Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbgoldbst Structured version   Visualization version   GIF version

Theorem sbgoldbst 47765
Description: If the strong binary Goldbach conjecture is valid, then the (strong) ternary Goldbach conjecture holds, too. (Contributed by AV, 26-Jul-2020.)
Assertion
Ref Expression
sbgoldbst (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ))
Distinct variable group:   𝑚,𝑛

Proof of Theorem sbgoldbst
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . . 7 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → 𝑚 ∈ Odd )
2 3odd 47695 . . . . . . 7 3 ∈ Odd
31, 2jctir 520 . . . . . 6 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (𝑚 ∈ Odd ∧ 3 ∈ Odd ))
4 omoeALTV 47672 . . . . . 6 ((𝑚 ∈ Odd ∧ 3 ∈ Odd ) → (𝑚 − 3) ∈ Even )
5 breq2 5147 . . . . . . . 8 (𝑛 = (𝑚 − 3) → (4 < 𝑛 ↔ 4 < (𝑚 − 3)))
6 eleq1 2829 . . . . . . . 8 (𝑛 = (𝑚 − 3) → (𝑛 ∈ GoldbachEven ↔ (𝑚 − 3) ∈ GoldbachEven ))
75, 6imbi12d 344 . . . . . . 7 (𝑛 = (𝑚 − 3) → ((4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ (4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven )))
87rspcv 3618 . . . . . 6 ((𝑚 − 3) ∈ Even → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven )))
93, 4, 83syl 18 . . . . 5 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven )))
10 4p3e7 12420 . . . . . . . . 9 (4 + 3) = 7
1110breq1i 5150 . . . . . . . 8 ((4 + 3) < 𝑚 ↔ 7 < 𝑚)
12 4re 12350 . . . . . . . . . . 11 4 ∈ ℝ
1312a1i 11 . . . . . . . . . 10 (𝑚 ∈ Odd → 4 ∈ ℝ)
14 3re 12346 . . . . . . . . . . 11 3 ∈ ℝ
1514a1i 11 . . . . . . . . . 10 (𝑚 ∈ Odd → 3 ∈ ℝ)
16 oddz 47618 . . . . . . . . . . 11 (𝑚 ∈ Odd → 𝑚 ∈ ℤ)
1716zred 12722 . . . . . . . . . 10 (𝑚 ∈ Odd → 𝑚 ∈ ℝ)
1813, 15, 17ltaddsubd 11863 . . . . . . . . 9 (𝑚 ∈ Odd → ((4 + 3) < 𝑚 ↔ 4 < (𝑚 − 3)))
1918biimpd 229 . . . . . . . 8 (𝑚 ∈ Odd → ((4 + 3) < 𝑚 → 4 < (𝑚 − 3)))
2011, 19biimtrrid 243 . . . . . . 7 (𝑚 ∈ Odd → (7 < 𝑚 → 4 < (𝑚 − 3)))
2120imp 406 . . . . . 6 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → 4 < (𝑚 − 3))
22 pm2.27 42 . . . . . 6 (4 < (𝑚 − 3) → ((4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven ) → (𝑚 − 3) ∈ GoldbachEven ))
2321, 22syl 17 . . . . 5 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → ((4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven ) → (𝑚 − 3) ∈ GoldbachEven ))
24 isgbe 47738 . . . . . 6 ((𝑚 − 3) ∈ GoldbachEven ↔ ((𝑚 − 3) ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))))
25 3prm 16731 . . . . . . . . . . . . . 14 3 ∈ ℙ
2625a1i 11 . . . . . . . . . . . . 13 (((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → 3 ∈ ℙ)
27 eleq1 2829 . . . . . . . . . . . . . . . 16 (𝑟 = 3 → (𝑟 ∈ Odd ↔ 3 ∈ Odd ))
28273anbi3d 1444 . . . . . . . . . . . . . . 15 (𝑟 = 3 → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd )))
29 oveq2 7439 . . . . . . . . . . . . . . . 16 (𝑟 = 3 → ((𝑝 + 𝑞) + 𝑟) = ((𝑝 + 𝑞) + 3))
3029eqeq2d 2748 . . . . . . . . . . . . . . 15 (𝑟 = 3 → (𝑚 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑚 = ((𝑝 + 𝑞) + 3)))
3128, 30anbi12d 632 . . . . . . . . . . . . . 14 (𝑟 = 3 → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 3))))
3231adantl 481 . . . . . . . . . . . . 13 ((((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) ∧ 𝑟 = 3) → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 3))))
33 simp1 1137 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → 𝑝 ∈ Odd )
34 simp2 1138 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → 𝑞 ∈ Odd )
352a1i 11 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → 3 ∈ Odd )
