MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss0b Structured version   Visualization version   GIF version

Theorem ss0b 4331
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23 and its converse. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
ss0b (𝐴 ⊆ ∅ ↔ 𝐴 = ∅)

Proof of Theorem ss0b
StepHypRef Expression
1 0ss 4330 . . 3 ∅ ⊆ 𝐴
2 eqss 3936 . . 3 (𝐴 = ∅ ↔ (𝐴 ⊆ ∅ ∧ ∅ ⊆ 𝐴))
31, 2mpbiran2 707 . 2 (𝐴 = ∅ ↔ 𝐴 ⊆ ∅)
43bicomi 223 1 (𝐴 ⊆ ∅ ↔ 𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wss 3887  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-nul 4257
This theorem is referenced by:  ss0  4332  un00  4376  pw0  4745  al0ssb  5232  fnsuppeq0  8008  cnfcom2lem  9459  card0  9716  kmlem5  9910  cf0  10007  fin1a2lem12  10167  mreexexlem3d  17355  efgval  19323  ppttop  22157  0nnei  22263  disjunsn  30933  isarchi  31436  filnetlem4  34570  bj-pw0ALT  35222  coss0  36597  pnonsingN  37947  osumcllem4N  37973  resnonrel  41200  ntrneicls11  41700  ntrneikb  41704  sprsymrelfvlem  44942
  Copyright terms: Public domain W3C validator