| Step | Hyp | Ref
| Expression |
| 1 | | breq2 5147 |
. . . . . 6
⊢ (𝑚 = 𝑁 → (7 < 𝑚 ↔ 7 < 𝑁)) |
| 2 | | eleq1 2829 |
. . . . . 6
⊢ (𝑚 = 𝑁 → (𝑚 ∈ GoldbachOdd ↔ 𝑁 ∈ GoldbachOdd )) |
| 3 | 1, 2 | imbi12d 344 |
. . . . 5
⊢ (𝑚 = 𝑁 → ((7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) ↔ (7 < 𝑁 → 𝑁 ∈ GoldbachOdd ))) |
| 4 | 3 | rspcv 3618 |
. . . 4
⊢ (𝑁 ∈ Odd →
(∀𝑚 ∈ Odd (7
< 𝑚 → 𝑚 ∈ GoldbachOdd ) → (7
< 𝑁 → 𝑁 ∈ GoldbachOdd
))) |
| 5 | 4 | adantl 481 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘8) ∧ 𝑁 ∈ Odd ) → (∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) → (7 < 𝑁 → 𝑁 ∈ GoldbachOdd ))) |
| 6 | | eluz2 12884 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘8) ↔ (8 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 8 ≤
𝑁)) |
| 7 | | 7lt8 12458 |
. . . . . . . . 9
⊢ 7 <
8 |
| 8 | | 7re 12359 |
. . . . . . . . . . 11
⊢ 7 ∈
ℝ |
| 9 | 8 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ → 7 ∈
ℝ) |
| 10 | | 8re 12362 |
. . . . . . . . . . 11
⊢ 8 ∈
ℝ |
| 11 | 10 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ → 8 ∈
ℝ) |
| 12 | | zre 12617 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) |
| 13 | | ltletr 11353 |
. . . . . . . . . 10
⊢ ((7
∈ ℝ ∧ 8 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((7 < 8 ∧ 8
≤ 𝑁) → 7 < 𝑁)) |
| 14 | 9, 11, 12, 13 | syl3anc 1373 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → ((7 <
8 ∧ 8 ≤ 𝑁) → 7
< 𝑁)) |
| 15 | 7, 14 | mpani 696 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ → (8 ≤
𝑁 → 7 < 𝑁)) |
| 16 | 15 | imp 406 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 8 ≤
𝑁) → 7 < 𝑁) |
| 17 | 16 | 3adant1 1131 |
. . . . . 6
⊢ ((8
∈ ℤ ∧ 𝑁
∈ ℤ ∧ 8 ≤ 𝑁) → 7 < 𝑁) |
| 18 | 6, 17 | sylbi 217 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘8) → 7 < 𝑁) |
| 19 | 18 | adantr 480 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘8) ∧ 𝑁 ∈ Odd ) → 7 < 𝑁) |
| 20 | | pm2.27 42 |
. . . 4
⊢ (7 <
𝑁 → ((7 < 𝑁 → 𝑁 ∈ GoldbachOdd ) → 𝑁 ∈ GoldbachOdd
)) |
| 21 | 19, 20 | syl 17 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘8) ∧ 𝑁 ∈ Odd ) → ((7 < 𝑁 → 𝑁 ∈ GoldbachOdd ) → 𝑁 ∈ GoldbachOdd
)) |
| 22 | | isgbo 47740 |
. . . . 5
⊢ (𝑁 ∈ GoldbachOdd ↔
(𝑁 ∈ Odd ∧
∃𝑝 ∈ ℙ
∃𝑞 ∈ ℙ
∃𝑟 ∈ ℙ
((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))) |
| 23 | | 1ex 11257 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
V |
| 24 | | 2ex 12343 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
V |
| 25 | | 3ex 12348 |
. . . . . . . . . . . . . . . 16
⊢ 3 ∈
V |
| 26 | | vex 3484 |
. . . . . . . . . . . . . . . 16
⊢ 𝑝 ∈ V |
| 27 | | vex 3484 |
. . . . . . . . . . . . . . . 16
⊢ 𝑞 ∈ V |
| 28 | | vex 3484 |
. . . . . . . . . . . . . . . 16
⊢ 𝑟 ∈ V |
| 29 | | 1ne2 12474 |
. . . . . . . . . . . . . . . 16
⊢ 1 ≠
2 |
| 30 | | 1re 11261 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℝ |
| 31 | | 1lt3 12439 |
. . . . . . . . . . . . . . . . 17
⊢ 1 <
3 |
| 32 | 30, 31 | ltneii 11374 |
. . . . . . . . . . . . . . . 16
⊢ 1 ≠
3 |
| 33 | | 2re 12340 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℝ |
| 34 | | 2lt3 12438 |
. . . . . . . . . . . . . . . . 17
⊢ 2 <
3 |
| 35 | 33, 34 | ltneii 11374 |
. . . . . . . . . . . . . . . 16
⊢ 2 ≠
3 |
| 36 | 23, 24, 25, 26, 27, 28, 29, 32, 35 | ftp 7177 |
. . . . . . . . . . . . . . 15
⊢ {〈1,
𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}:{1, 2, 3}⟶{𝑝, 𝑞, 𝑟} |
| 37 | 36 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) →
