Step | Hyp | Ref
| Expression |
1 | | simprl 767 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 𝑛 ∈ Odd ) |
2 | | bgoldbtbnd.d |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈
(ℤ≥‘3)) |
3 | | eluzge3nn 12559 |
. . . . . . . . 9
⊢ (𝐷 ∈
(ℤ≥‘3) → 𝐷 ∈ ℕ) |
4 | 2, 3 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ ℕ) |
5 | | iccelpart 44773 |
. . . . . . . 8
⊢ (𝐷 ∈ ℕ →
∀𝑓 ∈
(RePart‘𝐷)(𝑛 ∈ ((𝑓‘0)[,)(𝑓‘𝐷)) → ∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝑓‘𝑗)[,)(𝑓‘(𝑗 + 1))))) |
6 | 4, 5 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ∀𝑓 ∈ (RePart‘𝐷)(𝑛 ∈ ((𝑓‘0)[,)(𝑓‘𝐷)) → ∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝑓‘𝑗)[,)(𝑓‘(𝑗 + 1))))) |
7 | | bgoldbtbnd.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (RePart‘𝐷)) |
8 | | fveq1 6755 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝐹 → (𝑓‘0) = (𝐹‘0)) |
9 | | fveq1 6755 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝐹 → (𝑓‘𝐷) = (𝐹‘𝐷)) |
10 | 8, 9 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐹 → ((𝑓‘0)[,)(𝑓‘𝐷)) = ((𝐹‘0)[,)(𝐹‘𝐷))) |
11 | 10 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → (𝑛 ∈ ((𝑓‘0)[,)(𝑓‘𝐷)) ↔ 𝑛 ∈ ((𝐹‘0)[,)(𝐹‘𝐷)))) |
12 | | fveq1 6755 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝐹 → (𝑓‘𝑗) = (𝐹‘𝑗)) |
13 | | fveq1 6755 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝐹 → (𝑓‘(𝑗 + 1)) = (𝐹‘(𝑗 + 1))) |
14 | 12, 13 | oveq12d 7273 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑗)[,)(𝑓‘(𝑗 + 1))) = ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1)))) |
15 | 14 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐹 → (𝑛 ∈ ((𝑓‘𝑗)[,)(𝑓‘(𝑗 + 1))) ↔ 𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))))) |
16 | 15 | rexbidv 3225 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → (∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝑓‘𝑗)[,)(𝑓‘(𝑗 + 1))) ↔ ∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))))) |
17 | 11, 16 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → ((𝑛 ∈ ((𝑓‘0)[,)(𝑓‘𝐷)) → ∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝑓‘𝑗)[,)(𝑓‘(𝑗 + 1)))) ↔ (𝑛 ∈ ((𝐹‘0)[,)(𝐹‘𝐷)) → ∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1)))))) |
18 | 17 | rspcv 3547 |
. . . . . . . . 9
⊢ (𝐹 ∈ (RePart‘𝐷) → (∀𝑓 ∈ (RePart‘𝐷)(𝑛 ∈ ((𝑓‘0)[,)(𝑓‘𝐷)) → ∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝑓‘𝑗)[,)(𝑓‘(𝑗 + 1)))) → (𝑛 ∈ ((𝐹‘0)[,)(𝐹‘𝐷)) → ∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1)))))) |
19 | 7, 18 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑓 ∈ (RePart‘𝐷)(𝑛 ∈ ((𝑓‘0)[,)(𝑓‘𝐷)) → ∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝑓‘𝑗)[,)(𝑓‘(𝑗 + 1)))) → (𝑛 ∈ ((𝐹‘0)[,)(𝐹‘𝐷)) → ∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1)))))) |
20 | | oddz 44971 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ Odd → 𝑛 ∈
ℤ) |
21 | 20 | zred 12355 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ Odd → 𝑛 ∈
ℝ) |
22 | 21 | rexrd 10956 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ Odd → 𝑛 ∈
ℝ*) |
23 | 22 | ad2antrl 724 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 𝑛 ∈ ℝ*) |
24 | | 7re 11996 |
. . . . . . . . . . . . . . . . 17
⊢ 7 ∈
ℝ |
25 | | ltle 10994 |
. . . . . . . . . . . . . . . . 17
⊢ ((7
∈ ℝ ∧ 𝑛
∈ ℝ) → (7 < 𝑛 → 7 ≤ 𝑛)) |
26 | 24, 21, 25 | sylancr 586 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ Odd → (7 < 𝑛 → 7 ≤ 𝑛)) |
27 | 26 | com12 32 |
. . . . . . . . . . . . . . 15
⊢ (7 <
𝑛 → (𝑛 ∈ Odd → 7 ≤ 𝑛)) |
28 | 27 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((7 <
𝑛 ∧ 𝑛 < 𝑀) → (𝑛 ∈ Odd → 7 ≤ 𝑛)) |
29 | 28 | impcom 407 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → 7 ≤ 𝑛) |
30 | 29 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 7 ≤ 𝑛) |
