| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simprl 771 | . . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 𝑛 ∈ Odd ) | 
| 2 |  | bgoldbtbnd.d | . . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈
(ℤ≥‘3)) | 
| 3 |  | eluzge3nn 12932 | . . . . . . . . 9
⊢ (𝐷 ∈
(ℤ≥‘3) → 𝐷 ∈ ℕ) | 
| 4 | 2, 3 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ ℕ) | 
| 5 |  | iccelpart 47420 | . . . . . . . 8
⊢ (𝐷 ∈ ℕ →
∀𝑓 ∈
(RePart‘𝐷)(𝑛 ∈ ((𝑓‘0)[,)(𝑓‘𝐷)) → ∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝑓‘𝑗)[,)(𝑓‘(𝑗 + 1))))) | 
| 6 | 4, 5 | syl 17 | . . . . . . 7
⊢ (𝜑 → ∀𝑓 ∈ (RePart‘𝐷)(𝑛 ∈ ((𝑓‘0)[,)(𝑓‘𝐷)) → ∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝑓‘𝑗)[,)(𝑓‘(𝑗 + 1))))) | 
| 7 |  | bgoldbtbnd.f | . . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (RePart‘𝐷)) | 
| 8 |  | fveq1 6905 | . . . . . . . . . . . . 13
⊢ (𝑓 = 𝐹 → (𝑓‘0) = (𝐹‘0)) | 
| 9 |  | fveq1 6905 | . . . . . . . . . . . . 13
⊢ (𝑓 = 𝐹 → (𝑓‘𝐷) = (𝐹‘𝐷)) | 
| 10 | 8, 9 | oveq12d 7449 | . . . . . . . . . . . 12
⊢ (𝑓 = 𝐹 → ((𝑓‘0)[,)(𝑓‘𝐷)) = ((𝐹‘0)[,)(𝐹‘𝐷))) | 
| 11 | 10 | eleq2d 2827 | . . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → (𝑛 ∈ ((𝑓‘0)[,)(𝑓‘𝐷)) ↔ 𝑛 ∈ ((𝐹‘0)[,)(𝐹‘𝐷)))) | 
| 12 |  | fveq1 6905 | . . . . . . . . . . . . . 14
⊢ (𝑓 = 𝐹 → (𝑓‘𝑗) = (𝐹‘𝑗)) | 
| 13 |  | fveq1 6905 | . . . . . . . . . . . . . 14
⊢ (𝑓 = 𝐹 → (𝑓‘(𝑗 + 1)) = (𝐹‘(𝑗 + 1))) | 
| 14 | 12, 13 | oveq12d 7449 | . . . . . . . . . . . . 13
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑗)[,)(𝑓‘(𝑗 + 1))) = ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1)))) | 
| 15 | 14 | eleq2d 2827 | . . . . . . . . . . . 12
⊢ (𝑓 = 𝐹 → (𝑛 ∈ ((𝑓‘𝑗)[,)(𝑓‘(𝑗 + 1))) ↔ 𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))))) | 
| 16 | 15 | rexbidv 3179 | . . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → (∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝑓‘𝑗)[,)(𝑓‘(𝑗 + 1))) ↔ ∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))))) | 
| 17 | 11, 16 | imbi12d 344 | . . . . . . . . . 10
⊢ (𝑓 = 𝐹 → ((𝑛 ∈ ((𝑓‘0)[,)(𝑓‘𝐷)) → ∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝑓‘𝑗)[,)(𝑓‘(𝑗 + 1)))) ↔ (𝑛 ∈ ((𝐹‘0)[,)(𝐹‘𝐷)) → ∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1)))))) | 
| 18 | 17 | rspcv 3618 | . . . . . . . . 9
⊢ (𝐹 ∈ (RePart‘𝐷) → (∀𝑓 ∈ (RePart‘𝐷)(𝑛 ∈ ((𝑓‘0)[,)(𝑓‘𝐷)) → ∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝑓‘𝑗)[,)(𝑓‘(𝑗 + 1)))) → (𝑛 ∈ ((𝐹‘0)[,)(𝐹‘𝐷)) → ∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1)))))) | 
| 19 | 7, 18 | syl 17 | . . . . . . . 8
⊢ (𝜑 → (∀𝑓 ∈ (RePart‘𝐷)(𝑛 ∈ ((𝑓‘0)[,)(𝑓‘𝐷)) → ∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝑓‘𝑗)[,)(𝑓‘(𝑗 + 1)))) → (𝑛 ∈ ((𝐹‘0)[,)(𝐹‘𝐷)) → ∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1)))))) | 
| 20 |  | oddz 47618 | . . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ Odd → 𝑛 ∈
ℤ) | 
| 21 | 20 | zred 12722 | . . . . . . . . . . . . . 14
⊢ (𝑛 ∈ Odd → 𝑛 ∈
ℝ) | 
| 22 | 21 | rexrd 11311 | . . . . . . . . . . . . 13
⊢ (𝑛 ∈ Odd → 𝑛 ∈
ℝ*) | 
| 23 | 22 | ad2antrl 728 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 𝑛 ∈ ℝ*) | 
| 24 |  | 7re 12359 | . . . . . . . . . . . . . . . . 17
⊢ 7 ∈
ℝ | 
| 25 |  | ltle 11349 | . . . . . . . . . . . . . . . . 17
⊢ ((7
∈ ℝ ∧ 𝑛
∈ ℝ) → (7 < 𝑛 → 7 ≤ 𝑛)) | 
| 26 | 24, 21, 25 | sylancr 587 | . . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ Odd → (7 < 𝑛 → 7 ≤ 𝑛)) | 
| 27 | 26 | com12 32 | . . . . . . . . . . . . . . 15
⊢ (7 <
𝑛 → (𝑛 ∈ Odd → 7 ≤ 𝑛)) | 
| 28 | 27 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((7 <
𝑛 ∧ 𝑛 < 𝑀) → (𝑛 ∈ Odd → 7 ≤ 𝑛)) | 
| 29 | 28 | impcom 407 | . . . . . . . . . . . . 13
⊢ ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → 7 ≤ 𝑛) | 
| 30 | 29 | adantl 481 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 7 ≤ 𝑛) | 
