Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  11gbo Structured version   Visualization version   GIF version

Theorem 11gbo 44719
Description: 11 is an odd Goldbach number. (Contributed by AV, 29-Jul-2020.)
Assertion
Ref Expression
11gbo 11 ∈ GoldbachOdd

Proof of Theorem 11gbo
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 6p5e11 12223 . . 3 (6 + 5) = 11
2 6even 44655 . . . 4 6 ∈ Even
3 5odd 44654 . . . 4 5 ∈ Odd
4 epoo 44647 . . . 4 ((6 ∈ Even ∧ 5 ∈ Odd ) → (6 + 5) ∈ Odd )
52, 3, 4mp2an 691 . . 3 (6 + 5) ∈ Odd
61, 5eqeltrri 2849 . 2 11 ∈ Odd
7 3prm 16104 . . 3 3 ∈ ℙ
8 5prm 16514 . . . 4 5 ∈ ℙ
9 3odd 44652 . . . . . 6 3 ∈ Odd
109, 9, 33pm3.2i 1336 . . . . 5 (3 ∈ Odd ∧ 3 ∈ Odd ∧ 5 ∈ Odd )
11 gbpart11 44714 . . . . 5 11 = ((3 + 3) + 5)
1210, 11pm3.2i 474 . . . 4 ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 5 ∈ Odd ) ∧ 11 = ((3 + 3) + 5))
13 eleq1 2839 . . . . . . 7 (𝑟 = 5 → (𝑟 ∈ Odd ↔ 5 ∈ Odd ))
14133anbi3d 1439 . . . . . 6 (𝑟 = 5 → ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (3 ∈ Odd ∧ 3 ∈ Odd ∧ 5 ∈ Odd )))
15 oveq2 7164 . . . . . . 7 (𝑟 = 5 → ((3 + 3) + 𝑟) = ((3 + 3) + 5))
1615eqeq2d 2769 . . . . . 6 (𝑟 = 5 → (11 = ((3 + 3) + 𝑟) ↔ 11 = ((3 + 3) + 5)))
1714, 16anbi12d 633 . . . . 5 (𝑟 = 5 → (((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 3) + 𝑟)) ↔ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 5 ∈ Odd ) ∧ 11 = ((3 + 3) + 5))))
1817rspcev 3543 . . . 4 ((5 ∈ ℙ ∧ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 5 ∈ Odd ) ∧ 11 = ((3 + 3) + 5))) → ∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 3) + 𝑟)))
198, 12, 18mp2an 691 . . 3 𝑟 ∈ ℙ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 3) + 𝑟))
20 eleq1 2839 . . . . . . 7 (𝑝 = 3 → (𝑝 ∈ Odd ↔ 3 ∈ Odd ))
21203anbi1d 1437 . . . . . 6 (𝑝 = 3 → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )))
22 oveq1 7163 . . . . . . . 8 (𝑝 = 3 → (𝑝 + 𝑞) = (3 + 𝑞))
2322oveq1d 7171 . . . . . . 7 (𝑝 = 3 → ((𝑝 + 𝑞) + 𝑟) = ((3 + 𝑞) + 𝑟))
2423eqeq2d 2769 . . . . . 6 (𝑝 = 3 → (11 = ((𝑝 + 𝑞) + 𝑟) ↔ 11 = ((3 + 𝑞) + 𝑟)))
2521, 24anbi12d 633 . . . . 5 (𝑝 = 3 → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 𝑞) + 𝑟))))
2625rexbidv 3221 . . . 4 (𝑝 = 3 → (∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((𝑝 + 𝑞) + 𝑟)) ↔ ∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 𝑞) + 𝑟))))
27 eleq1 2839 . . . . . . 7 (𝑞 = 3 → (𝑞 ∈ Odd ↔ 3 ∈ Odd ))
28273anbi2d 1438 . . . . . 6 (𝑞 = 3 → ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd )))
29 oveq2 7164 . . . . . . . 8 (𝑞 = 3 → (3 + 𝑞) = (3 + 3))
3029oveq1d 7171 . . . . . . 7 (𝑞 = 3 → ((3 + 𝑞) + 𝑟) = ((3 + 3) + 𝑟))
3130eqeq2d 2769 . . . . . 6 (𝑞 = 3 → (11 = ((3 + 𝑞) + 𝑟) ↔ 11 = ((3 + 3) + 𝑟)))
3228, 31anbi12d 633 . . . . 5 (𝑞 = 3 → (((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 𝑞) + 𝑟)) ↔ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 3) + 𝑟))))
3332rexbidv 3221 . . . 4 (𝑞 = 3 → (∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 𝑞) + 𝑟)) ↔ ∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 3) + 𝑟))))
3426, 33rspc2ev 3555 . . 3 ((3 ∈ ℙ ∧ 3 ∈ ℙ ∧ ∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 3) + 𝑟))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((𝑝 + 𝑞) + 𝑟)))
357, 7, 19, 34mp3an 1458 . 2 𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((𝑝 + 𝑞) + 𝑟))
36 isgbo 44697 . 2 (11 ∈ GoldbachOdd ↔ (11 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((𝑝 + 𝑞) + 𝑟))))
376, 35, 36mpbir2an 710 1 11 ∈ GoldbachOdd
Colors of variables: wff setvar class
Syntax hints:  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3071  (class class class)co 7156  1c1 10589   + caddc 10591  3c3 11743  5c5 11745  6c6 11746  cdc 12150  cprime 16081   Even ceven 44568   Odd codd 44569   GoldbachOdd cgbo 44691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-2o 8119  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-sup 8952  df-inf 8953  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-z 12034  df-dec 12151  df-uz 12296  df-rp 12444  df-fz 12953  df-seq 13432  df-exp 13493  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-dvds 15669  df-prm 16082  df-even 44570  df-odd 44571  df-gbo 44694
This theorem is referenced by:  bgoldbtbndlem1  44749
  Copyright terms: Public domain W3C validator