31 | | bgoldbtbnd.m |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘;11)) |
32 | | eluzelre 12522 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈
(ℤ≥‘;11)
→ 𝑀 ∈
ℝ) |
33 | 32 | rexrd 10956 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈
(ℤ≥‘;11)
→ 𝑀 ∈
ℝ*) |
34 | 31, 33 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈
ℝ*) |
35 | 34 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 𝑀 ∈
ℝ*) |
36 | | bgoldbtbnd.r |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐹‘𝐷) ∈ ℝ) |
37 | 36 | rexrd 10956 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹‘𝐷) ∈
ℝ*) |
38 | 37 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝐹‘𝐷) ∈
ℝ*) |
39 | | simprrr 778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 𝑛 < 𝑀) |
40 | | bgoldbtbnd.l |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 < (𝐹‘𝐷)) |
41 | 40 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 𝑀 < (𝐹‘𝐷)) |
42 | 23, 35, 38, 39, 41 | xrlttrd 12822 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 𝑛 < (𝐹‘𝐷)) |
43 | | bgoldbtbnd.0 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐹‘0) = 7) |
44 | 43 | oveq1d 7270 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐹‘0)[,)(𝐹‘𝐷)) = (7[,)(𝐹‘𝐷))) |
45 | 44 | eleq2d 2824 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑛 ∈ ((𝐹‘0)[,)(𝐹‘𝐷)) ↔ 𝑛 ∈ (7[,)(𝐹‘𝐷)))) |
46 | 45 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝑛 ∈ ((𝐹‘0)[,)(𝐹‘𝐷)) ↔ 𝑛 ∈ (7[,)(𝐹‘𝐷)))) |
47 | 24 | rexri 10964 |
. . . . . . . . . . . . . 14
⊢ 7 ∈
ℝ* |
48 | | elico1 13051 |
. . . . . . . . . . . . . 14
⊢ ((7
∈ ℝ* ∧ (𝐹‘𝐷) ∈ ℝ*) → (𝑛 ∈ (7[,)(𝐹‘𝐷)) ↔ (𝑛 ∈ ℝ* ∧ 7 ≤
𝑛 ∧ 𝑛 < (𝐹‘𝐷)))) |
49 | 47, 38, 48 | sylancr 586 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝑛 ∈ (7[,)(𝐹‘𝐷)) ↔ (𝑛 ∈ ℝ* ∧ 7 ≤
𝑛 ∧ 𝑛 < (𝐹‘𝐷)))) |
50 | 46, 49 | bitrd 278 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝑛 ∈ ((𝐹‘0)[,)(𝐹‘𝐷)) ↔ (𝑛 ∈ ℝ* ∧ 7 ≤
𝑛 ∧ 𝑛 < (𝐹‘𝐷)))) |
51 | 23, 30, 42, 50 | mpbir3and 1340 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 𝑛 ∈ ((𝐹‘0)[,)(𝐹‘𝐷))) |
52 | | fzo0sn0fzo1 13404 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐷 ∈ ℕ →
(0..^𝐷) = ({0} ∪
(1..^𝐷))) |
53 | 52 | eleq2d 2824 |
. . . . . . . . . . . . . . . 16
⊢ (𝐷 ∈ ℕ → (𝑗 ∈ (0..^𝐷) ↔ 𝑗 ∈ ({0} ∪ (1..^𝐷)))) |
54 | | elun 4079 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ({0} ∪ (1..^𝐷)) ↔ (𝑗 ∈ {0} ∨ 𝑗 ∈ (1..^𝐷))) |
55 | 53, 54 | bitrdi 286 |
. . . . . . . . . . . . . . 15
⊢ (𝐷 ∈ ℕ → (𝑗 ∈ (0..^𝐷) ↔ (𝑗 ∈ {0} ∨ 𝑗 ∈ (1..^𝐷)))) |
56 | 4, 55 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑗 ∈ (0..^𝐷) ↔ (𝑗 ∈ {0} ∨ 𝑗 ∈ (1..^𝐷)))) |
57 | 56 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝑗 ∈ (0..^𝐷) ↔ (𝑗 ∈ {0} ∨ 𝑗 ∈ (1..^𝐷)))) |
58 | | velsn 4574 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ {0} ↔ 𝑗 = 0) |
59 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 0 → (𝐹‘𝑗) = (𝐹‘0)) |
60 | | fv0p1e1 12026 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 0 → (𝐹‘(𝑗 + 1)) = (𝐹‘1)) |
61 | 59, 60 | oveq12d 7273 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 0 → ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) = ((𝐹‘0)[,)(𝐹‘1))) |
62 | | bgoldbtbnd.1 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐹‘1) = ;13) |
63 | 43, 62 | oveq12d 7273 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝐹‘0)[,)(𝐹‘1)) = (7[,);13)) |
64 | 63 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → ((𝐹‘0)[,)(𝐹‘1)) = (7[,);13)) |
65 | 61, 64 | sylan9eq 2799 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 = 0 ∧ (𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)))) → ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) = (7[,);13)) |