| 31 |  | bgoldbtbnd.m | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘;11)) | 
| 32 |  | eluzelre 12889 | . . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈
(ℤ≥‘;11)
→ 𝑀 ∈
ℝ) | 
| 33 | 32 | rexrd 11311 | . . . . . . . . . . . . . . 15
⊢ (𝑀 ∈
(ℤ≥‘;11)
→ 𝑀 ∈
ℝ*) | 
| 34 | 31, 33 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈
ℝ*) | 
| 35 | 34 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 𝑀 ∈
ℝ*) | 
| 36 |  | bgoldbtbnd.r | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐹‘𝐷) ∈ ℝ) | 
| 37 | 36 | rexrd 11311 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹‘𝐷) ∈
ℝ*) | 
| 38 | 37 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝐹‘𝐷) ∈
ℝ*) | 
| 39 |  | simprrr 782 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 𝑛 < 𝑀) | 
| 40 |  | bgoldbtbnd.l | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 < (𝐹‘𝐷)) | 
| 41 | 40 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 𝑀 < (𝐹‘𝐷)) | 
| 42 | 23, 35, 38, 39, 41 | xrlttrd 13201 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 𝑛 < (𝐹‘𝐷)) | 
| 43 |  | bgoldbtbnd.0 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐹‘0) = 7) | 
| 44 | 43 | oveq1d 7446 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐹‘0)[,)(𝐹‘𝐷)) = (7[,)(𝐹‘𝐷))) | 
| 45 | 44 | eleq2d 2827 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑛 ∈ ((𝐹‘0)[,)(𝐹‘𝐷)) ↔ 𝑛 ∈ (7[,)(𝐹‘𝐷)))) | 
| 46 | 45 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝑛 ∈ ((𝐹‘0)[,)(𝐹‘𝐷)) ↔ 𝑛 ∈ (7[,)(𝐹‘𝐷)))) | 
| 47 | 24 | rexri 11319 | . . . . . . . . . . . . . 14
⊢ 7 ∈
ℝ* | 
| 48 |  | elico1 13430 | . . . . . . . . . . . . . 14
⊢ ((7
∈ ℝ* ∧ (𝐹‘𝐷) ∈ ℝ*) → (𝑛 ∈ (7[,)(𝐹‘𝐷)) ↔ (𝑛 ∈ ℝ* ∧ 7 ≤
𝑛 ∧ 𝑛 < (𝐹‘𝐷)))) | 
| 49 | 47, 38, 48 | sylancr 587 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝑛 ∈ (7[,)(𝐹‘𝐷)) ↔ (𝑛 ∈ ℝ* ∧ 7 ≤
𝑛 ∧ 𝑛 < (𝐹‘𝐷)))) | 
| 50 | 46, 49 | bitrd 279 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝑛 ∈ ((𝐹‘0)[,)(𝐹‘𝐷)) ↔ (𝑛 ∈ ℝ* ∧ 7 ≤
𝑛 ∧ 𝑛 < (𝐹‘𝐷)))) | 
| 51 | 23, 30, 42, 50 | mpbir3and 1343 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 𝑛 ∈ ((𝐹‘0)[,)(𝐹‘𝐷))) | 
| 52 |  | fzo0sn0fzo1 13794 | . . . . . . . . . . . . . . . . 17
⊢ (𝐷 ∈ ℕ →
(0..^𝐷) = ({0} ∪
(1..^𝐷))) | 
| 53 | 52 | eleq2d 2827 | . . . . . . . . . . . . . . . 16
⊢ (𝐷 ∈ ℕ → (𝑗 ∈ (0..^𝐷) ↔ 𝑗 ∈ ({0} ∪ (1..^𝐷)))) | 
| 54 |  | elun 4153 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ({0} ∪ (1..^𝐷)) ↔ (𝑗 ∈ {0} ∨ 𝑗 ∈ (1..^𝐷))) | 
| 55 | 53, 54 | bitrdi 287 | . . . . . . . . . . . . . . 15
⊢ (𝐷 ∈ ℕ → (𝑗 ∈ (0..^𝐷) ↔ (𝑗 ∈ {0} ∨ 𝑗 ∈ (1..^𝐷)))) | 
| 56 | 4, 55 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑗 ∈ (0..^𝐷) ↔ (𝑗 ∈ {0} ∨ 𝑗 ∈ (1..^𝐷)))) | 
| 57 | 56 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝑗 ∈ (0..^𝐷) ↔ (𝑗 ∈ {0} ∨ 𝑗 ∈ (1..^𝐷)))) | 
| 58 |  | velsn 4642 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ {0} ↔ 𝑗 = 0) | 
| 59 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 0 → (𝐹‘𝑗) = (𝐹‘0)) | 
| 60 |  | fv0p1e1 12389 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 0 → (𝐹‘(𝑗 + 1)) = (𝐹‘1)) | 
| 61 | 59, 60 | oveq12d 7449 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 0 → ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) = ((𝐹‘0)[,)(𝐹‘1))) | 
| 62 |  | bgoldbtbnd.1 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐹‘1) = ;13) | 
| 63 | 43, 62 | oveq12d 7449 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝐹‘0)[,)(𝐹‘1)) = (7[,);13)) | 
| 64 | 63 | adantr 480 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → ((𝐹‘0)[,)(𝐹‘1)) = (7[,);13)) | 
| 65 | 61, 64 | sylan9eq 2797 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 = 0 ∧ (𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)))) → ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) = (7[,);13)) | 
