . . . . . . . . . . . . . . . 16 (1...(1 + 2)) = {1, (1 + 1), (1 + 2)}
44 eqid 2727 . . . . . . . . . . . . . . . . 17 1 = 1
45 id 22 . . . . . . . . . . . . . . . . . 18 (1 = 1 → 1 = 1)
46 1p1e2 12359 . . . . . . . . . . . . . . . . . . 19 (1 + 1) = 2
4746a1i 11 . . . . . . . . . . . . . . . . . 18 (1 = 1 → (1 + 1) = 2)
4838a1i 11 . . . . . . . . . . . . . . . . . 18 (1 = 1 → (1 + 2) = 3)
4945, 47, 48tpeq123d 4748 . . . . . . . . . . . . . . . . 17 (1 = 1 → {1, (1 + 1), (1 + 2)} = {1, 2, 3})
5044, 49ax-mp 5 . . . . . . . . . . . . . . . 16 {1, (1 + 1), (1 + 2)} = {1, 2, 3}
5140, 43, 503eqtri 2759 . . . . . . . . . . . . . . 15 (1...3) = {1, 2, 3}
5251feq2i 6708 . . . . . . . . . . . . . 14 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:(1...3)⟶{𝑝, 𝑞, 𝑟} ↔ {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:{1, 2, 3}⟶{𝑝, 𝑞, 𝑟})
5337, 52sylibr 233 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:(1...3)⟶{𝑝, 𝑞, 𝑟})
54 df-3an 1087 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ↔ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ))
5526, 27, 28tpss 4834 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ↔ {𝑝, 𝑞, 𝑟} ⊆ ℙ)
5654, 55sylbb1 236 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {𝑝, 𝑞, 𝑟} ⊆ ℙ)
5753, 56fssd 6734 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:(1...3)⟶ℙ)
58 prmex 16639 . . . . . . . . . . . . . 14 ℙ ∈ V
59 ovex 7447 . . . . . . . . . . . . . 14 (1...3) ∈ V
6058, 59pm3.2i 470 . . . . . . . . . . . . 13 (ℙ ∈ V ∧ (1...3) ∈ V)
61 elmapg 8849 . . . . . . . . . . . . 13 ((ℙ ∈ V ∧ (1...3) ∈ V) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} ∈ (ℙ ↑m (1...3)) ↔ {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:(1...3)⟶ℙ))
6260, 61mp1i 13 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} ∈ (ℙ ↑m (1...3)) ↔ {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:(1...3)⟶ℙ))
6357, 62mpbird 257 . . . . . . . . . . 11 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} ∈ (ℙ ↑m (1...3)))
64 fveq1 6890 . . . . . . . . . . . . . 14 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} → (𝑓𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘))
6564sumeq2sdv 15674 . . . . . . . . . . . . 13 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} → Σ𝑘 ∈ (1...3)(𝑓𝑘) = Σ𝑘 ∈ (1...3)({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘))
6665eqeq2d 2738 . . . . . . . . . . . 12 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} → (((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓𝑘) ↔ ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘)))
6766adantl 481 . . . . . . . . . . 11 ((((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) ∧ 𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}) → (((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓𝑘) ↔ ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘)))
6851a1i 11 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (1...3) = {1, 2, 3})
6968sumeq1d 15671 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → Σ𝑘 ∈ (1...3)({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = Σ𝑘 ∈ {1, 2, 3} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘))
70 fveq2 6891 . . . . . . . . . . . . . 14 (𝑘 = 1 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘1))
7123, 26fvtp1 7201 . . . . . . . . . . . . . . 15 ((1 ≠ 2 ∧ 1 ≠ 3) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘1) = 𝑝)
7229, 32, 71mp2an 691 . . . . . . . . . . . . . 14 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘1) = 𝑝
7370, 72eqtrdi 2783 . . . . . . . . . . . . 13 (𝑘 = 1 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = 𝑝)
74 fveq2 6891 . . . . . . . . . . . . . 14 (𝑘 = 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘2))
7524, 27fvtp2 7202 . . . . . . . . . . . . . . 15 ((1 ≠ 2 ∧ 2 ≠ 3) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘2) = 𝑞)
7629, 35, 75mp2an 691 . . . . . . . . . . . . . 14 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘2) = 𝑞
7774, 76eqtrdi 2783 . . . . . . . . . . . . 13 (𝑘 = 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = 𝑞)
78 fveq2 6891 . . . . . . . . . . . . . 14 (𝑘 = 3 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘3))
7925, 28fvtp3 7203 . . . . . . . . . . . . . . 15 ((1 ≠ 3 ∧ 2 ≠ 3) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘3) = 𝑟)