66 | 65 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 = 0 ∧ (𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)))) → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) ↔ 𝑛 ∈ (7[,);13))) |
67 | 1 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑛 ∈ (7[,);13)) → 𝑛 ∈ Odd ) |
68 | | simprrl 777 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 7 < 𝑛) |
69 | 68 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑛 ∈ (7[,);13)) → 7 < 𝑛) |
70 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑛 ∈ (7[,);13)) → 𝑛 ∈ (7[,);13)) |
71 | | bgoldbtbndlem1 45145 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ Odd ∧ 7 < 𝑛 ∧ 𝑛 ∈ (7[,);13)) → 𝑛 ∈ GoldbachOdd ) |
72 | 67, 69, 70, 71 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑛 ∈ (7[,);13)) → 𝑛 ∈ GoldbachOdd ) |
73 | | isgbo 45093 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ GoldbachOdd ↔
(𝑛 ∈ Odd ∧
∃𝑝 ∈ ℙ
∃𝑞 ∈ ℙ
∃𝑟 ∈ ℙ
((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
74 | 72, 73 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑛 ∈ (7[,);13)) → (𝑛 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
75 | 74 | simprd 495 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑛 ∈ (7[,);13)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))) |
76 | 75 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝑛 ∈ (7[,);13) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
77 | 76 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 = 0 ∧ (𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)))) → (𝑛 ∈ (7[,);13) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
78 | 66, 77 | sylbid 239 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 = 0 ∧ (𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)))) → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
79 | 78 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 0 → ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) |
80 | 58, 79 | sylbi 216 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ {0} → ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) |
81 | | bgoldbtbnd.i |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)))) |
82 | | fzo0ss1 13345 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(1..^𝐷) ⊆
(0..^𝐷) |
83 | 82 | sseli 3913 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (1..^𝐷) → 𝑗 ∈ (0..^𝐷)) |
84 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 = 𝑗 → (𝐹‘𝑖) = (𝐹‘𝑗)) |
85 | 84 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑗 → ((𝐹‘𝑖) ∈ (ℙ ∖ {2}) ↔ (𝐹‘𝑗) ∈ (ℙ ∖
{2}))) |
86 | | fvoveq1 7278 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 = 𝑗 → (𝐹‘(𝑖 + 1)) = (𝐹‘(𝑗 + 1))) |
87 | 86, 84 | oveq12d 7273 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 = 𝑗 → ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) = ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))) |
88 | 87 | breq1d 5080 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑗 → (((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) < (𝑁 − 4) ↔ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4))) |
89 | 87 | breq2d 5082 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑗 → (4 < ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) ↔ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) |
90 | 85, 88, 89 | 3anbi123d 1434 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 𝑗 → (((𝐹‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖))) ↔ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) |
91 | 90 | rspcv 3547 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0..^𝐷) → (∀𝑖 ∈ (0..^𝐷)((𝐹‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖))) → ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) |
