MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm Structured version   Visualization version   GIF version

Theorem isprm 16602
Description: The predicate "is a prime number". A prime number is a positive integer with exactly two positive divisors. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
isprm (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o))
Distinct variable group:   𝑃,𝑛

Proof of Theorem isprm
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 breq2 5099 . . . 4 (𝑝 = 𝑃 → (𝑛𝑝𝑛𝑃))
21rabbidv 3404 . . 3 (𝑝 = 𝑃 → {𝑛 ∈ ℕ ∣ 𝑛𝑝} = {𝑛 ∈ ℕ ∣ 𝑛𝑃})
32breq1d 5105 . 2 (𝑝 = 𝑃 → ({𝑛 ∈ ℕ ∣ 𝑛𝑝} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o))
4 df-prm 16601 . 2 ℙ = {𝑝 ∈ ℕ ∣ {𝑛 ∈ ℕ ∣ 𝑛𝑝} ≈ 2o}
53, 4elrab2 3653 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2o))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3396   class class class wbr 5095  2oc2o 8389  cen 8876  cn 12146  cdvds 16181  cprime 16600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-prm 16601
This theorem is referenced by:  prmnn  16603  1nprm  16608  isprm2  16611
  Copyright terms: Public domain W3C validator