8032, 35, 79mp2an 691 . . . . . . . . . . . . . 14 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘3) = 𝑟
8178, 80eqtrdi 2783 . . . . . . . . . . . . 13 (𝑘 = 3 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = 𝑟)
82 prmz 16637 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
8382zcnd 12689 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → 𝑝 ∈ ℂ)
84 prmz 16637 . . . . . . . . . . . . . . . 16 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
8584zcnd 12689 . . . . . . . . . . . . . . 15 (𝑞 ∈ ℙ → 𝑞 ∈ ℂ)
86 prmz 16637 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ℙ → 𝑟 ∈ ℤ)
8786zcnd 12689 . . . . . . . . . . . . . . 15 (𝑟 ∈ ℙ → 𝑟 ∈ ℂ)
8883, 85, 873anim123i 1149 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) → (𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ ∧ 𝑟 ∈ ℂ))
89883expa 1116 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ ∧ 𝑟 ∈ ℂ))
90 2z 12616 . . . . . . . . . . . . . . 15 2 ∈ ℤ
91 3z 12617 . . . . . . . . . . . . . . 15 3 ∈ ℤ
9241, 90, 913pm3.2i 1337 . . . . . . . . . . . . . 14 (1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ)
9392a1i 11 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ))
9429a1i 11 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → 1 ≠ 2)
9532a1i 11 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → 1 ≠ 3)
9635a1i 11 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → 2 ≠ 3)
9773, 77, 81, 89, 93, 94, 95, 96sumtp 15719 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → Σ𝑘 ∈ {1, 2, 3} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = ((𝑝 + 𝑞) + 𝑟))
9869, 97eqtr2d 2768 . . . . . . . . . . 11 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘))
9963, 67, 98rspcedvd 3609 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → ∃𝑓 ∈ (ℙ ↑m (1...3))((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓𝑘))
100 eqeq1 2731 . . . . . . . . . . 11 (𝑁 = ((𝑝 + 𝑞) + 𝑟) → (𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘) ↔ ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
101100rexbidv 3173 . . . . . . . . . 10 (𝑁 = ((𝑝 + 𝑞) + 𝑟) → (∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘) ↔ ∃𝑓 ∈ (ℙ ↑m (1...3))((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
10299, 101syl5ibrcom 246 . . . . . . . . 9 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑁 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
103102adantld 490 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑁 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
104103rexlimdva 3150 . . . . . . 7 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑁 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
105104rexlimivv 3194 . . . . . 6 (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑁 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘))
106105adantl 481 . . . . 5 ((𝑁 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑁 = ((𝑝 + 𝑞) + 𝑟))) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘))
10722, 106sylbi 216 . . . 4 (𝑁 ∈ GoldbachOdd → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘))
108107a1i 11 . . 3 ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → (𝑁 ∈ GoldbachOdd → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
1095, 21, 1083syld 60 . 2 ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
110109com12 32 1 (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2935  wral 3056  wrex 3065  Vcvv 3469  wss 3944  {ctp 4628  cop 4630   class class class wbr 5142  wf 6538  cfv 6542  (class class class)co 7414  m cmap 8836  cc 11128  cr 11129  1c1 11131   + caddc 11133   < clt 11270  cle 11271  2c2 12289  3c3 12290  7c7 12294  8c8 12295  cz 12580  cuz 12844  ...cfz 13508  Σcsu 15656  cprime 16633   Odd codd 46888   GoldbachOdd cgbo 47010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9656  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8838  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-sup 9457  df-oi 9525  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-n0 12495  df-z 12581  df-uz 12845  df-rp 12999  df-fz 13509  df-fzo 13652  df-seq 13991  df-exp 14051  df-hash 14314  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-clim 15456  df-sum 15657  df-prm 16634  df-gbo 47013
This theorem is referenced by:  nnsum4primesevenALTV  47064
  Copyright terms: Public domain W3C validator