Step | Hyp | Ref
| Expression |
1 | | simpl 483 |
. . . . . . 7
⊢ ((𝑚 ∈ Odd ∧ 7 < 𝑚) → 𝑚 ∈ Odd ) |
2 | | 3odd 45160 |
. . . . . . 7
⊢ 3 ∈
Odd |
3 | 1, 2 | jctir 521 |
. . . . . 6
⊢ ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (𝑚 ∈ Odd ∧ 3 ∈ Odd
)) |
4 | | omoeALTV 45137 |
. . . . . 6
⊢ ((𝑚 ∈ Odd ∧ 3 ∈ Odd )
→ (𝑚 − 3) ∈
Even ) |
5 | | breq2 5078 |
. . . . . . . 8
⊢ (𝑛 = (𝑚 − 3) → (4 < 𝑛 ↔ 4 < (𝑚 − 3))) |
6 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑛 = (𝑚 − 3) → (𝑛 ∈ GoldbachEven ↔ (𝑚 − 3) ∈ GoldbachEven
)) |
7 | 5, 6 | imbi12d 345 |
. . . . . . 7
⊢ (𝑛 = (𝑚 − 3) → ((4 < 𝑛 → 𝑛 ∈ GoldbachEven ) ↔ (4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven
))) |
8 | 7 | rspcv 3557 |
. . . . . 6
⊢ ((𝑚 − 3) ∈ Even →
(∀𝑛 ∈ Even (4
< 𝑛 → 𝑛 ∈ GoldbachEven ) → (4
< (𝑚 − 3) →
(𝑚 − 3) ∈
GoldbachEven ))) |
9 | 3, 4, 8 | 3syl 18 |
. . . . 5
⊢ ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → (4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven
))) |
10 | | 4p3e7 12127 |
. . . . . . . . 9
⊢ (4 + 3) =
7 |
11 | 10 | breq1i 5081 |
. . . . . . . 8
⊢ ((4 + 3)
< 𝑚 ↔ 7 < 𝑚) |
12 | | 4re 12057 |
. . . . . . . . . . 11
⊢ 4 ∈
ℝ |
13 | 12 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑚 ∈ Odd → 4 ∈
ℝ) |
14 | | 3re 12053 |
. . . . . . . . . . 11
⊢ 3 ∈
ℝ |
15 | 14 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑚 ∈ Odd → 3 ∈
ℝ) |
16 | | oddz 45083 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ Odd → 𝑚 ∈
ℤ) |
17 | 16 | zred 12426 |
. . . . . . . . . 10
⊢ (𝑚 ∈ Odd → 𝑚 ∈
ℝ) |
18 | 13, 15, 17 | ltaddsubd 11575 |
. . . . . . . . 9
⊢ (𝑚 ∈ Odd → ((4 + 3) <
𝑚 ↔ 4 < (𝑚 − 3))) |
19 | 18 | biimpd 228 |
. . . . . . . 8
⊢ (𝑚 ∈ Odd → ((4 + 3) <
𝑚 → 4 < (𝑚 − 3))) |
20 | 11, 19 | syl5bir 242 |
. . . . . . 7
⊢ (𝑚 ∈ Odd → (7 < 𝑚 → 4 < (𝑚 − 3))) |
21 | 20 | imp 407 |
. . . . . 6
⊢ ((𝑚 ∈ Odd ∧ 7 < 𝑚) → 4 < (𝑚 − 3)) |
22 | | pm2.27 42 |
. . . . . 6
⊢ (4 <
(𝑚 − 3) → ((4
< (𝑚 − 3) →
(𝑚 − 3) ∈
GoldbachEven ) → (𝑚
− 3) ∈ GoldbachEven )) |
23 | 21, 22 | syl 17 |
. . . . 5
⊢ ((𝑚 ∈ Odd ∧ 7 < 𝑚) → ((4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven
) → (𝑚 − 3)
∈ GoldbachEven )) |
24 | | isgbe 45203 |
. . . . . 6
⊢ ((𝑚 − 3) ∈ GoldbachEven
↔ ((𝑚 − 3)
∈ Even ∧ ∃𝑝
∈ ℙ ∃𝑞
∈ ℙ (𝑝 ∈
Odd ∧ 𝑞 ∈ Odd
∧ (𝑚 − 3) =
(𝑝 + 𝑞)))) |
25 | | 3prm 16399 |
. . . . . . . . . . . . . 14
⊢ 3 ∈
ℙ |
26 | 25 | a1i 11 |
. . . . . . . . . . . . 13
⊢
(((((𝑚 ∈ Odd
∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → 3 ∈ ℙ) |
27 | | eleq1 2826 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = 3 → (𝑟 ∈ Odd ↔ 3 ∈ Odd
)) |
28 | 27 | 3anbi3d 1441 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = 3 → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd
))) |
29 | | oveq2 7283 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = 3 → ((𝑝 + 𝑞) + 𝑟) = ((𝑝 + 𝑞) + 3)) |
30 | 29 | eqeq2d 2749 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = 3 → (𝑚 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑚 = ((𝑝 + 𝑞) + 3))) |
31 | 28, 30 | anbi12d 631 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 3 → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 3)))) |
32 | 31 | adantl 482 |
. . . . . . . . . . . . 13
⊢
((((((𝑚 ∈ Odd
∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) ∧ 𝑟 = 3) → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 3)))) |
33 | | simp1 1135 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → 𝑝 ∈ Odd ) |
34 | | simp2 1136 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → 𝑞 ∈ Odd ) |
35 | 2 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → 3 ∈ Odd ) |