{〈1, 𝑝〉, 〈2,
𝑞〉, 〈3, 𝑟〉}:{1, 2, 3}⟶{𝑝, 𝑞, 𝑟}) |
| 38 | | 1p2e3 12409 |
. . . . . . . . . . . . . . . . . 18
⊢ (1 + 2) =
3 |
| 39 | 38 | eqcomi 2746 |
. . . . . . . . . . . . . . . . 17
⊢ 3 = (1 +
2) |
| 40 | 39 | oveq2i 7442 |
. . . . . . . . . . . . . . . 16
⊢ (1...3) =
(1...(1 + 2)) |
| 41 | | 1z 12647 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℤ |
| 42 | | fztp 13620 |
. . . . . . . . . . . . . . . . 17
⊢ (1 ∈
ℤ → (1...(1 + 2)) = {1, (1 + 1), (1 + 2)}) |
| 43 | 41, 42 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ (1...(1 +
2)) = {1, (1 + 1), (1 + 2)} |
| 44 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢ 1 =
1 |
| 45 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (1 = 1
→ 1 = 1) |
| 46 | | 1p1e2 12391 |
. . . . . . . . . . . . . . . . . . 19
⊢ (1 + 1) =
2 |
| 47 | 46 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (1 = 1
→ (1 + 1) = 2) |
| 48 | 38 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (1 = 1
→ (1 + 2) = 3) |
| 49 | 45, 47, 48 | tpeq123d 4748 |
. . . . . . . . . . . . . . . . 17
⊢ (1 = 1
→ {1, (1 + 1), (1 + 2)} = {1, 2, 3}) |
| 50 | 44, 49 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ {1, (1 +
1), (1 + 2)} = {1, 2, 3} |
| 51 | 40, 43, 50 | 3eqtri 2769 |
. . . . . . . . . . . . . . 15
⊢ (1...3) =
{1, 2, 3} |
| 52 | 51 | feq2i 6728 |
. . . . . . . . . . . . . 14
⊢
({〈1, 𝑝〉,
〈2, 𝑞〉, 〈3,
𝑟〉}:(1...3)⟶{𝑝, 𝑞, 𝑟} ↔ {〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}:{1, 2, 3}⟶{𝑝, 𝑞, 𝑟}) |
| 53 | 37, 52 | sylibr 234 |
. . . . . . . . . . . . 13
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) →
{〈1, 𝑝〉, 〈2,
𝑞〉, 〈3, 𝑟〉}:(1...3)⟶{𝑝, 𝑞, 𝑟}) |
| 54 | | df-3an 1089 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ↔ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈
ℙ)) |
| 55 | 26, 27, 28 | tpss 4837 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ↔ {𝑝, 𝑞, 𝑟} ⊆ ℙ) |
| 56 | 54, 55 | sylbb1 237 |
. . . . . . . . . . . . 13
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {𝑝, 𝑞, 𝑟} ⊆ ℙ) |
| 57 | 53, 56 | fssd 6753 |
. . . . . . . . . . . 12
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) →
{〈1, 𝑝〉, 〈2,
𝑞〉, 〈3, 𝑟〉}:(1...3)⟶ℙ) |
| 58 | | prmex 16714 |
. . . . . . . . . . . . . 14
⊢ ℙ
∈ V |
| 59 | | ovex 7464 |
. . . . . . . . . . . . . 14
⊢ (1...3)
∈ V |
| 60 | 58, 59 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ (ℙ
∈ V ∧ (1...3) ∈ V) |
| 61 | | elmapg 8879 |
. . . . . . . . . . . . 13
⊢ ((ℙ
∈ V ∧ (1...3) ∈ V) → ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉} ∈ (ℙ ↑m
(1...3)) ↔ {〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}:(1...3)⟶ℙ)) |
| 62 | 60, 61 | mp1i 13 |
. . . . . . . . . . . 12
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) →
({〈1, 𝑝〉,
〈2, 𝑞〉, 〈3,
𝑟〉} ∈ (ℙ
↑m (1...3)) ↔ {〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}:(1...3)⟶ℙ)) |
| 63 | 57, 62 | mpbird 257 |
. . . . . . . . . . 11
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) →
{〈1, 𝑝〉, 〈2,
𝑞〉, 〈3, 𝑟〉} ∈ (ℙ
↑m (1...3))) |
| 64 | | fveq1 6905 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = {〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉} → (𝑓‘𝑘) = ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘𝑘)) |
| 65 | 64 | sumeq2sdv 15739 |
. . . . . . . . . . . . 13
⊢ (𝑓 = {〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉} → Σ𝑘 ∈ (1...3)(𝑓‘𝑘) = Σ𝑘 ∈ (1...3)({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘𝑘)) |
