| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1nprm | Structured version Visualization version GIF version | ||
| Description: 1 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1nprm | ⊢ ¬ 1 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 12204 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
| 2 | eleq1 2817 | . . . . . . . . 9 ⊢ (𝑧 = 1 → (𝑧 ∈ ℕ ↔ 1 ∈ ℕ)) | |
| 3 | 1, 2 | mpbiri 258 | . . . . . . . 8 ⊢ (𝑧 = 1 → 𝑧 ∈ ℕ) |
| 4 | nnnn0 12456 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℕ0) | |
| 5 | dvds1 16296 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℕ0 → (𝑧 ∥ 1 ↔ 𝑧 = 1)) | |
| 6 | 4, 5 | syl 17 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℕ → (𝑧 ∥ 1 ↔ 𝑧 = 1)) |
| 7 | 6 | bicomd 223 | . . . . . . . 8 ⊢ (𝑧 ∈ ℕ → (𝑧 = 1 ↔ 𝑧 ∥ 1)) |
| 8 | 3, 7 | biadanii 821 | . . . . . . 7 ⊢ (𝑧 = 1 ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 1)) |
| 9 | velsn 4608 | . . . . . . 7 ⊢ (𝑧 ∈ {1} ↔ 𝑧 = 1) | |
| 10 | breq1 5113 | . . . . . . . 8 ⊢ (𝑛 = 𝑧 → (𝑛 ∥ 1 ↔ 𝑧 ∥ 1)) | |
| 11 | 10 | elrab 3662 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 1)) |
| 12 | 8, 9, 11 | 3bitr4ri 304 | . . . . . 6 ⊢ (𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ↔ 𝑧 ∈ {1}) |
| 13 | 12 | eqriv 2727 | . . . . 5 ⊢ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} = {1} |
| 14 | 1ex 11177 | . . . . . 6 ⊢ 1 ∈ V | |
| 15 | 14 | ensn1 8995 | . . . . 5 ⊢ {1} ≈ 1o |
| 16 | 13, 15 | eqbrtri 5131 | . . . 4 ⊢ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 1o |
| 17 | 1sdom2 9194 | . . . 4 ⊢ 1o ≺ 2o | |
| 18 | ensdomtr 9083 | . . . 4 ⊢ (({𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 1o ∧ 1o ≺ 2o) → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≺ 2o) | |
| 19 | 16, 17, 18 | mp2an 692 | . . 3 ⊢ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≺ 2o |
| 20 | sdomnen 8955 | . . 3 ⊢ ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≺ 2o → ¬ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o) | |
| 21 | 19, 20 | ax-mp 5 | . 2 ⊢ ¬ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o |
| 22 | isprm 16650 | . . 3 ⊢ (1 ∈ ℙ ↔ (1 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o)) | |
| 23 | 1, 22 | mpbiran 709 | . 2 ⊢ (1 ∈ ℙ ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o) |
| 24 | 21, 23 | mtbir 323 | 1 ⊢ ¬ 1 ∈ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 {csn 4592 class class class wbr 5110 1oc1o 8430 2oc2o 8431 ≈ cen 8918 ≺ csdm 8920 1c1 11076 ℕcn 12193 ℕ0cn0 12449 ∥ cdvds 16229 ℙcprime 16648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-prm 16649 |
| This theorem is referenced by: isprm2 16659 nprmdvds1 16683 prm23lt5 16792 pcmpt 16870 prmo1 17015 prmlem1a 17084 prmcyg 19831 prmgrpsimpgd 20053 prmirredlem 21389 bposlem5 27206 2lgs 27325 cos9thpiminplylem2 33780 chtvalz 34627 prmdvdsfmtnof1lem2 47590 lighneallem3 47612 |
| Copyright terms: Public domain | W3C validator |