Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iunn0 | Structured version Visualization version GIF version |
Description: There is a nonempty class in an indexed collection 𝐵(𝑥) iff the indexed union of them is nonempty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
iunn0 | ⊢ (∃𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ ∪ 𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom4 3233 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ 𝐵 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
2 | eliun 4928 | . . . 4 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
3 | 2 | exbii 1850 | . . 3 ⊢ (∃𝑦 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
4 | 1, 3 | bitr4i 277 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ 𝐵 ↔ ∃𝑦 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) |
5 | n0 4280 | . . 3 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝐵) | |
6 | 5 | rexbii 3181 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ 𝐵) |
7 | n0 4280 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) | |
8 | 4, 6, 7 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ ∪ 𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 ∅c0 4256 ∪ ciun 4924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-v 3434 df-dif 3890 df-nul 4257 df-iun 4926 |
This theorem is referenced by: fsuppmapnn0fiubex 13712 lbsextlem2 20421 |
Copyright terms: Public domain | W3C validator |