| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss0b | Structured version Visualization version GIF version | ||
| Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23 and its converse. (Contributed by NM, 17-Sep-2003.) |
| Ref | Expression |
|---|---|
| ss0b | ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4353 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 2 | eqss 3953 | . . 3 ⊢ (𝐴 = ∅ ↔ (𝐴 ⊆ ∅ ∧ ∅ ⊆ 𝐴)) | |
| 3 | 1, 2 | mpbiran2 710 | . 2 ⊢ (𝐴 = ∅ ↔ 𝐴 ⊆ ∅) |
| 4 | 3 | bicomi 224 | 1 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊆ wss 3905 ∅c0 4286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-dif 3908 df-ss 3922 df-nul 4287 |
| This theorem is referenced by: ss0 4355 un00 4398 pw0 4766 al0ssb 5250 fnsuppeq0 8132 cnfcom2lem 9616 card0 9873 kmlem5 10068 cf0 10164 fin1a2lem12 10324 mreexexlem3d 17570 efgval 19614 ppttop 22910 0nnei 23015 disjunsn 32556 isarchi 33137 filnetlem4 36357 bj-pw0ALT 37025 coss0 38458 pnonsingN 39915 osumcllem4N 39941 resnonrel 43568 ntrneicls11 44066 ntrneikb 44070 sprsymrelfvlem 47478 isubgr0uhgr 47861 iuneq0 48807 |
| Copyright terms: Public domain | W3C validator |