| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss0b | Structured version Visualization version GIF version | ||
| Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23 and its converse. (Contributed by NM, 17-Sep-2003.) |
| Ref | Expression |
|---|---|
| ss0b | ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4349 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 2 | eqss 3946 | . . 3 ⊢ (𝐴 = ∅ ↔ (𝐴 ⊆ ∅ ∧ ∅ ⊆ 𝐴)) | |
| 3 | 1, 2 | mpbiran2 710 | . 2 ⊢ (𝐴 = ∅ ↔ 𝐴 ⊆ ∅) |
| 4 | 3 | bicomi 224 | 1 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ⊆ wss 3898 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-dif 3901 df-ss 3915 df-nul 4283 |
| This theorem is referenced by: ss0 4351 un00 4394 pw0 4765 al0ssb 5250 fnsuppeq0 8131 cnfcom2lem 9602 card0 9862 kmlem5 10057 cf0 10153 fin1a2lem12 10313 mreexexlem3d 17560 efgval 19637 ppttop 22942 0nnei 23047 disjunsn 32595 isarchi 33192 filnetlem4 36497 bj-pw0ALT 37166 coss0 38654 pnonsingN 40105 osumcllem4N 40131 resnonrel 43749 ntrneicls11 44247 ntrneikb 44251 sprsymrelfvlem 47652 isubgr0uhgr 48035 iuneq0 48980 |
| Copyright terms: Public domain | W3C validator |