MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmapnn0fiubex Structured version   Visualization version   GIF version

Theorem fsuppmapnn0fiubex 13792
Description: If all functions of a finite set of functions over the nonnegative integers are finitely supported, then the support of all these functions is contained in a finite set of sequential integers starting at 0. (Contributed by AV, 2-Oct-2019.)
Assertion
Ref Expression
fsuppmapnn0fiubex ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚)))
Distinct variable groups:   𝑓,𝑀,𝑚   𝑅,𝑓,𝑚   𝑓,𝑉,𝑚   𝑓,𝑍,𝑚

Proof of Theorem fsuppmapnn0fiubex
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 0nn0 12328 . . . . 5 0 ∈ ℕ0
21a1i 11 . . . 4 ((∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → 0 ∈ ℕ0)
3 oveq2 7325 . . . . . . 7 (𝑚 = 0 → (0...𝑚) = (0...0))
43sseq2d 3963 . . . . . 6 (𝑚 = 0 → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ (𝑓 supp 𝑍) ⊆ (0...0)))
54ralbidv 3171 . . . . 5 (𝑚 = 0 → (∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...0)))
65adantl 482 . . . 4 (((∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ 𝑚 = 0) → (∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...0)))
7 ral0 4455 . . . . . 6 𝑓 ∈ ∅ (𝑓 supp 𝑍) ⊆ (0...0)
8 raleq 3306 . . . . . 6 (∅ = 𝑀 → (∀𝑓 ∈ ∅ (𝑓 supp 𝑍) ⊆ (0...0) ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...0)))
97, 8mpbii 232 . . . . 5 (∅ = 𝑀 → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...0))
10 0ss 4341 . . . . . . 7 ∅ ⊆ (0...0)
11 sseq1 3956 . . . . . . 7 ((𝑓 supp 𝑍) = ∅ → ((𝑓 supp 𝑍) ⊆ (0...0) ↔ ∅ ⊆ (0...0)))
1210, 11mpbiri 257 . . . . . 6 ((𝑓 supp 𝑍) = ∅ → (𝑓 supp 𝑍) ⊆ (0...0))
1312ralimi 3083 . . . . 5 (∀𝑓𝑀 (𝑓 supp 𝑍) = ∅ → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...0))
149, 13jaoi 854 . . . 4 ((∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...0))
152, 6, 14rspcedvd 3572 . . 3 ((∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚))
16152a1d 26 . 2 ((∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚))))
17 simplr 766 . . . . 5 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉))
18 simpr 485 . . . . . 6 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → ∀𝑓𝑀 𝑓 finSupp 𝑍)
19 ioran 981 . . . . . . . . . 10 (¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ↔ (¬ ∅ = 𝑀 ∧ ¬ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅))
20 oveq1 7324 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (𝑓 supp 𝑍) = (𝑔 supp 𝑍))
2120eqeq1d 2739 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → ((𝑓 supp 𝑍) = ∅ ↔ (𝑔 supp 𝑍) = ∅))
2221cbvralvw 3222 . . . . . . . . . . . 12 (∀𝑓𝑀 (𝑓 supp 𝑍) = ∅ ↔ ∀𝑔𝑀 (𝑔 supp 𝑍) = ∅)
2322notbii 319 . . . . . . . . . . 11 (¬ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅ ↔ ¬ ∀𝑔𝑀 (𝑔 supp 𝑍) = ∅)
2423anbi2i 623 . . . . . . . . . 10 ((¬ ∅ = 𝑀 ∧ ¬ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ↔ (¬ ∅ = 𝑀 ∧ ¬ ∀𝑔𝑀 (𝑔 supp 𝑍) = ∅))
2519, 24bitri 274 . . . . . . . . 9 (¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ↔ (¬ ∅ = 𝑀 ∧ ¬ ∀𝑔𝑀 (𝑔 supp 𝑍) = ∅))
26 rexnal 3100 . . . . . . . . . 10 (∃𝑔𝑀 ¬ (𝑔 supp 𝑍) = ∅ ↔ ¬ ∀𝑔𝑀 (𝑔 supp 𝑍) = ∅)
27 df-ne 2942 . . . . . . . . . . . 12 ((𝑔 supp 𝑍) ≠ ∅ ↔ ¬ (𝑔 supp 𝑍) = ∅)
2827bicomi 223 . . . . . . . . . . 11 (¬ (𝑔 supp 𝑍) = ∅ ↔ (𝑔 supp 𝑍) ≠ ∅)
2928rexbii 3094 . . . . . . . . . 10 (∃𝑔𝑀 ¬ (𝑔 supp 𝑍) = ∅ ↔ ∃𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
3026, 29sylbb1 236 . . . . . . . . 9 (¬ ∀𝑔𝑀 (𝑔 supp 𝑍) = ∅ → ∃𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
3125, 30simplbiim 505 . . . . . . . 8 (¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → ∃𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
3231ad2antrr 723 . . . . . . 7 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → ∃𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
33 iunn0 5009 . . . . . . 7 (∃𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅ ↔ 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
3432, 33sylib 217 . . . . . 6 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
3518, 34jca 512 . . . . 5 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → (∀𝑓𝑀 𝑓 finSupp 𝑍 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅))
36 oveq1 7324 . . . . . . 7 (𝑔 = 𝑓 → (𝑔 supp 𝑍) = (𝑓 supp 𝑍))
3736cbviunv 4983 . . . . . 6 𝑔𝑀 (𝑔 supp 𝑍) = 𝑓𝑀 (𝑓 supp 𝑍)
38 eqid 2737 . . . . . 6 sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ) = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < )
3937, 38fsuppmapnn0fiublem 13790 . . . . 5 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅) → sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ) ∈ ℕ0))
