Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > unilbss | Structured version Visualization version GIF version |
Description: Superclass of the greatest lower bound. A dual statement of ssintub 4897. (Contributed by Zhi Wang, 29-Sep-2024.) |
Ref | Expression |
---|---|
unilbss | ⊢ ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unissb 4873 | . 2 ⊢ (∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ⊆ 𝐴 ↔ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}𝑦 ⊆ 𝐴) | |
2 | sseq1 3946 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) | |
3 | 2 | elrab 3624 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ 𝐴)) |
4 | 3 | simprbi 497 | . 2 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} → 𝑦 ⊆ 𝐴) |
5 | 1, 4 | mprgbir 3079 | 1 ⊢ ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 {crab 3068 ⊆ wss 3887 ∪ cuni 4839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 |
This theorem is referenced by: unilbeu 46271 |
Copyright terms: Public domain | W3C validator |