| Step | Hyp | Ref
| Expression |
| 1 | | 6p5e11 12790 |
. . 3
⊢ (6 + 5) =
;11 |
| 2 | | 6even 47644 |
. . . 4
⊢ 6 ∈
Even |
| 3 | | 5odd 47643 |
. . . 4
⊢ 5 ∈
Odd |
| 4 | | epoo 47636 |
. . . 4
⊢ ((6
∈ Even ∧ 5 ∈ Odd ) → (6 + 5) ∈ Odd ) |
| 5 | 2, 3, 4 | mp2an 692 |
. . 3
⊢ (6 + 5)
∈ Odd |
| 6 | 1, 5 | eqeltrri 2830 |
. 2
⊢ ;11 ∈ Odd |
| 7 | | 3prm 16714 |
. . 3
⊢ 3 ∈
ℙ |
| 8 | | 5prm 17129 |
. . . 4
⊢ 5 ∈
ℙ |
| 9 | | 3odd 47641 |
. . . . . 6
⊢ 3 ∈
Odd |
| 10 | 9, 9, 3 | 3pm3.2i 1339 |
. . . . 5
⊢ (3 ∈
Odd ∧ 3 ∈ Odd ∧ 5 ∈ Odd ) |
| 11 | | gbpart11 47703 |
. . . . 5
⊢ ;11 = ((3 + 3) + 5) |
| 12 | 10, 11 | pm3.2i 470 |
. . . 4
⊢ ((3
∈ Odd ∧ 3 ∈ Odd ∧ 5 ∈ Odd ) ∧ ;11 = ((3 + 3) + 5)) |
| 13 | | eleq1 2821 |
. . . . . . 7
⊢ (𝑟 = 5 → (𝑟 ∈ Odd ↔ 5 ∈ Odd
)) |
| 14 | 13 | 3anbi3d 1443 |
. . . . . 6
⊢ (𝑟 = 5 → ((3 ∈ Odd ∧
3 ∈ Odd ∧ 𝑟 ∈
Odd ) ↔ (3 ∈ Odd ∧ 3 ∈ Odd ∧ 5 ∈ Odd
))) |
| 15 | | oveq2 7422 |
. . . . . . 7
⊢ (𝑟 = 5 → ((3 + 3) + 𝑟) = ((3 + 3) +
5)) |
| 16 | 15 | eqeq2d 2745 |
. . . . . 6
⊢ (𝑟 = 5 → (;11 = ((3 + 3) + 𝑟) ↔ ;11 = ((3 + 3) + 5))) |
| 17 | 14, 16 | anbi12d 632 |
. . . . 5
⊢ (𝑟 = 5 → (((3 ∈ Odd
∧ 3 ∈ Odd ∧ 𝑟
∈ Odd ) ∧ ;11 = ((3 + 3)
+ 𝑟)) ↔ ((3 ∈ Odd
∧ 3 ∈ Odd ∧ 5 ∈ Odd ) ∧ ;11 = ((3 + 3) + 5)))) |
| 18 | 17 | rspcev 3606 |
. . . 4
⊢ ((5
∈ ℙ ∧ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 5 ∈ Odd )
∧ ;11 = ((3 + 3) + 5))) →
∃𝑟 ∈ ℙ ((3
∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ ;11 = ((3 + 3) + 𝑟))) |
| 19 | 8, 12, 18 | mp2an 692 |
. . 3
⊢
∃𝑟 ∈
ℙ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ ;11 = ((3 + 3) + 𝑟)) |
| 20 | | eleq1 2821 |
. . . . . . 7
⊢ (𝑝 = 3 → (𝑝 ∈ Odd ↔ 3 ∈ Odd
)) |
| 21 | 20 | 3anbi1d 1441 |
. . . . . 6
⊢ (𝑝 = 3 → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (3 ∈ Odd ∧
𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ))) |
| 22 | | oveq1 7421 |
. . . . . . . 8
⊢ (𝑝 = 3 → (𝑝 + 𝑞) = (3 + 𝑞)) |
| 23 | 22 | oveq1d 7429 |
. . . . . . 7
