Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  11gbo Structured version   Visualization version   GIF version

Theorem 11gbo 46433
Description: 11 is an odd Goldbach number. (Contributed by AV, 29-Jul-2020.)
Assertion
Ref Expression
11gbo 11 ∈ GoldbachOdd

Proof of Theorem 11gbo
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 6p5e11 12749 . . 3 (6 + 5) = 11
2 6even 46369 . . . 4 6 ∈ Even
3 5odd 46368 . . . 4 5 ∈ Odd
4 epoo 46361 . . . 4 ((6 ∈ Even ∧ 5 ∈ Odd ) → (6 + 5) ∈ Odd )
52, 3, 4mp2an 690 . . 3 (6 + 5) ∈ Odd
61, 5eqeltrri 2830 . 2 11 ∈ Odd
7 3prm 16630 . . 3 3 ∈ ℙ
8 5prm 17041 . . . 4 5 ∈ ℙ
9 3odd 46366 . . . . . 6 3 ∈ Odd
109, 9, 33pm3.2i 1339 . . . . 5 (3 ∈ Odd ∧ 3 ∈ Odd ∧ 5 ∈ Odd )
11 gbpart11 46428 . . . . 5 11 = ((3 + 3) + 5)
1210, 11pm3.2i 471 . . . 4 ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 5 ∈ Odd ) ∧ 11 = ((3 + 3) + 5))
13 eleq1 2821 . . . . . . 7 (𝑟 = 5 → (𝑟 ∈ Odd ↔ 5 ∈ Odd ))
14133anbi3d 1442 . . . . . 6 (𝑟 = 5 → ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (3 ∈ Odd ∧ 3 ∈ Odd ∧ 5 ∈ Odd )))
15 oveq2 7416 . . . . . . 7 (𝑟 = 5 → ((3 + 3) + 𝑟) = ((3 + 3) + 5))
1615eqeq2d 2743 . . . . . 6 (𝑟 = 5 → (11 = ((3 + 3) + 𝑟) ↔ 11 = ((3 + 3) + 5)))
1714, 16anbi12d 631 . . . . 5 (𝑟 = 5 → (((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 3) + 𝑟)) ↔ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 5 ∈ Odd ) ∧ 11 = ((3 + 3) + 5))))
1817rspcev 3612 . . . 4 ((5 ∈ ℙ ∧ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 5 ∈ Odd ) ∧ 11 = ((3 + 3) + 5))) → ∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 3) + 𝑟)))
198, 12, 18mp2an 690 . . 3 𝑟 ∈ ℙ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 3) + 𝑟))
20 eleq1 2821 . . . . . . 7 (𝑝 = 3 → (𝑝 ∈ Odd ↔ 3 ∈ Odd ))
21203anbi1d 1440 . . . . . 6 (𝑝 = 3 → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )))
22 oveq1 7415 . . . . . . . 8 (𝑝 = 3 → (𝑝 + 𝑞) = (3 + 𝑞))
2322oveq1d 7423 . . . . . . 7 (𝑝 = 3 → ((𝑝 + 𝑞) + 𝑟) = ((3 + 𝑞) + 𝑟))
2423eqeq2d 2743 . . . . . 6 (𝑝 = 3 → (11 = ((𝑝 + 𝑞) + 𝑟) ↔ 11 = ((3 + 𝑞) + 𝑟)))
2521, 24anbi12d 631 . . . . 5 (𝑝 = 3 → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 𝑞) + 𝑟))))
2625rexbidv 3178 . . . 4 (𝑝 = 3 → (∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((𝑝 + 𝑞) + 𝑟)) ↔ ∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 𝑞) + 𝑟))))
27 eleq1 2821 . . . . . . 7 (𝑞 = 3 → (𝑞 ∈ Odd ↔ 3 ∈ Odd ))
28273anbi2d 1441 . . . . . 6 (𝑞 = 3 → ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd )))
29 oveq2 7416 . . . . . . . 8 (𝑞 = 3 → (3 + 𝑞) = (3 + 3))
3029oveq1d 7423 . . . . . . 7 (𝑞 = 3 → ((3 + 𝑞) + 𝑟) = ((3 + 3) + 𝑟))
3130eqeq2d 2743 . . . . . 6 (𝑞 = 3 → (11 = ((3 + 𝑞) + 𝑟) ↔ 11 = ((3 + 3) + 𝑟)))
3228, 31anbi12d 631 . . . . 5 (𝑞 = 3 → (((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 𝑞) + 𝑟)) ↔ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 3) + 𝑟))))
3332rexbidv 3178 . . . 4 (𝑞 = 3 → (∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 𝑞) + 𝑟)) ↔ ∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 3) + 𝑟))))
3426, 33rspc2ev 3624 . . 3 ((3 ∈ ℙ ∧ 3 ∈ ℙ ∧ ∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 3) + 𝑟))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((𝑝 + 𝑞) + 𝑟)))
357, 7, 19, 34mp3an 1461 . 2 𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((𝑝 + 𝑞) + 𝑟))
36 isgbo 46411 . 2 (11 ∈ GoldbachOdd ↔ (11 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((𝑝 + 𝑞) + 𝑟))))
376, 35, 36mpbir2an 709 1 11 ∈ GoldbachOdd
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3070  (class class class)co 7408  1c1 11110   + caddc 11112  3c3 12267  5c5 12269  6c6 12270  cdc 12676  cprime 16607   Even ceven 46282   Odd codd 46283   GoldbachOdd cgbo 46405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-2o 8466  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-sup 9436  df-inf 9437  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-rp 12974  df-fz 13484  df-seq 13966  df-exp 14027  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-dvds 16197  df-prm 16608  df-even 46284  df-odd 46285  df-gbo 46408
This theorem is referenced by:  bgoldbtbndlem1  46463
  Copyright terms: Public domain W3C validator