Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ss0b | Structured version Visualization version GIF version |
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23 and its converse. (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
ss0b | ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4327 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
2 | eqss 3932 | . . 3 ⊢ (𝐴 = ∅ ↔ (𝐴 ⊆ ∅ ∧ ∅ ⊆ 𝐴)) | |
3 | 1, 2 | mpbiran2 706 | . 2 ⊢ (𝐴 = ∅ ↔ 𝐴 ⊆ ∅) |
4 | 3 | bicomi 223 | 1 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ⊆ wss 3883 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 |
This theorem is referenced by: ss0 4329 un00 4373 pw0 4742 al0ssb 5227 fnsuppeq0 7979 cnfcom2lem 9389 card0 9647 kmlem5 9841 cf0 9938 fin1a2lem12 10098 mreexexlem3d 17272 efgval 19238 ppttop 22065 0nnei 22171 disjunsn 30834 isarchi 31338 filnetlem4 34497 bj-pw0ALT 35149 coss0 36524 pnonsingN 37874 osumcllem4N 37900 resnonrel 41089 ntrneicls11 41589 ntrneikb 41593 sprsymrelfvlem 44830 |
Copyright terms: Public domain | W3C validator |