4017, 35, 39sylc 65 . . . 4 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ) ∈ ℕ0)
41 nfv 1916 . . . . . . . . . 10 𝑓∅ = 𝑀
42 nfra1 3264 . . . . . . . . . 10 𝑓𝑓𝑀 (𝑓 supp 𝑍) = ∅
4341, 42nfor 1906 . . . . . . . . 9 𝑓(∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅)
4443nfn 1859 . . . . . . . 8 𝑓 ¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅)
45 nfv 1916 . . . . . . . 8 𝑓(𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)
4644, 45nfan 1901 . . . . . . 7 𝑓(¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉))
47 nfra1 3264 . . . . . . 7 𝑓𝑓𝑀 𝑓 finSupp 𝑍
4846, 47nfan 1901 . . . . . 6 𝑓((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍)
49 nfv 1916 . . . . . 6 𝑓 𝑚 = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < )
5048, 49nfan 1901 . . . . 5 𝑓(((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) ∧ 𝑚 = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ))
51 oveq2 7325 . . . . . . 7 (𝑚 = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ) → (0...𝑚) = (0...sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < )))
5251sseq2d 3963 . . . . . 6 (𝑚 = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ (𝑓 supp 𝑍) ⊆ (0...sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ))))
5352adantl 482 . . . . 5 ((((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) ∧ 𝑚 = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < )) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ (𝑓 supp 𝑍) ⊆ (0...sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ))))
5450, 53ralbid 3253 . . . 4 ((((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) ∧ 𝑚 = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < )) → (∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ))))
55 rexnal 3100 . . . . . . . . . 10 (∃𝑓𝑀 ¬ (𝑓 supp 𝑍) = ∅ ↔ ¬ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅)
56 df-ne 2942 . . . . . . . . . . . 12 ((𝑓 supp 𝑍) ≠ ∅ ↔ ¬ (𝑓 supp 𝑍) = ∅)
5756bicomi 223 . . . . . . . . . . 11 (¬ (𝑓 supp 𝑍) = ∅ ↔ (𝑓 supp 𝑍) ≠ ∅)
5857rexbii 3094 . . . . . . . . . 10 (∃𝑓𝑀 ¬ (𝑓 supp 𝑍) = ∅ ↔ ∃𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅)
5955, 58sylbb1 236 . . . . . . . . 9 (¬ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅ → ∃𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅)
6019, 59simplbiim 505 . . . . . . . 8 (¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → ∃𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅)
6160ad2antrr 723 . . . . . . 7 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → ∃𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅)
62 iunn0 5009 . . . . . . . 8 (∃𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅ ↔ 𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅)
6320cbviunv 4983 . . . . . . . . 9 𝑓𝑀 (𝑓 supp 𝑍) = 𝑔𝑀 (𝑔 supp 𝑍)
6463neeq1i 3006 . . . . . . . 8 ( 𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅ ↔ 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
6562, 64bitri 274 . . . . . . 7 (∃𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅ ↔ 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
6661, 65sylib 217 . . . . . 6 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
6718, 66jca 512 . . . . 5 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → (∀𝑓𝑀 𝑓 finSupp 𝑍 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅))
6837, 38fsuppmapnn0fiub 13791 . . . . 5 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ))))
6917, 67, 68sylc 65 . . . 4 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < )))
7040, 54, 69rspcedvd 3572 . . 3 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚))
7170exp31 420 . 2 (¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚))))
7216, 71pm2.61i 182 1 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1540  wcel 2105  wne 2941  wral 3062  wrex 3071  wss 3897  c0 4267   ciun 4937   class class class wbr 5087  (class class class)co 7317   supp csupp 8026  m cmap 8665  Fincfn 8783   finSupp cfsupp 9205  supcsup 9276  cr 10950  0cc0 10951   < clt 11089  0cn0 12313  ...cfz 13319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-om 7760  df-1st 7878  df-2nd 7879  df-supp 8027  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-er 8548  df-map 8667  df-en 8784  df-dom 8785  df-sdom 8786  df-fin 8787  df-fsupp 9206  df-sup 9278  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-nn 12054  df-n0 12314  df-z 12400  df-uz 12663  df-fz 13320
This theorem is referenced by:  fsuppmapnn0fiub0  13793
  Copyright terms: Public domain W3C validator