![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1nprm | Structured version Visualization version GIF version |
Description: 1 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.) |
Ref | Expression |
---|---|
1nprm | ⊢ ¬ 1 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 11392 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
2 | eleq1 2847 | . . . . . . . . 9 ⊢ (𝑧 = 1 → (𝑧 ∈ ℕ ↔ 1 ∈ ℕ)) | |
3 | 1, 2 | mpbiri 250 | . . . . . . . 8 ⊢ (𝑧 = 1 → 𝑧 ∈ ℕ) |
4 | nnnn0 11655 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℕ0) | |
5 | dvds1 15458 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℕ0 → (𝑧 ∥ 1 ↔ 𝑧 = 1)) | |
6 | 4, 5 | syl 17 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℕ → (𝑧 ∥ 1 ↔ 𝑧 = 1)) |
7 | 6 | bicomd 215 | . . . . . . . 8 ⊢ (𝑧 ∈ ℕ → (𝑧 = 1 ↔ 𝑧 ∥ 1)) |
8 | 3, 7 | biadanii 813 | . . . . . . 7 ⊢ (𝑧 = 1 ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 1)) |
9 | velsn 4414 | . . . . . . 7 ⊢ (𝑧 ∈ {1} ↔ 𝑧 = 1) | |
10 | breq1 4891 | . . . . . . . 8 ⊢ (𝑛 = 𝑧 → (𝑛 ∥ 1 ↔ 𝑧 ∥ 1)) | |
11 | 10 | elrab 3572 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 1)) |
12 | 8, 9, 11 | 3bitr4ri 296 | . . . . . 6 ⊢ (𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ↔ 𝑧 ∈ {1}) |
13 | 12 | eqriv 2775 | . . . . 5 ⊢ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} = {1} |
14 | 1ex 10374 | . . . . . 6 ⊢ 1 ∈ V | |
15 | 14 | ensn1 8307 | . . . . 5 ⊢ {1} ≈ 1o |
16 | 13, 15 | eqbrtri 4909 | . . . 4 ⊢ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 1o |
17 | 1sdom2 8449 | . . . 4 ⊢ 1o ≺ 2o | |
18 | ensdomtr 8386 | . . . 4 ⊢ (({𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 1o ∧ 1o ≺ 2o) → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≺ 2o) | |
19 | 16, 17, 18 | mp2an 682 | . . 3 ⊢ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≺ 2o |
20 | sdomnen 8272 | . . 3 ⊢ ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≺ 2o → ¬ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o) | |
21 | 19, 20 | ax-mp 5 | . 2 ⊢ ¬ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o |
22 | isprm 15802 | . . 3 ⊢ (1 ∈ ℙ ↔ (1 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o)) | |
23 | 1, 22 | mpbiran 699 | . 2 ⊢ (1 ∈ ℙ ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o) |
24 | 21, 23 | mtbir 315 | 1 ⊢ ¬ 1 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 {crab 3094 {csn 4398 class class class wbr 4888 1oc1o 7838 2oc2o 7839 ≈ cen 8240 ≺ csdm 8242 1c1 10275 ℕcn 11379 ℕ0cn0 11647 ∥ cdvds 15396 ℙcprime 15800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-2o 7846 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-sup 8638 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11036 df-nn 11380 df-2 11443 df-3 11444 df-n0 11648 df-z 11734 df-uz 11998 df-rp 12143 df-seq 13125 df-exp 13184 df-cj 14252 df-re 14253 df-im 14254 df-sqrt 14388 df-abs 14389 df-dvds 15397 df-prm 15801 |
This theorem is referenced by: isprm2 15811 nprmdvds1 15833 prm23lt5 15934 pcmpt 16011 prmo1 16156 prmlem1a 16223 prmcyg 18692 prmirredlem 20248 bposlem5 25476 2lgs 25595 chtvalz 31317 prmdvdsfmtnof1lem2 42532 lighneallem3 42559 |
Copyright terms: Public domain | W3C validator |