| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss0b | Structured version Visualization version GIF version | ||
| Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23 and its converse. (Contributed by NM, 17-Sep-2003.) |
| Ref | Expression |
|---|---|
| ss0b | ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4380 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 2 | eqss 3979 | . . 3 ⊢ (𝐴 = ∅ ↔ (𝐴 ⊆ ∅ ∧ ∅ ⊆ 𝐴)) | |
| 3 | 1, 2 | mpbiran2 710 | . 2 ⊢ (𝐴 = ∅ ↔ 𝐴 ⊆ ∅) |
| 4 | 3 | bicomi 224 | 1 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊆ wss 3931 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-dif 3934 df-ss 3948 df-nul 4314 |
| This theorem is referenced by: ss0 4382 un00 4425 pw0 4793 al0ssb 5283 fnsuppeq0 8196 cnfcom2lem 9720 card0 9977 kmlem5 10174 cf0 10270 fin1a2lem12 10430 mreexexlem3d 17663 efgval 19703 ppttop 22950 0nnei 23055 disjunsn 32580 isarchi 33185 filnetlem4 36404 bj-pw0ALT 37072 coss0 38502 pnonsingN 39957 osumcllem4N 39983 resnonrel 43583 ntrneicls11 44081 ntrneikb 44085 sprsymrelfvlem 47471 isubgr0uhgr 47853 iuneq0 48764 |
| Copyright terms: Public domain | W3C validator |