![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1nprm | Structured version Visualization version GIF version |
Description: 1 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.) |
Ref | Expression |
---|---|
1nprm | ⊢ ¬ 1 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 12222 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
2 | eleq1 2813 | . . . . . . . . 9 ⊢ (𝑧 = 1 → (𝑧 ∈ ℕ ↔ 1 ∈ ℕ)) | |
3 | 1, 2 | mpbiri 258 | . . . . . . . 8 ⊢ (𝑧 = 1 → 𝑧 ∈ ℕ) |
4 | nnnn0 12478 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℕ0) | |
5 | dvds1 16265 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℕ0 → (𝑧 ∥ 1 ↔ 𝑧 = 1)) | |
6 | 4, 5 | syl 17 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℕ → (𝑧 ∥ 1 ↔ 𝑧 = 1)) |
7 | 6 | bicomd 222 | . . . . . . . 8 ⊢ (𝑧 ∈ ℕ → (𝑧 = 1 ↔ 𝑧 ∥ 1)) |
8 | 3, 7 | biadanii 819 | . . . . . . 7 ⊢ (𝑧 = 1 ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 1)) |
9 | velsn 4637 | . . . . . . 7 ⊢ (𝑧 ∈ {1} ↔ 𝑧 = 1) | |
10 | breq1 5142 | . . . . . . . 8 ⊢ (𝑛 = 𝑧 → (𝑛 ∥ 1 ↔ 𝑧 ∥ 1)) | |
11 | 10 | elrab 3676 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 1)) |
12 | 8, 9, 11 | 3bitr4ri 304 | . . . . . 6 ⊢ (𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ↔ 𝑧 ∈ {1}) |
13 | 12 | eqriv 2721 | . . . . 5 ⊢ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} = {1} |
14 | 1ex 11209 | . . . . . 6 ⊢ 1 ∈ V | |
15 | 14 | ensn1 9014 | . . . . 5 ⊢ {1} ≈ 1o |
16 | 13, 15 | eqbrtri 5160 | . . . 4 ⊢ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 1o |
17 | 1sdom2 9237 | . . . 4 ⊢ 1o ≺ 2o | |
18 | ensdomtr 9110 | . . . 4 ⊢ (({𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 1o ∧ 1o ≺ 2o) → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≺ 2o) | |
19 | 16, 17, 18 | mp2an 689 | . . 3 ⊢ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≺ 2o |
20 | sdomnen 8974 | . . 3 ⊢ ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≺ 2o → ¬ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o) | |
21 | 19, 20 | ax-mp 5 | . 2 ⊢ ¬ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o |
22 | isprm 16613 | . . 3 ⊢ (1 ∈ ℙ ↔ (1 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o)) | |
23 | 1, 22 | mpbiran 706 | . 2 ⊢ (1 ∈ ℙ ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o) |
24 | 21, 23 | mtbir 323 | 1 ⊢ ¬ 1 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {crab 3424 {csn 4621 class class class wbr 5139 1oc1o 8455 2oc2o 8456 ≈ cen 8933 ≺ csdm 8935 1c1 11108 ℕcn 12211 ℕ0cn0 12471 ∥ cdvds 16200 ℙcprime 16611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-sup 9434 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12976 df-seq 13968 df-exp 14029 df-cj 15048 df-re 15049 df-im 15050 df-sqrt 15184 df-abs 15185 df-dvds 16201 df-prm 16612 |
This theorem is referenced by: isprm2 16622 nprmdvds1 16646 prm23lt5 16752 pcmpt 16830 prmo1 16975 prmlem1a 17045 prmcyg 19810 prmgrpsimpgd 20032 prmirredlem 21348 bposlem5 27162 2lgs 27281 chtvalz 34160 prmdvdsfmtnof1lem2 46799 lighneallem3 46821 |
Copyright terms: Public domain | W3C validator |