Step | Hyp | Ref
| Expression |
1 | | df-9 12043 |
. . 3
⊢ 9 = (8 +
1) |
2 | | 8even 45165 |
. . . 4
⊢ 8 ∈
Even |
3 | | evenp1odd 45092 |
. . . 4
⊢ (8 ∈
Even → (8 + 1) ∈ Odd ) |
4 | 2, 3 | ax-mp 5 |
. . 3
⊢ (8 + 1)
∈ Odd |
5 | 1, 4 | eqeltri 2835 |
. 2
⊢ 9 ∈
Odd |
6 | | 3prm 16399 |
. . 3
⊢ 3 ∈
ℙ |
7 | | 3odd 45160 |
. . . . . 6
⊢ 3 ∈
Odd |
8 | 7, 7, 7 | 3pm3.2i 1338 |
. . . . 5
⊢ (3 ∈
Odd ∧ 3 ∈ Odd ∧ 3 ∈ Odd ) |
9 | | gbpart9 45221 |
. . . . 5
⊢ 9 = ((3 +
3) + 3) |
10 | 8, 9 | pm3.2i 471 |
. . . 4
⊢ ((3
∈ Odd ∧ 3 ∈ Odd ∧ 3 ∈ Odd ) ∧ 9 = ((3 + 3) +
3)) |
11 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑟 = 3 → (𝑟 ∈ Odd ↔ 3 ∈ Odd
)) |
12 | 11 | 3anbi3d 1441 |
. . . . . 6
⊢ (𝑟 = 3 → ((3 ∈ Odd ∧
3 ∈ Odd ∧ 𝑟 ∈
Odd ) ↔ (3 ∈ Odd ∧ 3 ∈ Odd ∧ 3 ∈ Odd
))) |
13 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑟 = 3 → ((3 + 3) + 𝑟) = ((3 + 3) +
3)) |
14 | 13 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑟 = 3 → (9 = ((3 + 3) +
𝑟) ↔ 9 = ((3 + 3) +
3))) |
15 | 12, 14 | anbi12d 631 |
. . . . 5
⊢ (𝑟 = 3 → (((3 ∈ Odd
∧ 3 ∈ Odd ∧ 𝑟
∈ Odd ) ∧ 9 = ((3 + 3) + 𝑟)) ↔ ((3 ∈ Odd ∧ 3 ∈ Odd
∧ 3 ∈ Odd ) ∧ 9 = ((3 + 3) + 3)))) |
16 | 15 | rspcev 3561 |
. . . 4
⊢ ((3
∈ ℙ ∧ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 3 ∈ Odd )
∧ 9 = ((3 + 3) + 3))) → ∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 3 ∈
Odd ∧ 𝑟 ∈ Odd )
∧ 9 = ((3 + 3) + 𝑟))) |
17 | 6, 10, 16 | mp2an 689 |
. . 3
⊢
∃𝑟 ∈
ℙ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 9 = ((3 + 3) + 𝑟)) |
18 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑝 = 3 → (𝑝 ∈ Odd ↔ 3 ∈ Odd
)) |
19 | 18 | 3anbi1d 1439 |
. . . . . 6
⊢ (𝑝 = 3 → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (3 ∈ Odd ∧
𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ))) |
20 | | oveq1 7282 |
. . . . . . . 8
⊢ (𝑝 = 3 → (𝑝 + 𝑞) = (3 + 𝑞)) |
21 | 20 | oveq1d 7290 |
. . . . . . 7
⊢ (𝑝 = 3 → ((𝑝 + 𝑞) + 𝑟) = ((3 + 𝑞) + 𝑟)) |
22 | 21 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑝 = 3 → (9 = ((𝑝 + 𝑞) + 𝑟) ↔ 9 = ((3 + 𝑞) + 𝑟))) |
23 | 19, 22 | anbi12d 631 |
. . . . 5
⊢ (𝑝 = 3 → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 9 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 9 = ((3 +
𝑞) + 𝑟)))) |
24 | 23 | rexbidv 3226 |
. . . 4
⊢ (𝑝 = 3 → (∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 9 = ((𝑝 + 𝑞) + 𝑟)) ↔ ∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 9 = ((3 +
𝑞) + 𝑟)))) |
25 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑞 = 3 → (𝑞 ∈ Odd ↔ 3 ∈ Odd
)) |
26 | 25 | 3anbi2d 1440 |
. . . . . 6
⊢ (𝑞 = 3 → ((3 ∈ Odd ∧
𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (3 ∈
Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ))) |
27 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑞 = 3 → (3 + 𝑞) = (3 + 3)) |
28 | 27 | oveq1d 7290 |
. . . . . . 7
⊢ (𝑞 = 3 → ((3 + 𝑞) + 𝑟) = ((3 + 3) + 𝑟)) |
29 | 28 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑞 = 3 → (9 = ((3 + 𝑞) + 𝑟) ↔ 9 = ((3 + 3) + 𝑟))) |
30 | 26, 29 | anbi12d 631 |
. . . . 5
⊢ (𝑞 = 3 → (((3 ∈ Odd
∧ 𝑞 ∈ Odd ∧
𝑟 ∈ Odd ) ∧ 9 =
((3 + 𝑞) + 𝑟)) ↔ ((3 ∈ Odd ∧ 3
∈ Odd ∧ 𝑟 ∈
Odd ) ∧ 9 = ((3 + 3) + 𝑟)))) |
31 | 30 | rexbidv 3226 |
. . . 4
⊢ (𝑞 = 3 → (∃𝑟 ∈ ℙ ((3 ∈ Odd
∧ 𝑞 ∈ Odd ∧
𝑟 ∈ Odd ) ∧ 9 =
((3 + 𝑞) + 𝑟)) ↔ ∃𝑟 ∈ ℙ ((3 ∈ Odd
∧ 3 ∈ Odd ∧ 𝑟
∈ Odd ) ∧ 9 = ((3 + 3) + 𝑟)))) |
32 | 24, 31 | rspc2ev 3572 |
. . 3
⊢ ((3
∈ ℙ ∧ 3 ∈ ℙ ∧ ∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 3 ∈
Odd ∧ 𝑟 ∈ Odd )
∧ 9 = ((3 + 3) + 𝑟)))
→ ∃𝑝 ∈
ℙ ∃𝑞 ∈
ℙ ∃𝑟 ∈
ℙ ((𝑝 ∈ Odd
∧ 𝑞 ∈ Odd ∧
𝑟 ∈ Odd ) ∧ 9 =
((𝑝 + 𝑞) + 𝑟))) |
33 | 6, 6, 17, 32 | mp3an 1460 |
. 2
⊢
∃𝑝 ∈
ℙ ∃𝑞 ∈
ℙ ∃𝑟 ∈
ℙ ((𝑝 ∈ Odd
∧ 𝑞 ∈ Odd ∧
𝑟 ∈ Odd ) ∧ 9 =
((𝑝 + 𝑞) + 𝑟)) |
34 | | isgbo 45205 |
. 2
⊢ (9 ∈
GoldbachOdd ↔ (9 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 9 = ((𝑝 + 𝑞) + 𝑟)))) |
35 | 5, 33, 34 | mpbir2an 708 |
1
⊢ 9 ∈
GoldbachOdd |