92 | 83, 91 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (1..^𝐷) → (∀𝑖 ∈ (0..^𝐷)((𝐹‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖))) → ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) |
93 | 81, 92 | mpan9 506 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) → ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) |
94 | | bgoldbtbnd.n |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘;11)) |
95 | | bgoldbtbnd.b |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven )) |
96 | 31, 94, 95, 2, 7, 81, 43, 62, 40, 36 | bgoldbtbndlem4 45148 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ 𝑛 ∈ Odd ) → ((𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) ∧ (𝑛 − (𝐹‘𝑗)) ≤ 4) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
97 | 96 | ad2ant2r 743 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → ((𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) ∧ (𝑛 − (𝐹‘𝑗)) ≤ 4) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
98 | 97 | expcomd 416 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → ((𝑛 − (𝐹‘𝑗)) ≤ 4 → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) |
99 | | simplll 771 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 𝜑) |
100 | | simprl 767 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 𝑛 ∈ Odd ) |
101 | | simpllr 772 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 𝑗 ∈ (1..^𝐷)) |
102 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 − (𝐹‘𝑗)) = (𝑛 − (𝐹‘𝑗)) |
103 | 31, 94, 95, 2, 7, 81, 43, 62, 40, 36, 102 | bgoldbtbndlem3 45147 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑛 ∈ Odd ∧ 𝑗 ∈ (1..^𝐷)) → ((𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) ∧ 4 < (𝑛 − (𝐹‘𝑗))) → ((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁 ∧ 4 < (𝑛 − (𝐹‘𝑗))))) |
104 | 99, 100, 101, 103 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → ((𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) ∧ 4 < (𝑛 − (𝐹‘𝑗))) → ((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁 ∧ 4 < (𝑛 − (𝐹‘𝑗))))) |
105 | | breq2 5074 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑛 = 𝑚 → (4 < 𝑛 ↔ 4 < 𝑚)) |
106 | | breq1 5073 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑛 = 𝑚 → (𝑛 < 𝑁 ↔ 𝑚 < 𝑁)) |
107 | 105, 106 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑛 = 𝑚 → ((4 < 𝑛 ∧ 𝑛 < 𝑁) ↔ (4 < 𝑚 ∧ 𝑚 < 𝑁))) |
108 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑛 = 𝑚 → (𝑛 ∈ GoldbachEven ↔ 𝑚 ∈ GoldbachEven
)) |
109 | 107, 108 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑛 = 𝑚 → (((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) ↔ ((4 < 𝑚 ∧ 𝑚 < 𝑁) → 𝑚 ∈ GoldbachEven ))) |
110 | 109 | cbvralvw 3372 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(∀𝑛 ∈
Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) ↔ ∀𝑚 ∈ Even ((4 < 𝑚 ∧ 𝑚 < 𝑁) → 𝑚 ∈ GoldbachEven )) |
111 | | breq2 5074 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑚 = (𝑛 − (𝐹‘𝑗)) → (4 < 𝑚 ↔ 4 < (𝑛 − (𝐹‘𝑗)))) |
112 | | breq1 5073 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑚 = (𝑛 − (𝐹‘𝑗)) → (𝑚 < 𝑁 ↔ (𝑛 − (𝐹‘𝑗)) < 𝑁)) |
113 | 111, 112 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑚 = (𝑛 − (𝐹‘𝑗)) → ((4 < 𝑚 ∧ 𝑚 < 𝑁) ↔ (4 < (𝑛 − (𝐹‘𝑗)) ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁))) |
114 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑚 = (𝑛 − (𝐹‘𝑗)) → (𝑚 ∈ GoldbachEven ↔ (𝑛 − (𝐹‘𝑗)) ∈ GoldbachEven )) |
115 | 113, 114 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑚 = (𝑛 − (𝐹‘𝑗)) → (((4 < 𝑚 ∧ 𝑚 < 𝑁) → 𝑚 ∈ GoldbachEven ) ↔ ((4 < (𝑛 − (𝐹‘𝑗)) ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁) → (𝑛 − (𝐹‘𝑗)) ∈ GoldbachEven ))) |
116 | 115 | rspcv 3547 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑛 − (𝐹‘𝑗)) ∈ Even → (∀𝑚 ∈ Even ((4 < 𝑚 ∧ 𝑚 < 𝑁) → 𝑚 ∈ GoldbachEven ) → ((4 < (𝑛 − (𝐹‘𝑗)) ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁) → (𝑛 − (𝐹‘𝑗)) ∈ GoldbachEven ))) |