| 66 | 65 | eleq2d 2827 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 = 0 ∧ (𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)))) → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) ↔ 𝑛 ∈ (7[,);13))) | 
| 67 | 1 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑛 ∈ (7[,);13)) → 𝑛 ∈ Odd ) | 
| 68 |  | simprrl 781 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 7 < 𝑛) | 
| 69 | 68 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑛 ∈ (7[,);13)) → 7 < 𝑛) | 
| 70 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑛 ∈ (7[,);13)) → 𝑛 ∈ (7[,);13)) | 
| 71 |  | bgoldbtbndlem1 47792 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ Odd ∧ 7 < 𝑛 ∧ 𝑛 ∈ (7[,);13)) → 𝑛 ∈ GoldbachOdd ) | 
| 72 | 67, 69, 70, 71 | syl3anc 1373 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑛 ∈ (7[,);13)) → 𝑛 ∈ GoldbachOdd ) | 
| 73 |  | isgbo 47740 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ GoldbachOdd ↔
(𝑛 ∈ Odd ∧
∃𝑝 ∈ ℙ
∃𝑞 ∈ ℙ
∃𝑟 ∈ ℙ
((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) | 
| 74 | 72, 73 | sylib 218 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑛 ∈ (7[,);13)) → (𝑛 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) | 
| 75 | 74 | simprd 495 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑛 ∈ (7[,);13)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))) | 
| 76 | 75 | ex 412 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝑛 ∈ (7[,);13) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) | 
| 77 | 76 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 = 0 ∧ (𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)))) → (𝑛 ∈ (7[,);13) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) | 
| 78 | 66, 77 | sylbid 240 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑗 = 0 ∧ (𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)))) → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) | 
| 79 | 78 | ex 412 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 = 0 → ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) | 
| 80 | 58, 79 | sylbi 217 | . . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ {0} → ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) | 
| 81 |  | bgoldbtbnd.i | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)))) | 
| 82 |  | fzo0ss1 13729 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(1..^𝐷) ⊆
(0..^𝐷) | 
| 83 | 82 | sseli 3979 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (1..^𝐷) → 𝑗 ∈ (0..^𝐷)) | 
| 84 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 = 𝑗 → (𝐹‘𝑖) = (𝐹‘𝑗)) | 
| 85 | 84 | eleq1d 2826 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑗 → ((𝐹‘𝑖) ∈ (ℙ ∖ {2}) ↔ (𝐹‘𝑗) ∈ (ℙ ∖
{2}))) | 
| 86 |  | fvoveq1 7454 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 = 𝑗 → (𝐹‘(𝑖 + 1)) = (𝐹‘(𝑗 + 1))) | 
| 87 | 86, 84 | oveq12d 7449 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 = 𝑗 → ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) = ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))) | 
| 88 | 87 | breq1d 5153 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑗 → (((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) < (𝑁 − 4) ↔ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4))) | 
| 89 | 87 | breq2d 5155 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑗 → (4 < ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) ↔ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) | 
| 90 | 85, 88, 89 | 3anbi123d 1438 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 𝑗 → (((𝐹‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖))) ↔ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) | 
| 91 | 90 | rspcv 3618 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0..^𝐷) → (∀𝑖 ∈ (0..^𝐷)((𝐹‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖))) → ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) | 
