| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unilbss | Structured version Visualization version GIF version | ||
| Description: Superclass of the greatest lower bound. A dual statement of ssintub 4933. (Contributed by Zhi Wang, 29-Sep-2024.) |
| Ref | Expression |
|---|---|
| unilbss | ⊢ ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unissb 4906 | . 2 ⊢ (∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ⊆ 𝐴 ↔ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}𝑦 ⊆ 𝐴) | |
| 2 | sseq1 3975 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) | |
| 3 | 2 | elrab 3662 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ 𝐴)) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} → 𝑦 ⊆ 𝐴) |
| 5 | 1, 4 | mprgbir 3052 | 1 ⊢ ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {crab 3408 ⊆ wss 3917 ∪ cuni 4874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-v 3452 df-ss 3934 df-uni 4875 |
| This theorem is referenced by: unilbeu 48977 |
| Copyright terms: Public domain | W3C validator |