36 | 33, 34, 35 | 3jca 1127 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd
)) |
37 | 36 | adantl 482 |
. . . . . . . . . . . . . 14
⊢
(((((𝑚 ∈ Odd
∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd
)) |
38 | 16 | zcnd 12427 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ Odd → 𝑚 ∈
ℂ) |
39 | 38 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑚 ∈ ℂ) |
40 | | 3cn 12054 |
. . . . . . . . . . . . . . . . . . 19
⊢ 3 ∈
ℂ |
41 | 40 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 3 ∈
ℂ) |
42 | | prmz 16380 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℤ) |
43 | | prmz 16380 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑞 ∈ ℙ → 𝑞 ∈
ℤ) |
44 | | zaddcl 12360 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 + 𝑞) ∈ ℤ) |
45 | 42, 43, 44 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (𝑝 + 𝑞) ∈ ℤ) |
46 | 45 | zcnd 12427 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (𝑝 + 𝑞) ∈ ℂ) |
47 | 46 | adantll 711 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝑝 + 𝑞) ∈ ℂ) |
48 | 39, 41, 47 | subadd2d 11351 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑚 − 3) = (𝑝 + 𝑞) ↔ ((𝑝 + 𝑞) + 3) = 𝑚)) |
49 | 48 | biimpa 477 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑚 ∈ Odd
∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ((𝑝 + 𝑞) + 3) = 𝑚) |
50 | 49 | eqcomd 2744 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑚 ∈ Odd
∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → 𝑚 = ((𝑝 + 𝑞) + 3)) |
51 | 50 | 3ad2antr3 1189 |
. . . . . . . . . . . . . 14
⊢
(((((𝑚 ∈ Odd
∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → 𝑚 = ((𝑝 + 𝑞) + 3)) |
52 | 37, 51 | jca 512 |
. . . . . . . . . . . . 13
⊢
(((((𝑚 ∈ Odd
∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 3))) |
53 | 26, 32, 52 | rspcedvd 3563 |
. . . . . . . . . . . 12
⊢
(((((𝑚 ∈ Odd
∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟))) |
54 | 53 | ex 413 |
. . . . . . . . . . 11
⊢ ((((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))) |
55 | 54 | reximdva 3203 |
. . . . . . . . . 10
⊢ (((𝑚 ∈ Odd ∧ 7 < 𝑚) ∧ 𝑝 ∈ ℙ) → (∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))) |
56 | 55 | reximdva 3203 |
. . . . . . . . 9
⊢ ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))) |
57 | 56, 1 | jctild 526 |
. . . . . . . 8
⊢ ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → (𝑚 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟))))) |
58 | | isgbo 45205 |
. . . . . . . 8
⊢ (𝑚 ∈ GoldbachOdd ↔
(𝑚 ∈ Odd ∧
∃𝑝 ∈ ℙ
∃𝑞 ∈ ℙ
∃𝑟 ∈ ℙ
((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))) |
59 | 57, 58 | syl6ibr 251 |
. . . . . . 7
⊢ ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → 𝑚 ∈ GoldbachOdd )) |
60 | 59 | adantld 491 |
. . . . . 6
⊢ ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (((𝑚 − 3) ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → 𝑚 ∈ GoldbachOdd )) |
61 | 24, 60 | syl5bi 241 |
. . . . 5
⊢ ((𝑚 ∈ Odd ∧ 7 < 𝑚) → ((𝑚 − 3) ∈ GoldbachEven → 𝑚 ∈ GoldbachOdd
)) |
62 | 9, 23, 61 | 3syld 60 |
. . . 4
⊢ ((𝑚 ∈ Odd ∧ 7 < 𝑚) → (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → 𝑚 ∈ GoldbachOdd
)) |
63 | 62 | com12 32 |
. . 3
⊢
(∀𝑛 ∈
Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) →
((𝑚 ∈ Odd ∧ 7 <
𝑚) → 𝑚 ∈ GoldbachOdd
)) |
64 | 63 | expd 416 |
. 2
⊢
(∀𝑛 ∈
Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) →
(𝑚 ∈ Odd → (7
< 𝑚 → 𝑚 ∈ GoldbachOdd
))) |
65 | 64 | ralrimiv 3102 |
1
⊢
(∀𝑛 ∈
Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) →
∀𝑚 ∈ Odd (7
< 𝑚 → 𝑚 ∈ GoldbachOdd
)) |