![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isprm | Structured version Visualization version GIF version |
Description: The predicate "is a prime number". A prime number is a positive integer with exactly two positive divisors. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
isprm | ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5170 | . . . 4 ⊢ (𝑝 = 𝑃 → (𝑛 ∥ 𝑝 ↔ 𝑛 ∥ 𝑃)) | |
2 | 1 | rabbidv 3451 | . . 3 ⊢ (𝑝 = 𝑃 → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} = {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃}) |
3 | 2 | breq1d 5176 | . 2 ⊢ (𝑝 = 𝑃 → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o)) |
4 | df-prm 16721 | . 2 ⊢ ℙ = {𝑝 ∈ ℕ ∣ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2o} | |
5 | 3, 4 | elrab2 3711 | 1 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 class class class wbr 5166 2oc2o 8518 ≈ cen 9002 ℕcn 12295 ∥ cdvds 16304 ℙcprime 16720 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-prm 16721 |
This theorem is referenced by: prmnn 16723 1nprm 16728 isprm2 16731 |
Copyright terms: Public domain | W3C validator |