| 66 | 65 | eqeq2d 2748 |
. . . . . . . . . . . 12
⊢ (𝑓 = {〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉} → (((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓‘𝑘) ↔ ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘𝑘))) |
| 67 | 66 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) ∧ 𝑓 = {〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}) → (((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓‘𝑘) ↔ ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘𝑘))) |
| 68 | 51 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (1...3)
= {1, 2, 3}) |
| 69 | 68 | sumeq1d 15736 |
. . . . . . . . . . . 12
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) →
Σ𝑘 ∈
(1...3)({〈1, 𝑝〉,
〈2, 𝑞〉, 〈3,
𝑟〉}‘𝑘) = Σ𝑘 ∈ {1, 2, 3} ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘𝑘)) |
| 70 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 1 → ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘𝑘) = ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘1)) |
| 71 | 23, 26 | fvtp1 7215 |
. . . . . . . . . . . . . . 15
⊢ ((1 ≠
2 ∧ 1 ≠ 3) → ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘1) = 𝑝) |
| 72 | 29, 32, 71 | mp2an 692 |
. . . . . . . . . . . . . 14
⊢
({〈1, 𝑝〉,
〈2, 𝑞〉, 〈3,
𝑟〉}‘1) = 𝑝 |
| 73 | 70, 72 | eqtrdi 2793 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 1 → ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘𝑘) = 𝑝) |
| 74 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 2 → ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘𝑘) = ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘2)) |
| 75 | 24, 27 | fvtp2 7216 |
. . . . . . . . . . . . . . 15
⊢ ((1 ≠
2 ∧ 2 ≠ 3) → ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘2) = 𝑞) |
| 76 | 29, 35, 75 | mp2an 692 |
. . . . . . . . . . . . . 14
⊢
({〈1, 𝑝〉,
〈2, 𝑞〉, 〈3,
𝑟〉}‘2) = 𝑞 |
| 77 | 74, 76 | eqtrdi 2793 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 2 → ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘𝑘) = 𝑞) |
| 78 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 3 → ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘𝑘) = ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘3)) |
| 79 | 25, 28 | fvtp3 7217 |
. . . . . . . . . . . . . . 15
⊢ ((1 ≠
3 ∧ 2 ≠ 3) → ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘3) = 𝑟) |
| 80 | 32, 35, 79 | mp2an 692 |
. . . . . . . . . . . . . 14
⊢
({〈1, 𝑝〉,
〈2, 𝑞〉, 〈3,
𝑟〉}‘3) = 𝑟 |
| 81 | 78, 80 | eqtrdi 2793 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 3 → ({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘𝑘) = 𝑟) |
| 82 | | prmz 16712 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℤ) |
| 83 | 82 | zcnd 12723 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℂ) |
| 84 | | prmz 16712 |
. . . . . . . . . . . . . . . 16
⊢ (𝑞 ∈ ℙ → 𝑞 ∈
ℤ) |
| 85 | 84 | zcnd 12723 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 ∈ ℙ → 𝑞 ∈
ℂ) |
| 86 | | prmz 16712 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 ∈ ℙ → 𝑟 ∈
ℤ) |
| 87 | 86 | zcnd 12723 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 ∈ ℙ → 𝑟 ∈
ℂ) |
| 88 | 83, 85, 87 | 3anim123i 1152 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) → (𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ ∧ 𝑟 ∈
ℂ)) |
| 89 | 88 | 3expa 1119 |
. . . . . . . . . . . . 13
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ ∧ 𝑟 ∈
ℂ)) |
| 90 | | 2z 12649 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℤ |
