Step | Hyp | Ref
| Expression |
1 | | df-iun 4932 |
. . 3
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
2 | 1 | sseq1i 3954 |
. 2
⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} ⊆ 𝐶) |
3 | | abss 3999 |
. 2
⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} ⊆ 𝐶 ↔ ∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) |
4 | | dfss2 3912 |
. . . 4
⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) |
5 | 4 | ralbii 3093 |
. . 3
⊢
(∀𝑥 ∈
𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) |
6 | | ralcom4 3164 |
. . 3
⊢
(∀𝑥 ∈
𝐴 ∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) |
7 | | r19.23v 3210 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) |
8 | 7 | albii 1826 |
. . 3
⊢
(∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) ↔ ∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) |
9 | 5, 6, 8 | 3bitrri 298 |
. 2
⊢
(∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
10 | 2, 3, 9 | 3bitri 297 |
1
⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |