| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss0b | Structured version Visualization version GIF version | ||
| Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23 and its converse. (Contributed by NM, 17-Sep-2003.) |
| Ref | Expression |
|---|---|
| ss0b | ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4345 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 2 | eqss 3945 | . . 3 ⊢ (𝐴 = ∅ ↔ (𝐴 ⊆ ∅ ∧ ∅ ⊆ 𝐴)) | |
| 3 | 1, 2 | mpbiran2 710 | . 2 ⊢ (𝐴 = ∅ ↔ 𝐴 ⊆ ∅) |
| 4 | 3 | bicomi 224 | 1 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ⊆ wss 3897 ∅c0 4278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-dif 3900 df-ss 3914 df-nul 4279 |
| This theorem is referenced by: ss0 4347 un00 4390 pw0 4759 al0ssb 5241 fnsuppeq0 8117 cnfcom2lem 9586 card0 9846 kmlem5 10041 cf0 10137 fin1a2lem12 10297 mreexexlem3d 17547 efgval 19624 ppttop 22917 0nnei 23022 disjunsn 32566 isarchi 33143 filnetlem4 36415 bj-pw0ALT 37083 coss0 38516 pnonsingN 39972 osumcllem4N 39998 resnonrel 43625 ntrneicls11 44123 ntrneikb 44127 sprsymrelfvlem 47521 isubgr0uhgr 47904 iuneq0 48850 |
| Copyright terms: Public domain | W3C validator |