⊢ (𝑝 = 3 → ((𝑝 + 𝑞) + 𝑟) = ((3 + 𝑞) + 𝑟)) |
| 24 | 23 | eqeq2d 2745 |
. . . . . 6
⊢ (𝑝 = 3 → (;11 = ((𝑝 + 𝑞) + 𝑟) ↔ ;11 = ((3 + 𝑞) + 𝑟))) |
| 25 | 21, 24 | anbi12d 632 |
. . . . 5
⊢ (𝑝 = 3 → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ ;11 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ ;11 = ((3 + 𝑞) + 𝑟)))) |
| 26 | 25 | rexbidv 3166 |
. . . 4
⊢ (𝑝 = 3 → (∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ ;11 = ((𝑝 + 𝑞) + 𝑟)) ↔ ∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ ;11 = ((3 + 𝑞) + 𝑟)))) |
| 27 | | eleq1 2821 |
. . . . . . 7
⊢ (𝑞 = 3 → (𝑞 ∈ Odd ↔ 3 ∈ Odd
)) |
| 28 | 27 | 3anbi2d 1442 |
. . . . . 6
⊢ (𝑞 = 3 → ((3 ∈ Odd ∧
𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (3 ∈
Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ))) |
| 29 | | oveq2 7422 |
. . . . . . . 8
⊢ (𝑞 = 3 → (3 + 𝑞) = (3 + 3)) |
| 30 | 29 | oveq1d 7429 |
. . . . . . 7
⊢ (𝑞 = 3 → ((3 + 𝑞) + 𝑟) = ((3 + 3) + 𝑟)) |
| 31 | 30 | eqeq2d 2745 |
. . . . . 6
⊢ (𝑞 = 3 → (;11 = ((3 + 𝑞) + 𝑟) ↔ ;11 = ((3 + 3) + 𝑟))) |
| 32 | 28, 31 | anbi12d 632 |
. . . . 5
⊢ (𝑞 = 3 → (((3 ∈ Odd
∧ 𝑞 ∈ Odd ∧
𝑟 ∈ Odd ) ∧ ;11 = ((3 + 𝑞) + 𝑟)) ↔ ((3 ∈ Odd ∧ 3 ∈ Odd
∧ 𝑟 ∈ Odd ) ∧
;11 = ((3 + 3) + 𝑟)))) |
| 33 | 32 | rexbidv 3166 |
. . . 4
⊢ (𝑞 = 3 → (∃𝑟 ∈ ℙ ((3 ∈ Odd
∧ 𝑞 ∈ Odd ∧
𝑟 ∈ Odd ) ∧ ;11 = ((3 + 𝑞) + 𝑟)) ↔ ∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 3 ∈
Odd ∧ 𝑟 ∈ Odd )
∧ ;11 = ((3 + 3) + 𝑟)))) |
| 34 | 26, 33 | rspc2ev 3619 |
. . 3
⊢ ((3
∈ ℙ ∧ 3 ∈ ℙ ∧ ∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 3 ∈
Odd ∧ 𝑟 ∈ Odd )
∧ ;11 = ((3 + 3) + 𝑟))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ ;11 = ((𝑝 + 𝑞) + 𝑟))) |
| 35 | 7, 7, 19, 34 | mp3an 1462 |
. 2
⊢
∃𝑝 ∈
ℙ ∃𝑞 ∈
ℙ ∃𝑟 ∈
ℙ ((𝑝 ∈ Odd
∧ 𝑞 ∈ Odd ∧
𝑟 ∈ Odd ) ∧ ;11 = ((𝑝 + 𝑞) + 𝑟)) |
| 36 | | isgbo 47686 |
. 2
⊢ (;11 ∈ GoldbachOdd ↔ (;11 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ ;11 = ((𝑝 + 𝑞) + 𝑟)))) |
| 37 | 6, 35, 36 | mpbir2an 711 |
1
⊢ ;11 ∈ GoldbachOdd |