| 92 | 83, 91 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (1..^𝐷) → (∀𝑖 ∈ (0..^𝐷)((𝐹‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖))) → ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) | 
| 93 | 81, 92 | mpan9 506 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) → ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) | 
| 94 |  | bgoldbtbnd.n | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘;11)) | 
| 95 |  | bgoldbtbnd.b | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven )) | 
| 96 | 31, 94, 95, 2, 7, 81, 43, 62, 40, 36 | bgoldbtbndlem4 47795 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ 𝑛 ∈ Odd ) → ((𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) ∧ (𝑛 − (𝐹‘𝑗)) ≤ 4) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) | 
| 97 | 96 | ad2ant2r 747 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → ((𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) ∧ (𝑛 − (𝐹‘𝑗)) ≤ 4) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) | 
| 98 | 97 | expcomd 416 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → ((𝑛 − (𝐹‘𝑗)) ≤ 4 → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) | 
| 99 |  | simplll 775 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 𝜑) | 
| 100 |  | simprl 771 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 𝑛 ∈ Odd ) | 
| 101 |  | simpllr 776 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 𝑗 ∈ (1..^𝐷)) | 
| 102 |  | eqid 2737 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 − (𝐹‘𝑗)) = (𝑛 − (𝐹‘𝑗)) | 
| 103 | 31, 94, 95, 2, 7, 81, 43, 62, 40, 36, 102 | bgoldbtbndlem3 47794 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑛 ∈ Odd ∧ 𝑗 ∈ (1..^𝐷)) → ((𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) ∧ 4 < (𝑛 − (𝐹‘𝑗))) → ((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁 ∧ 4 < (𝑛 − (𝐹‘𝑗))))) | 
| 104 | 99, 100, 101, 103 | syl3anc 1373 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → ((𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) ∧ 4 < (𝑛 − (𝐹‘𝑗))) → ((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁 ∧ 4 < (𝑛 − (𝐹‘𝑗))))) | 
| 105 |  | breq2 5147 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑛 = 𝑚 → (4 < 𝑛 ↔ 4 < 𝑚)) | 
| 106 |  | breq1 5146 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑛 = 𝑚 → (𝑛 < 𝑁 ↔ 𝑚 < 𝑁)) | 
| 107 | 105, 106 | anbi12d 632 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑛 = 𝑚 → ((4 < 𝑛 ∧ 𝑛 < 𝑁) ↔ (4 < 𝑚 ∧ 𝑚 < 𝑁))) | 
| 108 |  | eleq1 2829 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑛 = 𝑚 → (𝑛 ∈ GoldbachEven ↔ 𝑚 ∈ GoldbachEven
)) | 
| 109 | 107, 108 | imbi12d 344 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑛 = 𝑚 → (((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) ↔ ((4 < 𝑚 ∧ 𝑚 < 𝑁) → 𝑚 ∈ GoldbachEven ))) | 
| 110 | 109 | cbvralvw 3237 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(∀𝑛 ∈
Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) ↔ ∀𝑚 ∈ Even ((4 < 𝑚 ∧ 𝑚 < 𝑁) → 𝑚 ∈ GoldbachEven )) | 
| 111 |  | breq2 5147 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑚 = (𝑛 − (𝐹‘𝑗)) → (4 < 𝑚 ↔ 4 < (𝑛 − (𝐹‘𝑗)))) | 
| 112 |  | breq1 5146 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑚 = (𝑛 − (𝐹‘𝑗)) → (𝑚 < 𝑁 ↔ (𝑛 − (𝐹‘𝑗)) < 𝑁)) | 
| 113 | 111, 112 | anbi12d 632 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑚 = (𝑛 − (𝐹‘𝑗)) → ((4 < 𝑚 ∧ 𝑚 < 𝑁) ↔ (4 < (𝑛 − (𝐹‘𝑗)) ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁))) | 
| 114 |  | eleq1 2829 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑚 = (𝑛 − (𝐹‘𝑗)) → (𝑚 ∈ GoldbachEven ↔ (𝑛 − (𝐹‘𝑗)) ∈ GoldbachEven )) | 
| 115 | 113, 114 | imbi12d 344 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑚 = (𝑛 − (𝐹‘𝑗)) → (((4 < 𝑚 ∧ 𝑚 < 𝑁) → 𝑚 ∈ GoldbachEven ) ↔ ((4 < (𝑛 − (𝐹‘𝑗)) ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁) → (𝑛 − (𝐹‘𝑗)) ∈ GoldbachEven ))) | 
| 116 | 115 | rspcv 3618 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑛 − (𝐹‘𝑗)) ∈ Even → (∀𝑚 ∈ Even ((4 < 𝑚 ∧ 𝑚 < 𝑁) → 𝑚 ∈ GoldbachEven ) → ((4 < (𝑛 − (𝐹‘𝑗)) ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁) → (𝑛 − (𝐹‘𝑗)) ∈ GoldbachEven ))) | 
| 117 | 110, 116 | biimtrid 242 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑛 − (𝐹‘𝑗)) ∈ Even → (∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) → ((4 < (𝑛 − (𝐹‘𝑗)) ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁) → (𝑛 − (𝐹‘𝑗)) ∈ GoldbachEven ))) | 
| 118 |  | pm3.35 803 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((4 <
(𝑛 − (𝐹‘𝑗)) ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁) ∧ ((4 < (𝑛 − (𝐹‘𝑗)) ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁) → (𝑛 − (𝐹‘𝑗)) ∈ GoldbachEven )) → (𝑛 − (𝐹‘𝑗)) ∈ GoldbachEven ) | 
| 119 |  | isgbe 47738 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑛 − (𝐹‘𝑗)) ∈ GoldbachEven ↔ ((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞)))) | 
| 120 |  | eldifi 4131 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) → (𝐹‘𝑗) ∈ ℙ) | 
| 121 | 120 | 3ad2ant1 1134 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))) → (𝐹‘𝑗) ∈ ℙ) | 
| 122 | 121 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → (𝐹‘𝑗) ∈ ℙ) | 
| 123 | 122 | ad5antlr 735 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
((((((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞))) → (𝐹‘𝑗) ∈ ℙ) | 
| 124 |  | eleq1 2829 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ (𝑟 = (𝐹‘𝑗) → (𝑟 ∈ Odd ↔ (𝐹‘𝑗) ∈ Odd )) | 
| 125 | 124 | 3anbi3d 1444 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (𝑟 = (𝐹‘𝑗) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝐹‘𝑗) ∈ Odd ))) | 
| 126 |  | oveq2 7439 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ (𝑟 = (𝐹‘𝑗) → ((𝑝 + 𝑞) + 𝑟) = ((𝑝 + 𝑞) + (𝐹‘𝑗))) | 
| 127 | 126 | eqeq2d 2748 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (𝑟 = (𝐹‘𝑗) → (𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑛 = ((𝑝 + 𝑞) + (𝐹‘𝑗)))) | 
| 128 | 125, 127 | anbi12d 632 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (𝑟 = (𝐹‘𝑗) → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝐹‘𝑗) ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + (𝐹‘𝑗))))) | 
| 129 | 128 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
(((((((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞))) ∧ 𝑟 = (𝐹‘𝑗)) → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝐹‘𝑗) ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + (𝐹‘𝑗))))) | 
| 130 |  | oddprmALTV 47674 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 48
⊢ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) → (𝐹‘𝑗) ∈ Odd ) | 
| 131 | 130 | 3ad2ant1 1134 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 47
⊢ (((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))) → (𝐹‘𝑗) ∈ Odd ) | 
| 132 | 131 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢ ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → (𝐹‘𝑗) ∈ Odd ) | 
| 133 | 132 | ad4antlr 733 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢
(((((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝐹‘𝑗) ∈ Odd ) | 
| 134 |  | 3simpa 1149 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞)) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd )) | 
| 135 | 133, 134 | anim12ci 614 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢
((((((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞))) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ (𝐹‘𝑗) ∈ Odd )) | 
| 136 |  | df-3an 1089 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝐹‘𝑗) ∈ Odd ) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ (𝐹‘𝑗) ∈ Odd )) | 
| 137 | 135, 136 | sylibr 234 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢
((((((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞))) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝐹‘𝑗) ∈ Odd )) | 
| 138 | 20 | zcnd 12723 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 52
⊢ (𝑛 ∈ Odd → 𝑛 ∈
ℂ) | 
| 139 | 138 | ad2antrl 728 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 51
⊢
(((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 𝑛 ∈ ℂ) | 
| 140 |  | prmz 16712 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 56
⊢ ((𝐹‘𝑗) ∈ ℙ → (𝐹‘𝑗) ∈ ℤ) | 
| 141 | 140 | zcnd 12723 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 55
⊢ ((𝐹‘𝑗) ∈ ℙ → (𝐹‘𝑗) ∈ ℂ) | 
| 142 | 120, 141 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 54
⊢ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) → (𝐹‘𝑗) ∈ ℂ) | 
| 143 | 142 | 3ad2ant1 1134 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 53
⊢ (((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))) → (𝐹‘𝑗) ∈ ℂ) | 
| 144 | 143 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 52
⊢ ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → (𝐹‘𝑗) ∈ ℂ) | 
| 145 | 144 | ad2antlr 727 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 51
⊢
(((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝐹‘𝑗) ∈ ℂ) | 
| 146 | 139, 145 | npcand 11624 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 50
⊢
(((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → ((𝑛 − (𝐹‘𝑗)) + (𝐹‘𝑗)) = 𝑛) | 
| 147 | 146 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 49
⊢
((((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) → ((𝑛 − (𝐹‘𝑗)) + (𝐹‘𝑗)) = 𝑛) | 
| 148 | 147 | ad2antrl 728 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 48
⊢ (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ ((((((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → ((𝑛 − (𝐹‘𝑗)) + (𝐹‘𝑗)) = 𝑛) | 
| 149 |  | oveq1 7438 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 48
⊢ ((𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞) → ((𝑛 − (𝐹‘𝑗)) + (𝐹‘𝑗)) = ((𝑝 + 𝑞) + (𝐹‘𝑗))) | 
| 150 | 148, 149 | sylan9req 2798 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 47
⊢ ((((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ ((((((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞)) → 𝑛 = ((𝑝 + 𝑞) + (𝐹‘𝑗))) | 
| 151 | 150 | exp31 419 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) →
(((((((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞) → 𝑛 = ((𝑝 + 𝑞) + (𝐹‘𝑗))))) | 
| 152 | 151 | com23 86 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) → ((𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞) → (((((((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑛 = ((𝑝 + 𝑞) + (𝐹‘𝑗))))) | 
| 153 | 152 | 3impia 1118 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞)) → (((((((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑛 = ((𝑝 + 𝑞) + (𝐹‘𝑗)))) | 
| 154 | 153 | impcom 407 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢
((((((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞))) → 𝑛 = ((𝑝 + 𝑞) + (𝐹‘𝑗))) | 
| 155 | 137, 154 | jca 511 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
((((((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞))) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝐹‘𝑗) ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + (𝐹‘𝑗)))) | 
| 156 | 123, 129,
155 | rspcedvd 3624 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢
((((((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞))) → ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))) | 
| 157 | 156 | ex 412 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢
(((((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞)) → ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) | 
| 158 | 157 | reximdva 3168 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
