MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm Structured version   Visualization version   GIF version

Theorem isprm 16722
Description: The predicate "is a prime number". A prime number is a positive integer with exactly two positive divisors. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
isprm (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o))
Distinct variable group:   𝑃,𝑛

Proof of Theorem isprm
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 breq2 5170 . . . 4 (𝑝 = 𝑃 → (𝑛𝑝𝑛𝑃))
21rabbidv 3451 . . 3 (𝑝 = 𝑃 → {𝑛 ∈ ℕ ∣ 𝑛𝑝} = {𝑛 ∈ ℕ ∣ 𝑛𝑃})
32breq1d 5176 . 2 (𝑝 = 𝑃 → ({𝑛 ∈ ℕ ∣ 𝑛𝑝} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o))
4 df-prm 16721 . 2 ℙ = {𝑝 ∈ ℕ ∣ {𝑛 ∈ ℕ ∣ 𝑛𝑝} ≈ 2o}
53, 4elrab2 3711 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  {crab 3443   class class class wbr 5166  2oc2o 8518  cen 9002  cn 12295  cdvds 16304  cprime 16720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-prm 16721
This theorem is referenced by:  prmnn  16723  1nprm  16728  isprm2  16731
  Copyright terms: Public domain W3C validator