| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss0b | Structured version Visualization version GIF version | ||
| Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23 and its converse. (Contributed by NM, 17-Sep-2003.) |
| Ref | Expression |
|---|---|
| ss0b | ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4366 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 2 | eqss 3965 | . . 3 ⊢ (𝐴 = ∅ ↔ (𝐴 ⊆ ∅ ∧ ∅ ⊆ 𝐴)) | |
| 3 | 1, 2 | mpbiran2 710 | . 2 ⊢ (𝐴 = ∅ ↔ 𝐴 ⊆ ∅) |
| 4 | 3 | bicomi 224 | 1 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊆ wss 3917 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-dif 3920 df-ss 3934 df-nul 4300 |
| This theorem is referenced by: ss0 4368 un00 4411 pw0 4779 al0ssb 5266 fnsuppeq0 8174 cnfcom2lem 9661 card0 9918 kmlem5 10115 cf0 10211 fin1a2lem12 10371 mreexexlem3d 17614 efgval 19654 ppttop 22901 0nnei 23006 disjunsn 32530 isarchi 33143 filnetlem4 36376 bj-pw0ALT 37044 coss0 38477 pnonsingN 39934 osumcllem4N 39960 resnonrel 43588 ntrneicls11 44086 ntrneikb 44090 sprsymrelfvlem 47495 isubgr0uhgr 47877 iuneq0 48811 |
| Copyright terms: Public domain | W3C validator |