![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss0b | Structured version Visualization version GIF version |
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23 and its converse. (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
ss0b | ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4406 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
2 | eqss 4011 | . . 3 ⊢ (𝐴 = ∅ ↔ (𝐴 ⊆ ∅ ∧ ∅ ⊆ 𝐴)) | |
3 | 1, 2 | mpbiran2 710 | . 2 ⊢ (𝐴 = ∅ ↔ 𝐴 ⊆ ∅) |
4 | 3 | bicomi 224 | 1 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ⊆ wss 3963 ∅c0 4339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-dif 3966 df-ss 3980 df-nul 4340 |
This theorem is referenced by: ss0 4408 un00 4451 pw0 4817 al0ssb 5314 fnsuppeq0 8216 cnfcom2lem 9739 card0 9996 kmlem5 10193 cf0 10289 fin1a2lem12 10449 mreexexlem3d 17691 efgval 19750 ppttop 23030 0nnei 23136 disjunsn 32614 isarchi 33172 filnetlem4 36364 bj-pw0ALT 37032 coss0 38461 pnonsingN 39916 osumcllem4N 39942 resnonrel 43582 ntrneicls11 44080 ntrneikb 44084 sprsymrelfvlem 47415 isubgr0uhgr 47797 |
Copyright terms: Public domain | W3C validator |