3633, 34, 353jca 1129 . . . . . . . . . . . . . . 15 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ))
3736adantl 481 . . . . . . . . . . . . . 14 (((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ))
3816zcnd 12723 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ Odd → 𝑚 ∈ ℂ)
3938ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑚 ∈ ℂ)
40 3cn 12347 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℂ
4140a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 3 ∈ ℂ)
42 prmz 16712 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
43 prmz 16712 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
44 zaddcl 12657 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 + 𝑞) ∈ ℤ)
4542, 43, 44syl2an 596 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (𝑝 + 𝑞) ∈ ℤ)
4645zcnd 12723 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (𝑝 + 𝑞) ∈ ℂ)
4746adantll 714 . . . . . . . . . . . . . . . . . 18 ((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝑝 + 𝑞) ∈ ℂ)
4839, 41, 47subadd2d 11639 . . . . . . . . . . . . . . . . 17 ((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑚 − 3) = (𝑝 + 𝑞) ↔ ((𝑝 + 𝑞) + 3) = 𝑚))
4948biimpa 476 . . . . . . . . . . . . . . . 16 (((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ((𝑝 + 𝑞) + 3) = 𝑚)
5049eqcomd 2743 . . . . . . . . . . . . . . 15 (((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → 𝑚 = ((𝑝 + 𝑞) + 3))
51503ad2antr3 1191 . . . . . . . . . . . . . 14 (((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → 𝑚 = ((𝑝 + 𝑞) + 3))
5237, 51jca 511 . . . . . . . . . . . . 13 (((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 3)))
5326, 32, 52rspcedvd 3624 . . . . . . . . . . . 12 (((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
5453ex 412 . . . . . . . . . . 11 ((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟))))
5554reximdva 3168 . . . . . . . . . 10 (((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) → (∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟))))
5655reximdva 3168 . . . . . . . . 9 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟))))
5756, 1jctild 525 . . . . . . . 8 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → (𝑚 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))))
58 isgbo 47740 . . . . . . . 8 (𝑚 ∈ GoldbachOdd ↔ (𝑚 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟))))
5957, 58imbitrrdi 252 . . . . . . 7 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → 𝑚 ∈ GoldbachOdd ))
6059adantld 490 . . . . . 6 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (((𝑚 − 3) ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → 𝑚 ∈ GoldbachOdd ))
6124, 60biimtrid 242 . . . . 5 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → ((𝑚 − 3) ∈ GoldbachEven → 𝑚 ∈ GoldbachOdd ))
629, 23, 613syld 60 . . . 4 ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → 𝑚 ∈ GoldbachOdd ))
6362com12 32 . . 3 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ((𝑚 ∈ Odd ∧ 7 < 𝑚) → 𝑚 ∈ GoldbachOdd ))
6463expd 415 . 2 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → (7 < 𝑚𝑚 ∈ GoldbachOdd )))
6564ralrimiv 3145 1 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070   class class class wbr 5143  (class class class)co 7431  cc 11153  cr 11154   + caddc 11158   < clt 11295  cmin 11492  3c3 12322  4c4 12323  7c7 12326  cz 12613  cprime 16708   Even ceven 47611   Odd codd 47612   GoldbachEven cgbe 47732   GoldbachOdd cgbo 47734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-prm 16709  df-even 47613  df-odd 47614  df-gbe 47735  df-gbo 47737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator