Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  11gbo Structured version   Visualization version   GIF version

Theorem 11gbo 47769
Description: 11 is an odd Goldbach number. (Contributed by AV, 29-Jul-2020.)
Assertion
Ref Expression
11gbo 11 ∈ GoldbachOdd

Proof of Theorem 11gbo
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 6p5e11 12664 . . 3 (6 + 5) = 11
2 6even 47705 . . . 4 6 ∈ Even
3 5odd 47704 . . . 4 5 ∈ Odd
4 epoo 47697 . . . 4 ((6 ∈ Even ∧ 5 ∈ Odd ) → (6 + 5) ∈ Odd )
52, 3, 4mp2an 692 . . 3 (6 + 5) ∈ Odd
61, 5eqeltrri 2825 . 2 11 ∈ Odd
7 3prm 16605 . . 3 3 ∈ ℙ
8 5prm 17020 . . . 4 5 ∈ ℙ
9 3odd 47702 . . . . . 6 3 ∈ Odd
109, 9, 33pm3.2i 1340 . . . . 5 (3 ∈ Odd ∧ 3 ∈ Odd ∧ 5 ∈ Odd )
11 gbpart11 47764 . . . . 5 11 = ((3 + 3) + 5)
1210, 11pm3.2i 470 . . . 4 ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 5 ∈ Odd ) ∧ 11 = ((3 + 3) + 5))
13 eleq1 2816 . . . . . . 7 (𝑟 = 5 → (𝑟 ∈ Odd ↔ 5 ∈ Odd ))
14133anbi3d 1444 . . . . . 6 (𝑟 = 5 → ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (3 ∈ Odd ∧ 3 ∈ Odd ∧ 5 ∈ Odd )))
15 oveq2 7357 . . . . . . 7 (𝑟 = 5 → ((3 + 3) + 𝑟) = ((3 + 3) + 5))
1615eqeq2d 2740 . . . . . 6 (𝑟 = 5 → (11 = ((3 + 3) + 𝑟) ↔ 11 = ((3 + 3) + 5)))
1714, 16anbi12d 632 . . . . 5 (𝑟 = 5 → (((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 3) + 𝑟)) ↔ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 5 ∈ Odd ) ∧ 11 = ((3 + 3) + 5))))
1817rspcev 3577 . . . 4 ((5 ∈ ℙ ∧ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 5 ∈ Odd ) ∧ 11 = ((3 + 3) + 5))) → ∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 3) + 𝑟)))
198, 12, 18mp2an 692 . . 3 𝑟 ∈ ℙ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 3) + 𝑟))
20 eleq1 2816 . . . . . . 7 (𝑝 = 3 → (𝑝 ∈ Odd ↔ 3 ∈ Odd ))
21203anbi1d 1442 . . . . . 6 (𝑝 = 3 → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )))
22 oveq1 7356 . . . . . . . 8 (𝑝 = 3 → (𝑝 + 𝑞) = (3 + 𝑞))
2322oveq1d 7364 . . . . . . 7 (𝑝 = 3 → ((𝑝 + 𝑞) + 𝑟) = ((3 + 𝑞) + 𝑟))
2423eqeq2d 2740 . . . . . 6 (𝑝 = 3 → (11 = ((𝑝 + 𝑞) + 𝑟) ↔ 11 = ((3 + 𝑞) + 𝑟)))
2521, 24anbi12d 632 . . . . 5 (𝑝 = 3 → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 𝑞) + 𝑟))))
2625rexbidv 3153 . . . 4 (𝑝 = 3 → (∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((𝑝 + 𝑞) + 𝑟)) ↔ ∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 𝑞) + 𝑟))))
27 eleq1 2816 . . . . . . 7 (𝑞 = 3 → (𝑞 ∈ Odd ↔ 3 ∈ Odd ))
28273anbi2d 1443 . . . . . 6 (𝑞 = 3 → ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd )))
29 oveq2 7357 . . . . . . . 8 (𝑞 = 3 → (3 + 𝑞) = (3 + 3))
3029oveq1d 7364 . . . . . . 7 (𝑞 = 3 → ((3 + 𝑞) + 𝑟) = ((3 + 3) + 𝑟))
3130eqeq2d 2740 . . . . . 6 (𝑞 = 3 → (11 = ((3 + 𝑞) + 𝑟) ↔ 11 = ((3 + 3) + 𝑟)))
3228, 31anbi12d 632 . . . . 5 (𝑞 = 3 → (((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 𝑞) + 𝑟)) ↔ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 3) + 𝑟))))
3332rexbidv 3153 . . . 4 (𝑞 = 3 → (∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 𝑞) + 𝑟)) ↔ ∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 3) + 𝑟))))
3426, 33rspc2ev 3590 . . 3 ((3 ∈ ℙ ∧ 3 ∈ ℙ ∧ ∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 3) + 𝑟))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((𝑝 + 𝑞) + 𝑟)))
357, 7, 19, 34mp3an 1463 . 2 𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((𝑝 + 𝑞) + 𝑟))
36 isgbo 47747 . 2 (11 ∈ GoldbachOdd ↔ (11 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((𝑝 + 𝑞) + 𝑟))))
376, 35, 36mpbir2an 711 1 11 ∈ GoldbachOdd
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  (class class class)co 7349  1c1 11010   + caddc 11012  3c3 12184  5c5 12186  6c6 12187  cdc 12591  cprime 16582   Even ceven 47618   Odd codd 47619   GoldbachOdd cgbo 47741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-fz 13411  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-prm 16583  df-even 47620  df-odd 47621  df-gbo 47744
This theorem is referenced by:  bgoldbtbndlem1  47799
  Copyright terms: Public domain W3C validator