| 91 | | 3z 12650 |
. . . . . . . . . . . . . . 15
⊢ 3 ∈
ℤ |
| 92 | 41, 90, 91 | 3pm3.2i 1340 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
ℤ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ) |
| 93 | 92 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (1
∈ ℤ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ)) |
| 94 | 29 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → 1 ≠
2) |
| 95 | 32 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → 1 ≠
3) |
| 96 | 35 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → 2 ≠
3) |
| 97 | 73, 77, 81, 89, 93, 94, 95, 96 | sumtp 15785 |
. . . . . . . . . . . 12
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) →
Σ𝑘 ∈ {1, 2, 3}
({〈1, 𝑝〉,
〈2, 𝑞〉, 〈3,
𝑟〉}‘𝑘) = ((𝑝 + 𝑞) + 𝑟)) |
| 98 | 69, 97 | eqtr2d 2778 |
. . . . . . . . . . 11
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)({〈1, 𝑝〉, 〈2, 𝑞〉, 〈3, 𝑟〉}‘𝑘)) |
| 99 | 63, 67, 98 | rspcedvd 3624 |
. . . . . . . . . 10
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) →
∃𝑓 ∈ (ℙ
↑m (1...3))((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓‘𝑘)) |
| 100 | | eqeq1 2741 |
. . . . . . . . . . 11
⊢ (𝑁 = ((𝑝 + 𝑞) + 𝑟) → (𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘) ↔ ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) |
| 101 | 100 | rexbidv 3179 |
. . . . . . . . . 10
⊢ (𝑁 = ((𝑝 + 𝑞) + 𝑟) → (∃𝑓 ∈ (ℙ ↑m
(1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘) ↔ ∃𝑓 ∈ (ℙ ↑m
(1...3))((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) |
| 102 | 99, 101 | syl5ibrcom 247 |
. . . . . . . . 9
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑁 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑓 ∈ (ℙ ↑m
(1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) |
| 103 | 102 | adantld 490 |
. . . . . . . 8
⊢ (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑁 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑓 ∈ (ℙ ↑m
(1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) |
| 104 | 103 | rexlimdva 3155 |
. . . . . . 7
⊢ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) →
(∃𝑟 ∈ ℙ
((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑁 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑓 ∈ (ℙ ↑m
(1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) |
| 105 | 104 | rexlimivv 3201 |
. . . . . 6
⊢
(∃𝑝 ∈
ℙ ∃𝑞 ∈
ℙ ∃𝑟 ∈
ℙ ((𝑝 ∈ Odd
∧ 𝑞 ∈ Odd ∧
𝑟 ∈ Odd ) ∧ 𝑁 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑓 ∈ (ℙ ↑m
(1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘)) |
| 106 | 105 | adantl 481 |
. . . . 5
⊢ ((𝑁 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑁 = ((𝑝 + 𝑞) + 𝑟))) → ∃𝑓 ∈ (ℙ ↑m
(1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘)) |
| 107 | 22, 106 | sylbi 217 |
. . . 4
⊢ (𝑁 ∈ GoldbachOdd →
∃𝑓 ∈ (ℙ
↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘)) |
| 108 | 107 | a1i 11 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘8) ∧ 𝑁 ∈ Odd ) → (𝑁 ∈ GoldbachOdd → ∃𝑓 ∈ (ℙ
↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) |
| 109 | 5, 21, 108 | 3syld 60 |
. 2
⊢ ((𝑁 ∈
(ℤ≥‘8) ∧ 𝑁 ∈ Odd ) → (∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) → ∃𝑓 ∈ (ℙ
↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) |
| 110 | 109 | com12 32 |
1
⊢
(∀𝑚 ∈
Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) →
((𝑁 ∈
(ℤ≥‘8) ∧ 𝑁 ∈ Odd ) → ∃𝑓 ∈ (ℙ
↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) |