Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbgoldbst Structured version   Visualization version   GIF version

Theorem sbgoldbst 43425
Description: If the strong binary Goldbach conjecture is valid, then the (strong) ternary Goldbach conjecture holds, too. (Contributed by AV, 26-Jul-2020.)
Assertion
Ref Expression
sbgoldbst (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ))
Distinct variable group:   𝑚,𝑛

Proof of Theorem sbgoldbst
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . . . . 7 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → 𝑚 ∈ Odd )
2 3odd 43355 . . . . . . 7 3 ∈ Odd
31, 2jctir 521 . . . . . 6 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (𝑚 ∈ Odd ∧ 3 ∈ Odd ))
4 omoeALTV 43332 . . . . . 6 ((𝑚 ∈ Odd ∧ 3 ∈ Odd ) → (𝑚 − 3) ∈ Even )
5 breq2 4966 . . . . . . . 8 (𝑛 = (𝑚 − 3) → (4 < 𝑛 ↔ 4 < (𝑚 − 3)))
6 eleq1 2870 . . . . . . . 8 (𝑛 = (𝑚 − 3) → (𝑛 ∈ GoldbachEven ↔ (𝑚 − 3) ∈ GoldbachEven ))
75, 6imbi12d 346 . . . . . . 7 (𝑛 = (𝑚 − 3) → ((4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ (4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven )))
87rspcv 3555 . . . . . 6 ((𝑚 − 3) ∈ Even → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven )))
93, 4, 83syl 18 . . . . 5 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven )))
10 4p3e7 11639 . . . . . . . . 9 (4 + 3) = 7
1110breq1i 4969 . . . . . . . 8 ((4 + 3) < 𝑚 ↔ 7 < 𝑚)
12 4re 11569 . . . . . . . . . . 11 4 ∈ ℝ
1312a1i 11 . . . . . . . . . 10 (𝑚 ∈ Odd → 4 ∈ ℝ)
14 3re 11565 . . . . . . . . . . 11 3 ∈ ℝ
1514a1i 11 . . . . . . . . . 10 (𝑚 ∈ Odd → 3 ∈ ℝ)
16 oddz 43278 . . . . . . . . . . 11 (𝑚 ∈ Odd → 𝑚 ∈ ℤ)
1716zred 11936 . . . . . . . . . 10 (𝑚 ∈ Odd → 𝑚 ∈ ℝ)
1813, 15, 17ltaddsubd 11088 . . . . . . . . 9 (𝑚 ∈ Odd → ((4 + 3) < 𝑚 ↔ 4 < (𝑚 − 3)))
1918biimpd 230 . . . . . . . 8 (𝑚 ∈ Odd → ((4 + 3) < 𝑚 → 4 < (𝑚 − 3)))
2011, 19syl5bir 244 . . . . . . 7 (𝑚 ∈ Odd → (7 < 𝑚 → 4 < (𝑚 − 3)))
2120imp 407 . . . . . 6 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → 4 < (𝑚 − 3))
22 pm2.27 42 . . . . . 6 (4 < (𝑚 − 3) → ((4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven ) → (𝑚 − 3) ∈ GoldbachEven ))
2321, 22syl 17 . . . . 5 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → ((4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven ) → (𝑚 − 3) ∈ GoldbachEven ))
24 isgbe 43398 . . . . . 6 ((𝑚 − 3) ∈ GoldbachEven ↔ ((𝑚 − 3) ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))))
25 3prm 15867 . . . . . . . . . . . . . 14 3 ∈ ℙ
2625a1i 11 . . . . . . . . . . . . 13 (((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → 3 ∈ ℙ)
27 eleq1 2870 . . . . . . . . . . . . . . . 16 (𝑟 = 3 → (𝑟 ∈ Odd ↔ 3 ∈ Odd ))
28273anbi3d 1434 . . . . . . . . . . . . . . 15 (𝑟 = 3 → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd )))
29 oveq2 7024 . . . . . . . . . . . . . . . 16 (𝑟 = 3 → ((𝑝 + 𝑞) + 𝑟) = ((𝑝 + 𝑞) + 3))
3029eqeq2d 2805 . . . . . . . . . . . . . . 15 (𝑟 = 3 → (𝑚 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑚 = ((𝑝 + 𝑞) + 3)))
3128, 30anbi12d 630 . . . . . . . . . . . . . 14 (𝑟 = 3 → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 3))))
3231adantl 482 . . . . . . . . . . . . 13 ((((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) ∧ 𝑟 = 3) → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 3))))
33 simp1 1129 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → 𝑝 ∈ Odd )
34 simp2 1130 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → 𝑞 ∈ Odd )
352a1i 11 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → 3 ∈ Odd )
3633, 34, 353jca 1121 . . . . . . . . . . . . . . 15 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ))
