| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isprm | Structured version Visualization version GIF version | ||
| Description: The predicate "is a prime number". A prime number is a positive integer with exactly two positive divisors. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| isprm | ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5099 | . . . 4 ⊢ (𝑝 = 𝑃 → (𝑛 ∥ 𝑝 ↔ 𝑛 ∥ 𝑃)) | |
| 2 | 1 | rabbidv 3403 | . . 3 ⊢ (𝑝 = 𝑃 → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} = {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃}) |
| 3 | 2 | breq1d 5105 | . 2 ⊢ (𝑝 = 𝑃 → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o)) |
| 4 | df-prm 16590 | . 2 ⊢ ℙ = {𝑝 ∈ ℕ ∣ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2o} | |
| 5 | 3, 4 | elrab2 3646 | 1 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 class class class wbr 5095 2oc2o 8388 ≈ cen 8876 ℕcn 12136 ∥ cdvds 16170 ℙcprime 16589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-prm 16590 |
| This theorem is referenced by: prmnn 16592 1nprm 16597 isprm2 16600 |
| Copyright terms: Public domain | W3C validator |