Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  9gbo Structured version   Visualization version   GIF version

Theorem 9gbo 46442
Description: 9 is an odd Goldbach number. (Contributed by AV, 26-Jul-2020.)
Assertion
Ref Expression
9gbo 9 ∈ GoldbachOdd

Proof of Theorem 9gbo
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-9 12282 . . 3 9 = (8 + 1)
2 8even 46381 . . . 4 8 ∈ Even
3 evenp1odd 46308 . . . 4 (8 ∈ Even → (8 + 1) ∈ Odd )
42, 3ax-mp 5 . . 3 (8 + 1) ∈ Odd
51, 4eqeltri 2830 . 2 9 ∈ Odd
6 3prm 16631 . . 3 3 ∈ ℙ
7 3odd 46376 . . . . . 6 3 ∈ Odd
87, 7, 73pm3.2i 1340 . . . . 5 (3 ∈ Odd ∧ 3 ∈ Odd ∧ 3 ∈ Odd )
9 gbpart9 46437 . . . . 5 9 = ((3 + 3) + 3)
108, 9pm3.2i 472 . . . 4 ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 3 ∈ Odd ) ∧ 9 = ((3 + 3) + 3))
11 eleq1 2822 . . . . . . 7 (𝑟 = 3 → (𝑟 ∈ Odd ↔ 3 ∈ Odd ))
12113anbi3d 1443 . . . . . 6 (𝑟 = 3 → ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (3 ∈ Odd ∧ 3 ∈ Odd ∧ 3 ∈ Odd )))
13 oveq2 7417 . . . . . . 7 (𝑟 = 3 → ((3 + 3) + 𝑟) = ((3 + 3) + 3))
1413eqeq2d 2744 . . . . . 6 (𝑟 = 3 → (9 = ((3 + 3) + 𝑟) ↔ 9 = ((3 + 3) + 3)))
1512, 14anbi12d 632 . . . . 5 (𝑟 = 3 → (((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 9 = ((3 + 3) + 𝑟)) ↔ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 3 ∈ Odd ) ∧ 9 = ((3 + 3) + 3))))
1615rspcev 3613 . . . 4 ((3 ∈ ℙ ∧ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 3 ∈ Odd ) ∧ 9 = ((3 + 3) + 3))) → ∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 9 = ((3 + 3) + 𝑟)))
176, 10, 16mp2an 691 . . 3 𝑟 ∈ ℙ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 9 = ((3 + 3) + 𝑟))
18 eleq1 2822 . . . . . . 7 (𝑝 = 3 → (𝑝 ∈ Odd ↔ 3 ∈ Odd ))
19183anbi1d 1441 . . . . . 6 (𝑝 = 3 → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )))
20 oveq1 7416 . . . . . . . 8 (𝑝 = 3 → (𝑝 + 𝑞) = (3 + 𝑞))
2120oveq1d 7424 . . . . . . 7 (𝑝 = 3 → ((𝑝 + 𝑞) + 𝑟) = ((3 + 𝑞) + 𝑟))
2221eqeq2d 2744 . . . . . 6 (𝑝 = 3 → (9 = ((𝑝 + 𝑞) + 𝑟) ↔ 9 = ((3 + 𝑞) + 𝑟)))
2319, 22anbi12d 632 . . . . 5 (𝑝 = 3 → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 9 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 9 = ((3 + 𝑞) + 𝑟))))
2423rexbidv 3179 . . . 4 (𝑝 = 3 → (∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 9 = ((𝑝 + 𝑞) + 𝑟)) ↔ ∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 9 = ((3 + 𝑞) + 𝑟))))
25 eleq1 2822 . . . . . . 7 (𝑞 = 3 → (𝑞 ∈ Odd ↔ 3 ∈ Odd ))
26253anbi2d 1442 . . . . . 6 (𝑞 = 3 → ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd )))
27 oveq2 7417 . . . . . . . 8 (𝑞 = 3 → (3 + 𝑞) = (3 + 3))
2827oveq1d 7424 . . . . . . 7 (𝑞 = 3 → ((3 + 𝑞) + 𝑟) = ((3 + 3) + 𝑟))
2928eqeq2d 2744 . . . . . 6 (𝑞 = 3 → (9 = ((3 + 𝑞) + 𝑟) ↔ 9 = ((3 + 3) + 𝑟)))
3026, 29anbi12d 632 . . . . 5 (𝑞 = 3 → (((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 9 = ((3 + 𝑞) + 𝑟)) ↔ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 9 = ((3 + 3) + 𝑟))))
3130rexbidv 3179 . . . 4 (𝑞 = 3 → (∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 9 = ((3 + 𝑞) + 𝑟)) ↔ ∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 9 = ((3 + 3) + 𝑟))))
3224, 31rspc2ev 3625 . . 3 ((3 ∈ ℙ ∧ 3 ∈ ℙ ∧ ∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 9 = ((3 + 3) + 𝑟))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 9 = ((𝑝 + 𝑞) + 𝑟)))
336, 6, 17, 32mp3an 1462 . 2 𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 9 = ((𝑝 + 𝑞) + 𝑟))
34 isgbo 46421 . 2 (9 ∈ GoldbachOdd ↔ (9 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 9 = ((𝑝 + 𝑞) + 𝑟))))
355, 33, 34mpbir2an 710 1 9 ∈ GoldbachOdd
Colors of variables: wff setvar class
Syntax hints:  wa 397  w3a 1088   = wceq 1542  wcel 2107  wrex 3071  (class class class)co 7409  1c1 11111   + caddc 11113  3c3 12268  8c8 12273  9c9 12274  cprime 16608   Even ceven 46292   Odd codd 46293   GoldbachOdd cgbo 46415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-fz 13485  df-seq 13967  df-exp 14028  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-dvds 16198  df-prm 16609  df-even 46294  df-odd 46295  df-gbo 46418
This theorem is referenced by:  bgoldbtbndlem1  46473
  Copyright terms: Public domain W3C validator