3736adantl 482 . . . . . . . . . . . . . 14 (((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ))
3816zcnd 11937 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ Odd → 𝑚 ∈ ℂ)
3938ad3antrrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑚 ∈ ℂ)
40 3cn 11566 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℂ
4140a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 3 ∈ ℂ)
42 prmz 15848 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
43 prmz 15848 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
44 zaddcl 11871 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 + 𝑞) ∈ ℤ)
4542, 43, 44syl2an 595 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (𝑝 + 𝑞) ∈ ℤ)
4645zcnd 11937 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (𝑝 + 𝑞) ∈ ℂ)
4746adantll 710 . . . . . . . . . . . . . . . . . 18 ((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝑝 + 𝑞) ∈ ℂ)
4839, 41, 47subadd2d 10864 . . . . . . . . . . . . . . . . 17 ((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑚 − 3) = (𝑝 + 𝑞) ↔ ((𝑝 + 𝑞) + 3) = 𝑚))
4948biimpa 477 . . . . . . . . . . . . . . . 16 (((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ((𝑝 + 𝑞) + 3) = 𝑚)
5049eqcomd 2801 . . . . . . . . . . . . . . 15 (((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → 𝑚 = ((𝑝 + 𝑞) + 3))
51503ad2antr3 1183 . . . . . . . . . . . . . 14 (((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → 𝑚 = ((𝑝 + 𝑞) + 3))
5237, 51jca 512 . . . . . . . . . . . . 13 (((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 3)))
5326, 32, 52rspcedvd 3566 . . . . . . . . . . . 12 (((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
5453ex 413 . . . . . . . . . . 11 ((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟))))
5554reximdva 3237 . . . . . . . . . 10 (((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) → (∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟))))
5655reximdva 3237 . . . . . . . . 9 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟))))
5756, 1jctild 526 . . . . . . . 8 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → (𝑚 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))))
58 isgbo 43400 . . . . . . . 8 (𝑚 ∈ GoldbachOdd ↔ (𝑚 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟))))
5957, 58syl6ibr 253 . . . . . . 7 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → 𝑚 ∈ GoldbachOdd ))
6059adantld 491 . . . . . 6 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (((𝑚 − 3) ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → 𝑚 ∈ GoldbachOdd ))
6124, 60syl5bi 243 . . . . 5 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → ((𝑚 − 3) ∈ GoldbachEven → 𝑚 ∈ GoldbachOdd ))
629, 23, 613syld 60 . . . 4 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → 𝑚 ∈ GoldbachOdd ))
6362com12 32 . . 3 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ((𝑚 ∈ Odd ∧ 7 < 𝑚) → 𝑚 ∈ GoldbachOdd ))
6463expd 416 . 2 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → (7 < 𝑚𝑚 ∈ GoldbachOdd )))
6564ralrimiv 3148 1 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  wral 3105  wrex 3106   class class class wbr 4962  (class class class)co 7016  cc 10381  cr 10382   + caddc 10386   < clt 10521  cmin 10717  3c3 11541  4c4 11542  7c7 11545  cz 11829  cprime 15844   Even ceven 43271   Odd codd 43272   GoldbachEven cgbe 43392   GoldbachOdd cgbo 43394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-sup 8752  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-n0 11746  df-z 11830  df-uz 12094  df-rp 12240  df-fz 12743  df-seq 13220  df-exp 13280  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-dvds 15441  df-prm 15845  df-even 43273  df-odd 43274  df-gbe 43395  df-gbo 43397
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator