Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iunn0 | Structured version Visualization version GIF version |
Description: There is a nonempty class in an indexed collection 𝐵(𝑥) iff the indexed union of them is nonempty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
iunn0 | ⊢ (∃𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ ∪ 𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom4 3269 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ 𝐵 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
2 | eliun 4953 | . . . 4 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
3 | 2 | exbii 1850 | . . 3 ⊢ (∃𝑦 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
4 | 1, 3 | bitr4i 278 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ 𝐵 ↔ ∃𝑦 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) |
5 | n0 4301 | . . 3 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝐵) | |
6 | 5 | rexbii 3095 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ 𝐵) |
7 | n0 4301 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) | |
8 | 4, 6, 7 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ ∪ 𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1781 ∈ wcel 2106 ≠ wne 2941 ∃wrex 3071 ∅c0 4277 ∪ ciun 4949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-rex 3072 df-v 3445 df-dif 3908 df-nul 4278 df-iun 4951 |
This theorem is referenced by: fsuppmapnn0fiubex 13822 lbsextlem2 20531 |
Copyright terms: Public domain | W3C validator |