![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss0b | Structured version Visualization version GIF version |
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23 and its converse. (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
ss0b | ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4423 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
2 | eqss 4024 | . . 3 ⊢ (𝐴 = ∅ ↔ (𝐴 ⊆ ∅ ∧ ∅ ⊆ 𝐴)) | |
3 | 1, 2 | mpbiran2 709 | . 2 ⊢ (𝐴 = ∅ ↔ 𝐴 ⊆ ∅) |
4 | 3 | bicomi 224 | 1 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ⊆ wss 3976 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-dif 3979 df-ss 3993 df-nul 4353 |
This theorem is referenced by: ss0 4425 un00 4468 pw0 4837 al0ssb 5326 fnsuppeq0 8233 cnfcom2lem 9770 card0 10027 kmlem5 10224 cf0 10320 fin1a2lem12 10480 mreexexlem3d 17704 efgval 19759 ppttop 23035 0nnei 23141 disjunsn 32616 isarchi 33162 filnetlem4 36347 bj-pw0ALT 37015 coss0 38435 pnonsingN 39890 osumcllem4N 39916 resnonrel 43554 ntrneicls11 44052 ntrneikb 44056 sprsymrelfvlem 47364 isubgr0uhgr 47743 |
Copyright terms: Public domain | W3C validator |