Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ss0b | Structured version Visualization version GIF version |
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23 and its converse. (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
ss0b | ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4330 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
2 | eqss 3936 | . . 3 ⊢ (𝐴 = ∅ ↔ (𝐴 ⊆ ∅ ∧ ∅ ⊆ 𝐴)) | |
3 | 1, 2 | mpbiran2 707 | . 2 ⊢ (𝐴 = ∅ ↔ 𝐴 ⊆ ∅) |
4 | 3 | bicomi 223 | 1 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ⊆ wss 3887 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 |
This theorem is referenced by: ss0 4332 un00 4376 pw0 4745 al0ssb 5232 fnsuppeq0 8008 cnfcom2lem 9459 card0 9716 kmlem5 9910 cf0 10007 fin1a2lem12 10167 mreexexlem3d 17355 efgval 19323 ppttop 22157 0nnei 22263 disjunsn 30933 isarchi 31436 filnetlem4 34570 bj-pw0ALT 35222 coss0 36597 pnonsingN 37947 osumcllem4N 37973 resnonrel 41200 ntrneicls11 41700 ntrneikb 41704 sprsymrelfvlem 44942 |
Copyright terms: Public domain | W3C validator |