| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1nprm | Structured version Visualization version GIF version | ||
| Description: 1 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1nprm | ⊢ ¬ 1 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 12277 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
| 2 | eleq1 2829 | . . . . . . . . 9 ⊢ (𝑧 = 1 → (𝑧 ∈ ℕ ↔ 1 ∈ ℕ)) | |
| 3 | 1, 2 | mpbiri 258 | . . . . . . . 8 ⊢ (𝑧 = 1 → 𝑧 ∈ ℕ) |
| 4 | nnnn0 12533 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℕ0) | |
| 5 | dvds1 16356 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℕ0 → (𝑧 ∥ 1 ↔ 𝑧 = 1)) | |
| 6 | 4, 5 | syl 17 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℕ → (𝑧 ∥ 1 ↔ 𝑧 = 1)) |
| 7 | 6 | bicomd 223 | . . . . . . . 8 ⊢ (𝑧 ∈ ℕ → (𝑧 = 1 ↔ 𝑧 ∥ 1)) |
| 8 | 3, 7 | biadanii 822 | . . . . . . 7 ⊢ (𝑧 = 1 ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 1)) |
| 9 | velsn 4642 | . . . . . . 7 ⊢ (𝑧 ∈ {1} ↔ 𝑧 = 1) | |
| 10 | breq1 5146 | . . . . . . . 8 ⊢ (𝑛 = 𝑧 → (𝑛 ∥ 1 ↔ 𝑧 ∥ 1)) | |
| 11 | 10 | elrab 3692 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∥ 1)) |
| 12 | 8, 9, 11 | 3bitr4ri 304 | . . . . . 6 ⊢ (𝑧 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ↔ 𝑧 ∈ {1}) |
| 13 | 12 | eqriv 2734 | . . . . 5 ⊢ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} = {1} |
| 14 | 1ex 11257 | . . . . . 6 ⊢ 1 ∈ V | |
| 15 | 14 | ensn1 9061 | . . . . 5 ⊢ {1} ≈ 1o |
| 16 | 13, 15 | eqbrtri 5164 | . . . 4 ⊢ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 1o |
| 17 | 1sdom2 9276 | . . . 4 ⊢ 1o ≺ 2o | |
| 18 | ensdomtr 9153 | . . . 4 ⊢ (({𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 1o ∧ 1o ≺ 2o) → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≺ 2o) | |
| 19 | 16, 17, 18 | mp2an 692 | . . 3 ⊢ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≺ 2o |
| 20 | sdomnen 9021 | . . 3 ⊢ ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≺ 2o → ¬ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o) | |
| 21 | 19, 20 | ax-mp 5 | . 2 ⊢ ¬ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o |
| 22 | isprm 16710 | . . 3 ⊢ (1 ∈ ℙ ↔ (1 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o)) | |
| 23 | 1, 22 | mpbiran 709 | . 2 ⊢ (1 ∈ ℙ ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 1} ≈ 2o) |
| 24 | 21, 23 | mtbir 323 | 1 ⊢ ¬ 1 ∈ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3436 {csn 4626 class class class wbr 5143 1oc1o 8499 2oc2o 8500 ≈ cen 8982 ≺ csdm 8984 1c1 11156 ℕcn 12266 ℕ0cn0 12526 ∥ cdvds 16290 ℙcprime 16708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-dvds 16291 df-prm 16709 |
| This theorem is referenced by: isprm2 16719 nprmdvds1 16743 prm23lt5 16852 pcmpt 16930 prmo1 17075 prmlem1a 17144 prmcyg 19912 prmgrpsimpgd 20134 prmirredlem 21483 bposlem5 27332 2lgs 27451 chtvalz 34644 prmdvdsfmtnof1lem2 47572 lighneallem3 47594 |
| Copyright terms: Public domain | W3C validator |