| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss0b | Structured version Visualization version GIF version | ||
| Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23 and its converse. (Contributed by NM, 17-Sep-2003.) |
| Ref | Expression |
|---|---|
| ss0b | ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4359 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 2 | eqss 3959 | . . 3 ⊢ (𝐴 = ∅ ↔ (𝐴 ⊆ ∅ ∧ ∅ ⊆ 𝐴)) | |
| 3 | 1, 2 | mpbiran2 710 | . 2 ⊢ (𝐴 = ∅ ↔ 𝐴 ⊆ ∅) |
| 4 | 3 | bicomi 224 | 1 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊆ wss 3911 ∅c0 4292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-dif 3914 df-ss 3928 df-nul 4293 |
| This theorem is referenced by: ss0 4361 un00 4404 pw0 4772 al0ssb 5258 fnsuppeq0 8148 cnfcom2lem 9630 card0 9887 kmlem5 10084 cf0 10180 fin1a2lem12 10340 mreexexlem3d 17583 efgval 19623 ppttop 22870 0nnei 22975 disjunsn 32496 isarchi 33109 filnetlem4 36342 bj-pw0ALT 37010 coss0 38443 pnonsingN 39900 osumcllem4N 39926 resnonrel 43554 ntrneicls11 44052 ntrneikb 44056 sprsymrelfvlem 47464 isubgr0uhgr 47846 iuneq0 48780 |
| Copyright terms: Public domain | W3C validator |