117 | 110, 116 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑛 − (𝐹‘𝑗)) ∈ Even → (∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) → ((4 < (𝑛 − (𝐹‘𝑗)) ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁) → (𝑛 − (𝐹‘𝑗)) ∈ GoldbachEven ))) |
118 | | pm3.35 799 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((4 <
(𝑛 − (𝐹‘𝑗)) ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁) ∧ ((4 < (𝑛 − (𝐹‘𝑗)) ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁) → (𝑛 − (𝐹‘𝑗)) ∈ GoldbachEven )) → (𝑛 − (𝐹‘𝑗)) ∈ GoldbachEven ) |
119 | | isgbe 45091 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑛 − (𝐹‘𝑗)) ∈ GoldbachEven ↔ ((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞)))) |
120 | | eldifi 4057 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) → (𝐹‘𝑗) ∈ ℙ) |
121 | 120 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))) → (𝐹‘𝑗) ∈ ℙ) |
122 | 121 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → (𝐹‘𝑗) ∈ ℙ) |
123 | 122 | ad5antlr 731 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
((((((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞))) → (𝐹‘𝑗) ∈ ℙ) |
124 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ (𝑟 = (𝐹‘𝑗) → (𝑟 ∈ Odd ↔ (𝐹‘𝑗) ∈ Odd )) |
125 | 124 | 3anbi3d 1440 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (𝑟 = (𝐹‘𝑗) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝐹‘𝑗) ∈ Odd ))) |
126 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ (𝑟 = (𝐹‘𝑗) → ((𝑝 + 𝑞) + 𝑟) = ((𝑝 + 𝑞) + (𝐹‘𝑗))) |
127 | 126 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (𝑟 = (𝐹‘𝑗) → (𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑛 = ((𝑝 + 𝑞) + (𝐹‘𝑗)))) |
128 | 125, 127 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (𝑟 = (𝐹‘𝑗) → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝐹‘𝑗) ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + (𝐹‘𝑗))))) |
129 | 128 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
(((((((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞))) ∧ 𝑟 = (𝐹‘𝑗)) → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝐹‘𝑗) ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + (𝐹‘𝑗))))) |
130 | | oddprmALTV 45027 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 48
⊢ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) → (𝐹‘𝑗) ∈ Odd ) |
131 | 130 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 47
⊢ (((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))) → (𝐹‘𝑗) ∈ Odd ) |
132 | 131 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢ ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → (𝐹‘𝑗) ∈ Odd ) |
133 | 132 | ad4antlr 729 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢
(((((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝐹‘𝑗) ∈ Odd ) |
134 | | 3simpa 1146 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞)) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd )) |
135 | 133, 134 | anim12ci 613 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢
((((((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞))) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ (𝐹‘𝑗) ∈ Odd )) |
136 | | df-3an 1087 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝐹‘𝑗) ∈ Odd ) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ (𝐹‘𝑗) ∈ Odd )) |
137 | 135, 136 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢
((((((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞))) → (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝐹‘𝑗) ∈ Odd )) |
138 | 20 | zcnd 12356 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 52
⊢ (𝑛 ∈ Odd → 𝑛 ∈
ℂ) |
139 | 138 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 51
