Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unilbss Structured version   Visualization version   GIF version

Theorem unilbss 48810
Description: Superclass of the greatest lower bound. A dual statement of ssintub 4933. (Contributed by Zhi Wang, 29-Sep-2024.)
Assertion
Ref Expression
unilbss {𝑥𝐵𝑥𝐴} ⊆ 𝐴
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem unilbss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 unissb 4906 . 2 ( {𝑥𝐵𝑥𝐴} ⊆ 𝐴 ↔ ∀𝑦 ∈ {𝑥𝐵𝑥𝐴}𝑦𝐴)
2 sseq1 3975 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
32elrab 3662 . . 3 (𝑦 ∈ {𝑥𝐵𝑥𝐴} ↔ (𝑦𝐵𝑦𝐴))
43simprbi 496 . 2 (𝑦 ∈ {𝑥𝐵𝑥𝐴} → 𝑦𝐴)
51, 4mprgbir 3052 1 {𝑥𝐵𝑥𝐴} ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  {crab 3408  wss 3917   cuni 4874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-ss 3934  df-uni 4875
This theorem is referenced by:  unilbeu  48977
  Copyright terms: Public domain W3C validator