Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unilbss Structured version   Visualization version   GIF version

Theorem unilbss 48737
Description: Superclass of the greatest lower bound. A dual statement of ssintub 4966. (Contributed by Zhi Wang, 29-Sep-2024.)
Assertion
Ref Expression
unilbss {𝑥𝐵𝑥𝐴} ⊆ 𝐴
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem unilbss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 unissb 4939 . 2 ( {𝑥𝐵𝑥𝐴} ⊆ 𝐴 ↔ ∀𝑦 ∈ {𝑥𝐵𝑥𝐴}𝑦𝐴)
2 sseq1 4009 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
32elrab 3692 . . 3 (𝑦 ∈ {𝑥𝐵𝑥𝐴} ↔ (𝑦𝐵𝑦𝐴))
43simprbi 496 . 2 (𝑦 ∈ {𝑥𝐵𝑥𝐴} → 𝑦𝐴)
51, 4mprgbir 3068 1 {𝑥𝐵𝑥𝐴} ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  {crab 3436  wss 3951   cuni 4907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rab 3437  df-v 3482  df-ss 3968  df-uni 4908
This theorem is referenced by:  unilbeu  48874
  Copyright terms: Public domain W3C validator