((((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) → (∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞)) → ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) | 
| 159 | 158 | reximdva 3168 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) | 
| 160 | 159 | exp41 434 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑛 − (𝐹‘𝑗)) ∈ Even → (𝜑 → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))))) | 
| 161 | 160 | com25 99 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑛 − (𝐹‘𝑗)) ∈ Even → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞)) → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))))) | 
| 162 | 161 | imp 406 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞))) → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))))) | 
| 163 | 119, 162 | sylbi 217 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑛 − (𝐹‘𝑗)) ∈ GoldbachEven → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))))) | 
| 164 | 163 | a1d 25 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑛 − (𝐹‘𝑗)) ∈ GoldbachEven → ((𝑛 − (𝐹‘𝑗)) ∈ Even → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))))) | 
| 165 | 118, 164 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((4 <
(𝑛 − (𝐹‘𝑗)) ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁) ∧ ((4 < (𝑛 − (𝐹‘𝑗)) ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁) → (𝑛 − (𝐹‘𝑗)) ∈ GoldbachEven )) → ((𝑛 − (𝐹‘𝑗)) ∈ Even → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))))) | 
| 166 | 165 | ex 412 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((4 <
(𝑛 − (𝐹‘𝑗)) ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁) → (((4 < (𝑛 − (𝐹‘𝑗)) ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁) → (𝑛 − (𝐹‘𝑗)) ∈ GoldbachEven ) → ((𝑛 − (𝐹‘𝑗)) ∈ Even → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))))))) | 
| 167 | 166 | ancoms 458 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑛 − (𝐹‘𝑗)) < 𝑁 ∧ 4 < (𝑛 − (𝐹‘𝑗))) → (((4 < (𝑛 − (𝐹‘𝑗)) ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁) → (𝑛 − (𝐹‘𝑗)) ∈ GoldbachEven ) → ((𝑛 − (𝐹‘𝑗)) ∈ Even → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))))))) | 
| 168 | 167 | com13 88 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑛 − (𝐹‘𝑗)) ∈ Even → (((4 < (𝑛 − (𝐹‘𝑗)) ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁) → (𝑛 − (𝐹‘𝑗)) ∈ GoldbachEven ) → (((𝑛 − (𝐹‘𝑗)) < 𝑁 ∧ 4 < (𝑛 − (𝐹‘𝑗))) → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))))))) | 
| 169 | 117, 168 | syld 47 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑛 − (𝐹‘𝑗)) ∈ Even → (∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) → (((𝑛 − (𝐹‘𝑗)) < 𝑁 ∧ 4 < (𝑛 − (𝐹‘𝑗))) → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))))))) | 
| 170 | 169 | com23 86 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑛 − (𝐹‘𝑗)) ∈ Even → (((𝑛 − (𝐹‘𝑗)) < 𝑁 ∧ 4 < (𝑛 − (𝐹‘𝑗))) → (∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))))))) | 
| 171 | 170 | 3impib 1117 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁 ∧ 4 < (𝑛 − (𝐹‘𝑗))) → (∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))))) | 
| 172 | 171 | com15 101 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁 ∧ 4 < (𝑛 − (𝐹‘𝑗))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))))) | 
| 173 | 95, 172 | mpd 15 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁 ∧ 4 < (𝑛 − (𝐹‘𝑗))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))))) | 
| 174 | 173 | impl 455 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁 ∧ 4 < (𝑛 − (𝐹‘𝑗))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) | 
| 175 | 174 | imp 406 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁 ∧ 4 < (𝑛 − (𝐹‘𝑗))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) | 
