MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss0b Structured version   Visualization version   GIF version

Theorem ss0b 4354
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23 and its converse. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
ss0b (𝐴 ⊆ ∅ ↔ 𝐴 = ∅)

Proof of Theorem ss0b
StepHypRef Expression
1 0ss 4353 . . 3 ∅ ⊆ 𝐴
2 eqss 3953 . . 3 (𝐴 = ∅ ↔ (𝐴 ⊆ ∅ ∧ ∅ ⊆ 𝐴))
31, 2mpbiran2 710 . 2 (𝐴 = ∅ ↔ 𝐴 ⊆ ∅)
43bicomi 224 1 (𝐴 ⊆ ∅ ↔ 𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wss 3905  c0 4286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-dif 3908  df-ss 3922  df-nul 4287
This theorem is referenced by:  ss0  4355  un00  4398  pw0  4766  al0ssb  5250  fnsuppeq0  8132  cnfcom2lem  9616  card0  9873  kmlem5  10068  cf0  10164  fin1a2lem12  10324  mreexexlem3d  17570  efgval  19614  ppttop  22910  0nnei  23015  disjunsn  32556  isarchi  33137  filnetlem4  36357  bj-pw0ALT  37025  coss0  38458  pnonsingN  39915  osumcllem4N  39941  resnonrel  43568  ntrneicls11  44066  ntrneikb  44070  sprsymrelfvlem  47478  isubgr0uhgr  47861  iuneq0  48807
  Copyright terms: Public domain W3C validator