| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss0b | Structured version Visualization version GIF version | ||
| Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23 and its converse. (Contributed by NM, 17-Sep-2003.) |
| Ref | Expression |
|---|---|
| ss0b | ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4363 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 2 | eqss 3962 | . . 3 ⊢ (𝐴 = ∅ ↔ (𝐴 ⊆ ∅ ∧ ∅ ⊆ 𝐴)) | |
| 3 | 1, 2 | mpbiran2 710 | . 2 ⊢ (𝐴 = ∅ ↔ 𝐴 ⊆ ∅) |
| 4 | 3 | bicomi 224 | 1 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊆ wss 3914 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-dif 3917 df-ss 3931 df-nul 4297 |
| This theorem is referenced by: ss0 4365 un00 4408 pw0 4776 al0ssb 5263 fnsuppeq0 8171 cnfcom2lem 9654 card0 9911 kmlem5 10108 cf0 10204 fin1a2lem12 10364 mreexexlem3d 17607 efgval 19647 ppttop 22894 0nnei 22999 disjunsn 32523 isarchi 33136 filnetlem4 36369 bj-pw0ALT 37037 coss0 38470 pnonsingN 39927 osumcllem4N 39953 resnonrel 43581 ntrneicls11 44079 ntrneikb 44083 sprsymrelfvlem 47491 isubgr0uhgr 47873 iuneq0 48807 |
| Copyright terms: Public domain | W3C validator |