| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunn0 | Structured version Visualization version GIF version | ||
| Description: There is a nonempty class in an indexed collection 𝐵(𝑥) iff the indexed union of them is nonempty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| iunn0 | ⊢ (∃𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ ∪ 𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom4 3259 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ 𝐵 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 2 | eliun 4943 | . . . 4 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 3 | 2 | exbii 1849 | . . 3 ⊢ (∃𝑦 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
| 4 | 1, 3 | bitr4i 278 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ 𝐵 ↔ ∃𝑦 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) |
| 5 | n0 4300 | . . 3 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝐵) | |
| 6 | 5 | rexbii 3079 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ 𝐵) |
| 7 | n0 4300 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 8 | 4, 6, 7 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ ∪ 𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 ∅c0 4280 ∪ ciun 4939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rex 3057 df-v 3438 df-dif 3900 df-nul 4281 df-iun 4941 |
| This theorem is referenced by: fsuppmapnn0fiubex 13899 lbsextlem2 21096 |
| Copyright terms: Public domain | W3C validator |