MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunn0 Structured version   Visualization version   GIF version

Theorem iunn0 5067
Description: There is a nonempty class in an indexed collection 𝐵(𝑥) iff the indexed union of them is nonempty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iunn0 (∃𝑥𝐴 𝐵 ≠ ∅ ↔ 𝑥𝐴 𝐵 ≠ ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunn0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rexcom4 3288 . . 3 (∃𝑥𝐴𝑦 𝑦𝐵 ↔ ∃𝑦𝑥𝐴 𝑦𝐵)
2 eliun 4995 . . . 4 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
32exbii 1848 . . 3 (∃𝑦 𝑦 𝑥𝐴 𝐵 ↔ ∃𝑦𝑥𝐴 𝑦𝐵)
41, 3bitr4i 278 . 2 (∃𝑥𝐴𝑦 𝑦𝐵 ↔ ∃𝑦 𝑦 𝑥𝐴 𝐵)
5 n0 4353 . . 3 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
65rexbii 3094 . 2 (∃𝑥𝐴 𝐵 ≠ ∅ ↔ ∃𝑥𝐴𝑦 𝑦𝐵)
7 n0 4353 . 2 ( 𝑥𝐴 𝐵 ≠ ∅ ↔ ∃𝑦 𝑦 𝑥𝐴 𝐵)
84, 6, 73bitr4i 303 1 (∃𝑥𝐴 𝐵 ≠ ∅ ↔ 𝑥𝐴 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1779  wcel 2108  wne 2940  wrex 3070  c0 4333   ciun 4991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-rex 3071  df-v 3482  df-dif 3954  df-nul 4334  df-iun 4993
This theorem is referenced by:  fsuppmapnn0fiubex  14033  lbsextlem2  21161
  Copyright terms: Public domain W3C validator