⊢
(((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 𝑛 ∈ ℂ) |
140 | | prmz 16308 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 56
⊢ ((𝐹‘𝑗) ∈ ℙ → (𝐹‘𝑗) ∈ ℤ) |
141 | 140 | zcnd 12356 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 55
⊢ ((𝐹‘𝑗) ∈ ℙ → (𝐹‘𝑗) ∈ ℂ) |
142 | 120, 141 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 54
⊢ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) → (𝐹‘𝑗) ∈ ℂ) |
143 | 142 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 53
⊢ (((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))) → (𝐹‘𝑗) ∈ ℂ) |
144 | 143 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 52
⊢ ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → (𝐹‘𝑗) ∈ ℂ) |
145 | 144 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 51
⊢
(((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝐹‘𝑗) ∈ ℂ) |
146 | 139, 145 | npcand 11266 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 50
⊢
(((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → ((𝑛 − (𝐹‘𝑗)) + (𝐹‘𝑗)) = 𝑛) |
147 | 146 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 49
⊢
((((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) → ((𝑛 − (𝐹‘𝑗)) + (𝐹‘𝑗)) = 𝑛) |
148 | 147 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 48
⊢ (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ ((((((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → ((𝑛 − (𝐹‘𝑗)) + (𝐹‘𝑗)) = 𝑛) |
149 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 48
⊢ ((𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞) → ((𝑛 − (𝐹‘𝑗)) + (𝐹‘𝑗)) = ((𝑝 + 𝑞) + (𝐹‘𝑗))) |
150 | 148, 149 | sylan9req 2800 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 47
⊢ ((((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ ((((((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞)) → 𝑛 = ((𝑝 + 𝑞) + (𝐹‘𝑗))) |
151 | 150 | exp31 419 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) →
(((((((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞) → 𝑛 = ((𝑝 + 𝑞) + (𝐹‘𝑗))))) |
152 | 151 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) → ((𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞) → (((((((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑛 = ((𝑝 + 𝑞) + (𝐹‘𝑗))))) |
153 | 152 | 3impia 1115 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞)) → (((((((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑛 = ((𝑝 + 𝑞) + (𝐹‘𝑗)))) |
154 | 153 | impcom 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢
((((((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞))) → 𝑛 = ((𝑝 + 𝑞) + (𝐹‘𝑗))) |
155 | 137, 154 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
((((((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞))) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝐹‘𝑗) ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + (𝐹‘𝑗)))) |
156 | 123, 129,
155 | rspcedvd 3555 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢
((((((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞))) → ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))) |
157 | 156 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢
(((((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞)) → ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
158 | 157 | reximdva 3202 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
((((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) ∧ 𝑝 ∈ ℙ) → (∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞)) → ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
159 | 158 | reximdva 3202 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((((𝑛 −
(𝐹‘𝑗)) ∈ Even ∧ 𝜑) ∧ (𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
