Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  11gbo Structured version   Visualization version   GIF version

Theorem 11gbo 47115
Description: 11 is an odd Goldbach number. (Contributed by AV, 29-Jul-2020.)
Assertion
Ref Expression
11gbo 11 ∈ GoldbachOdd

Proof of Theorem 11gbo
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 6p5e11 12781 . . 3 (6 + 5) = 11
2 6even 47051 . . . 4 6 ∈ Even
3 5odd 47050 . . . 4 5 ∈ Odd
4 epoo 47043 . . . 4 ((6 ∈ Even ∧ 5 ∈ Odd ) → (6 + 5) ∈ Odd )
52, 3, 4mp2an 691 . . 3 (6 + 5) ∈ Odd
61, 5eqeltrri 2826 . 2 11 ∈ Odd
7 3prm 16665 . . 3 3 ∈ ℙ
8 5prm 17078 . . . 4 5 ∈ ℙ
9 3odd 47048 . . . . . 6 3 ∈ Odd
109, 9, 33pm3.2i 1337 . . . . 5 (3 ∈ Odd ∧ 3 ∈ Odd ∧ 5 ∈ Odd )
11 gbpart11 47110 . . . . 5 11 = ((3 + 3) + 5)
1210, 11pm3.2i 470 . . . 4 ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 5 ∈ Odd ) ∧ 11 = ((3 + 3) + 5))
13 eleq1 2817 . . . . . . 7 (𝑟 = 5 → (𝑟 ∈ Odd ↔ 5 ∈ Odd ))
14133anbi3d 1439 . . . . . 6 (𝑟 = 5 → ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (3 ∈ Odd ∧ 3 ∈ Odd ∧ 5 ∈ Odd )))
15 oveq2 7428 . . . . . . 7 (𝑟 = 5 → ((3 + 3) + 𝑟) = ((3 + 3) + 5))
1615eqeq2d 2739 . . . . . 6 (𝑟 = 5 → (11 = ((3 + 3) + 𝑟) ↔ 11 = ((3 + 3) + 5)))
1714, 16anbi12d 631 . . . . 5 (𝑟 = 5 → (((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 3) + 𝑟)) ↔ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 5 ∈ Odd ) ∧ 11 = ((3 + 3) + 5))))
1817rspcev 3609 . . . 4 ((5 ∈ ℙ ∧ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 5 ∈ Odd ) ∧ 11 = ((3 + 3) + 5))) → ∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 3) + 𝑟)))
198, 12, 18mp2an 691 . . 3 𝑟 ∈ ℙ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 3) + 𝑟))
20 eleq1 2817 . . . . . . 7 (𝑝 = 3 → (𝑝 ∈ Odd ↔ 3 ∈ Odd ))
21203anbi1d 1437 . . . . . 6 (𝑝 = 3 → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd )))
22 oveq1 7427 . . . . . . . 8 (𝑝 = 3 → (𝑝 + 𝑞) = (3 + 𝑞))
2322oveq1d 7435 . . . . . . 7 (𝑝 = 3 → ((𝑝 + 𝑞) + 𝑟) = ((3 + 𝑞) + 𝑟))
2423eqeq2d 2739 . . . . . 6 (𝑝 = 3 → (11 = ((𝑝 + 𝑞) + 𝑟) ↔ 11 = ((3 + 𝑞) + 𝑟)))
2521, 24anbi12d 631 . . . . 5 (𝑝 = 3 → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 𝑞) + 𝑟))))
2625rexbidv 3175 . . . 4 (𝑝 = 3 → (∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((𝑝 + 𝑞) + 𝑟)) ↔ ∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 𝑞) + 𝑟))))
27 eleq1 2817 . . . . . . 7 (𝑞 = 3 → (𝑞 ∈ Odd ↔ 3 ∈ Odd ))
28273anbi2d 1438 . . . . . 6 (𝑞 = 3 → ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd )))
29 oveq2 7428 . . . . . . . 8 (𝑞 = 3 → (3 + 𝑞) = (3 + 3))
3029oveq1d 7435 . . . . . . 7 (𝑞 = 3 → ((3 + 𝑞) + 𝑟) = ((3 + 3) + 𝑟))
3130eqeq2d 2739 . . . . . 6 (𝑞 = 3 → (11 = ((3 + 𝑞) + 𝑟) ↔ 11 = ((3 + 3) + 𝑟)))
3228, 31anbi12d 631 . . . . 5 (𝑞 = 3 → (((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 𝑞) + 𝑟)) ↔ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 3) + 𝑟))))
3332rexbidv 3175 . . . 4 (𝑞 = 3 → (∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 𝑞) + 𝑟)) ↔ ∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 3) + 𝑟))))
3426, 33rspc2ev 3622 . . 3 ((3 ∈ ℙ ∧ 3 ∈ ℙ ∧ ∃𝑟 ∈ ℙ ((3 ∈ Odd ∧ 3 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((3 + 3) + 𝑟))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((𝑝 + 𝑞) + 𝑟)))
357, 7, 19, 34mp3an 1458 . 2 𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((𝑝 + 𝑞) + 𝑟))
36 isgbo 47093 . 2 (11 ∈ GoldbachOdd ↔ (11 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 11 = ((𝑝 + 𝑞) + 𝑟))))
376, 35, 36mpbir2an 710 1 11 ∈ GoldbachOdd
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1085   = wceq 1534  wcel 2099  wrex 3067  (class class class)co 7420  1c1 11140   + caddc 11142  3c3 12299  5c5 12301  6c6 12302  cdc 12708  cprime 16642   Even ceven 46964   Odd codd 46965   GoldbachOdd cgbo 47087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9466  df-inf 9467  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-n0 12504  df-z 12590  df-dec 12709  df-uz 12854  df-rp 13008  df-fz 13518  df-seq 14000  df-exp 14060  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-dvds 16232  df-prm 16643  df-even 46966  df-odd 46967  df-gbo 47090
This theorem is referenced by:  bgoldbtbndlem1  47145
  Copyright terms: Public domain W3C validator