Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prmnn | Structured version Visualization version GIF version |
Description: A prime number is a positive integer. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
prmnn | ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isprm 16306 | . 2 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑧 ∈ ℕ ∣ 𝑧 ∥ 𝑃} ≈ 2o)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) |
Copyright terms: Public domain | W3C validator |