160 | 159 | exp41 434 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑛 − (𝐹‘𝑗)) ∈ Even → (𝜑 → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))))) |
161 | 160 | com25 99 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑛 − (𝐹‘𝑗)) ∈ Even → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞)) → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))))) |
162 | 161 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑛 − (𝐹‘𝑗)) = (𝑝 + 𝑞))) → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))))) |
163 | 119, 162 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑛 − (𝐹‘𝑗)) ∈ GoldbachEven → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))))) |
164 | 163 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑛 − (𝐹‘𝑗)) ∈ GoldbachEven → ((𝑛 − (𝐹‘𝑗)) ∈ Even → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))))) |
165 | 118, 164 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((4 <
(𝑛 − (𝐹‘𝑗)) ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁) ∧ ((4 < (𝑛 − (𝐹‘𝑗)) ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁) → (𝑛 − (𝐹‘𝑗)) ∈ GoldbachEven )) → ((𝑛 − (𝐹‘𝑗)) ∈ Even → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))))) |
166 | 165 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((4 <
(𝑛 − (𝐹‘𝑗)) ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁) → (((4 < (𝑛 − (𝐹‘𝑗)) ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁) → (𝑛 − (𝐹‘𝑗)) ∈ GoldbachEven ) → ((𝑛 − (𝐹‘𝑗)) ∈ Even → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))))))) |
167 | 166 | ancoms 458 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑛 − (𝐹‘𝑗)) < 𝑁 ∧ 4 < (𝑛 − (𝐹‘𝑗))) → (((4 < (𝑛 − (𝐹‘𝑗)) ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁) → (𝑛 − (𝐹‘𝑗)) ∈ GoldbachEven ) → ((𝑛 − (𝐹‘𝑗)) ∈ Even → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))))))) |
168 | 167 | com13 88 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑛 − (𝐹‘𝑗)) ∈ Even → (((4 < (𝑛 − (𝐹‘𝑗)) ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁) → (𝑛 − (𝐹‘𝑗)) ∈ GoldbachEven ) → (((𝑛 − (𝐹‘𝑗)) < 𝑁 ∧ 4 < (𝑛 − (𝐹‘𝑗))) → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))))))) |
169 | 117, 168 | syld 47 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑛 − (𝐹‘𝑗)) ∈ Even → (∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) → (((𝑛 − (𝐹‘𝑗)) < 𝑁 ∧ 4 < (𝑛 − (𝐹‘𝑗))) → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))))))) |
170 | 169 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑛 − (𝐹‘𝑗)) ∈ Even → (((𝑛 − (𝐹‘𝑗)) < 𝑁 ∧ 4 < (𝑛 − (𝐹‘𝑗))) → (∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))))))) |
171 | 170 | 3impib 1114 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁 ∧ 4 < (𝑛 − (𝐹‘𝑗))) → (∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))))) |
172 | 171 | com15 101 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ) → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁 ∧ 4 < (𝑛 − (𝐹‘𝑗))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))))) |
173 | 95, 172 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ((𝑗 ∈ (1..^𝐷) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁 ∧ 4 < (𝑛 − (𝐹‘𝑗))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))))) |
174 | 173 | impl 455 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁 ∧ 4 < (𝑛 − (𝐹‘𝑗))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) |
175 | 174 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (((𝑛 − (𝐹‘𝑗)) ∈ Even ∧ (𝑛 − (𝐹‘𝑗)) < 𝑁 ∧ 4 < (𝑛 − (𝐹‘𝑗))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
176 | 104, 175 | syld 47 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → ((𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) ∧ 4 < (𝑛 − (𝐹‘𝑗))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