| 176 | 104, 175 | syld 47 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → ((𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) ∧ 4 < (𝑛 − (𝐹‘𝑗))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) | 
| 177 | 176 | expcomd 416 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (4 < (𝑛 − (𝐹‘𝑗)) → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) | 
| 178 | 21 | ad2antrl 728 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 𝑛 ∈ ℝ) | 
| 179 | 140 | zred 12722 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐹‘𝑗) ∈ ℙ → (𝐹‘𝑗) ∈ ℝ) | 
| 180 | 120, 179 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) → (𝐹‘𝑗) ∈ ℝ) | 
| 181 | 180 | 3ad2ant1 1134 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))) → (𝐹‘𝑗) ∈ ℝ) | 
| 182 | 181 | ad2antlr 727 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝐹‘𝑗) ∈ ℝ) | 
| 183 | 178, 182 | resubcld 11691 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝑛 − (𝐹‘𝑗)) ∈ ℝ) | 
| 184 |  | 4re 12350 | . . . . . . . . . . . . . . . . . . . . 21
⊢ 4 ∈
ℝ | 
| 185 |  | lelttric 11368 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑛 − (𝐹‘𝑗)) ∈ ℝ ∧ 4 ∈ ℝ)
→ ((𝑛 − (𝐹‘𝑗)) ≤ 4 ∨ 4 < (𝑛 − (𝐹‘𝑗)))) | 
| 186 | 183, 184,
185 | sylancl 586 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → ((𝑛 − (𝐹‘𝑗)) ≤ 4 ∨ 4 < (𝑛 − (𝐹‘𝑗)))) | 
| 187 | 98, 177, 186 | mpjaod 861 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) | 
| 188 | 187 | ex 412 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) | 
| 189 | 93, 188 | mpdan 687 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) | 
| 190 | 189 | expcom 413 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (1..^𝐷) → (𝜑 → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))))) | 
| 191 | 190 | impd 410 | . . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (1..^𝐷) → ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) | 
| 192 | 80, 191 | jaoi 858 | . . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ {0} ∨ 𝑗 ∈ (1..^𝐷)) → ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) | 
| 193 | 192 | com12 32 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → ((𝑗 ∈ {0} ∨ 𝑗 ∈ (1..^𝐷)) → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) | 
| 194 | 57, 193 | sylbid 240 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝑗 ∈ (0..^𝐷) → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) | 
| 195 | 194 | rexlimdv 3153 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) | 
| 196 | 51, 195 | embantd 59 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → ((𝑛 ∈ ((𝐹‘0)[,)(𝐹‘𝐷)) → ∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1)))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) | 
| 197 | 196 | ex 412 | . . . . . . . . 9
⊢ (𝜑 → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → ((𝑛 ∈ ((𝐹‘0)[,)(𝐹‘𝐷)) → ∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1)))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) | 
| 198 | 197 | com23 86 | . . . . . . . 8
⊢ (𝜑 → ((𝑛 ∈ ((𝐹‘0)[,)(𝐹‘𝐷)) → ∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) | 
| 199 | 19, 198 | syld 47 | . . . . . . 7
⊢ (𝜑 → (∀𝑓 ∈ (RePart‘𝐷)(𝑛 ∈ ((𝑓‘0)[,)(𝑓‘𝐷)) → ∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝑓‘𝑗)[,)(𝑓‘(𝑗 + 1)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) | 
| 200 | 6, 199 | mpd 15 | . . . . . 6
⊢ (𝜑 → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) | 
| 201 | 200 | imp 406 | . . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))) | 
| 202 | 1, 201 | jca 511 | . . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝑛 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) | 
| 203 | 202, 73 | sylibr 234 | . . 3
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 𝑛 ∈ GoldbachOdd ) | 
| 204 | 203 | exp32 420 | . 2
⊢ (𝜑 → (𝑛 ∈ Odd → ((7 < 𝑛 ∧ 𝑛 < 𝑀) → 𝑛 ∈ GoldbachOdd ))) | 
| 205 | 204 | ralrimiv 3145 | 1
⊢ (𝜑 → ∀𝑛 ∈ Odd ((7 < 𝑛 ∧ 𝑛 < 𝑀) → 𝑛 ∈ GoldbachOdd )) |