177 | 176 | expcomd 416 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (4 < (𝑛 − (𝐹‘𝑗)) → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) |
178 | 21 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 𝑛 ∈ ℝ) |
179 | 140 | zred 12355 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐹‘𝑗) ∈ ℙ → (𝐹‘𝑗) ∈ ℝ) |
180 | 120, 179 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) → (𝐹‘𝑗) ∈ ℝ) |
181 | 180 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗))) → (𝐹‘𝑗) ∈ ℝ) |
182 | 181 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝐹‘𝑗) ∈ ℝ) |
183 | 178, 182 | resubcld 11333 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝑛 − (𝐹‘𝑗)) ∈ ℝ) |
184 | | 4re 11987 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 4 ∈
ℝ |
185 | | lelttric 11012 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑛 − (𝐹‘𝑗)) ∈ ℝ ∧ 4 ∈ ℝ)
→ ((𝑛 − (𝐹‘𝑗)) ≤ 4 ∨ 4 < (𝑛 − (𝐹‘𝑗)))) |
186 | 183, 184,
185 | sylancl 585 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → ((𝑛 − (𝐹‘𝑗)) ≤ 4 ∨ 4 < (𝑛 − (𝐹‘𝑗)))) |
187 | 98, 177, 186 | mpjaod 856 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
188 | 187 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) ∧ ((𝐹‘𝑗) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑗 + 1)) − (𝐹‘𝑗)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) |
189 | 93, 188 | mpdan 683 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (1..^𝐷)) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) |
190 | 189 | expcom 413 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (1..^𝐷) → (𝜑 → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))))) |
191 | 190 | impd 410 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (1..^𝐷) → ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) |
192 | 80, 191 | jaoi 853 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ {0} ∨ 𝑗 ∈ (1..^𝐷)) → ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) |
193 | 192 | com12 32 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → ((𝑗 ∈ {0} ∨ 𝑗 ∈ (1..^𝐷)) → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) |
194 | 57, 193 | sylbid 239 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝑗 ∈ (0..^𝐷) → (𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) |
195 | 194 | rexlimdv 3211 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
196 | 51, 195 | embantd 59 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → ((𝑛 ∈ ((𝐹‘0)[,)(𝐹‘𝐷)) → ∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1)))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
197 | 196 | ex 412 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → ((𝑛 ∈ ((𝐹‘0)[,)(𝐹‘𝐷)) → ∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1)))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) |
198 | 197 | com23 86 |
. . . . . . . 8
⊢ (𝜑 → ((𝑛 ∈ ((𝐹‘0)[,)(𝐹‘𝐷)) → ∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝐹‘𝑗)[,)(𝐹‘(𝑗 + 1)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) |
199 | 19, 198 | syld 47 |
. . . . . . 7
⊢ (𝜑 → (∀𝑓 ∈ (RePart‘𝐷)(𝑛 ∈ ((𝑓‘0)[,)(𝑓‘𝐷)) → ∃𝑗 ∈ (0..^𝐷)𝑛 ∈ ((𝑓‘𝑗)[,)(𝑓‘(𝑗 + 1)))) → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))) |
200 | 6, 199 | mpd 15 |
. . . . . 6
⊢ (𝜑 → ((𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
201 | 200 | imp 406 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))) |
202 | 1, 201 | jca 511 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → (𝑛 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
203 | 202, 73 | sylibr 233 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ Odd ∧ (7 < 𝑛 ∧ 𝑛 < 𝑀))) → 𝑛 ∈ GoldbachOdd ) |
204 | 203 | exp32 420 |
. 2
⊢ (𝜑 → (𝑛 ∈ Odd → ((7 < 𝑛 ∧ 𝑛 < 𝑀) → 𝑛 ∈ GoldbachOdd ))) |
205 | 204 | ralrimiv 3106 |
1
⊢ (𝜑 → ∀𝑛 ∈ Odd ((7 < 𝑛 ∧ 𝑛 < 𝑀) → 𝑛 ∈ GoldbachOdd )) |