MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmapnn0fiubex Structured version   Visualization version   GIF version

Theorem fsuppmapnn0fiubex 13354
Description: If all functions of a finite set of functions over the nonnegative integers are finitely supported, then the support of all these functions is contained in a finite set of sequential integers starting at 0. (Contributed by AV, 2-Oct-2019.)
Assertion
Ref Expression
fsuppmapnn0fiubex ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚)))
Distinct variable groups:   𝑓,𝑀,𝑚   𝑅,𝑓,𝑚   𝑓,𝑉,𝑚   𝑓,𝑍,𝑚

Proof of Theorem fsuppmapnn0fiubex
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 0nn0 11906 . . . . 5 0 ∈ ℕ0
21a1i 11 . . . 4 ((∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → 0 ∈ ℕ0)
3 oveq2 7158 . . . . . . 7 (𝑚 = 0 → (0...𝑚) = (0...0))
43sseq2d 3999 . . . . . 6 (𝑚 = 0 → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ (𝑓 supp 𝑍) ⊆ (0...0)))
54ralbidv 3197 . . . . 5 (𝑚 = 0 → (∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...0)))
65adantl 484 . . . 4 (((∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ 𝑚 = 0) → (∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...0)))
7 ral0 4456 . . . . . 6 𝑓 ∈ ∅ (𝑓 supp 𝑍) ⊆ (0...0)
8 raleq 3406 . . . . . 6 (∅ = 𝑀 → (∀𝑓 ∈ ∅ (𝑓 supp 𝑍) ⊆ (0...0) ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...0)))
97, 8mpbii 235 . . . . 5 (∅ = 𝑀 → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...0))
10 0ss 4350 . . . . . . 7 ∅ ⊆ (0...0)
11 sseq1 3992 . . . . . . 7 ((𝑓 supp 𝑍) = ∅ → ((𝑓 supp 𝑍) ⊆ (0...0) ↔ ∅ ⊆ (0...0)))
1210, 11mpbiri 260 . . . . . 6 ((𝑓 supp 𝑍) = ∅ → (𝑓 supp 𝑍) ⊆ (0...0))
1312ralimi 3160 . . . . 5 (∀𝑓𝑀 (𝑓 supp 𝑍) = ∅ → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...0))
149, 13jaoi 853 . . . 4 ((∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...0))
152, 6, 14rspcedvd 3626 . . 3 ((∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚))
16152a1d 26 . 2 ((∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚))))
17 simplr 767 . . . . 5 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉))
18 simpr 487 . . . . . 6 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → ∀𝑓𝑀 𝑓 finSupp 𝑍)
19 ioran 980 . . . . . . . . . 10 (¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ↔ (¬ ∅ = 𝑀 ∧ ¬ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅))
20 oveq1 7157 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (𝑓 supp 𝑍) = (𝑔 supp 𝑍))
2120eqeq1d 2823 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → ((𝑓 supp 𝑍) = ∅ ↔ (𝑔 supp 𝑍) = ∅))
2221cbvralvw 3450 . . . . . . . . . . . 12 (∀𝑓𝑀 (𝑓 supp 𝑍) = ∅ ↔ ∀𝑔𝑀 (𝑔 supp 𝑍) = ∅)
2322notbii 322 . . . . . . . . . . 11 (¬ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅ ↔ ¬ ∀𝑔𝑀 (𝑔 supp 𝑍) = ∅)
2423anbi2i 624 . . . . . . . . . 10 ((¬ ∅ = 𝑀 ∧ ¬ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ↔ (¬ ∅ = 𝑀 ∧ ¬ ∀𝑔𝑀 (𝑔 supp 𝑍) = ∅))
2519, 24bitri 277 . . . . . . . . 9 (¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ↔ (¬ ∅ = 𝑀 ∧ ¬ ∀𝑔𝑀 (𝑔 supp 𝑍) = ∅))
26 rexnal 3238 . . . . . . . . . 10 (∃𝑔𝑀 ¬ (𝑔 supp 𝑍) = ∅ ↔ ¬ ∀𝑔𝑀 (𝑔 supp 𝑍) = ∅)
27 df-ne 3017 . . . . . . . . . . . 12 ((𝑔 supp 𝑍) ≠ ∅ ↔ ¬ (𝑔 supp 𝑍) = ∅)
2827bicomi 226 . . . . . . . . . . 11 (¬ (𝑔 supp 𝑍) = ∅ ↔ (𝑔 supp 𝑍) ≠ ∅)
2928rexbii 3247 . . . . . . . . . 10 (∃𝑔𝑀 ¬ (𝑔 supp 𝑍) = ∅ ↔ ∃𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
3026, 29sylbb1 239 . . . . . . . . 9 (¬ ∀𝑔𝑀 (𝑔 supp 𝑍) = ∅ → ∃𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
3125, 30simplbiim 507 . . . . . . . 8 (¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → ∃𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
3231ad2antrr 724 . . . . . . 7 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → ∃𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
33 iunn0 4982 . . . . . . 7 (∃𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅ ↔ 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
3432, 33sylib 220 . . . . . 6 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
3518, 34jca 514 . . . . 5 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → (∀𝑓𝑀 𝑓 finSupp 𝑍 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅))
36 oveq1 7157 . . . . . . 7 (𝑔 = 𝑓 → (𝑔 supp 𝑍) = (𝑓 supp 𝑍))
3736cbviunv 4958 . . . . . 6 𝑔𝑀 (𝑔 supp 𝑍) = 𝑓𝑀 (𝑓 supp 𝑍)
38 eqid 2821 . . . . . 6 sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ) = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < )
3937, 38fsuppmapnn0fiublem 13352 . . . . 5 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅) → sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ) ∈ ℕ0))
4017, 35, 39sylc 65 . . . 4 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ) ∈ ℕ0)
41 nfv 1911 . . . . . . . . . 10 𝑓∅ = 𝑀
42 nfra1 3219 . . . . . . . . . 10 𝑓𝑓𝑀 (𝑓 supp 𝑍) = ∅
4341, 42nfor 1901 . . . . . . . . 9 𝑓(∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅)
4443nfn 1853 . . . . . . . 8 𝑓 ¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅)
45 nfv 1911 . . . . . . . 8 𝑓(𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)
4644, 45nfan 1896 . . . . . . 7 𝑓(¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉))
47 nfra1 3219 . . . . . . 7 𝑓𝑓𝑀 𝑓 finSupp 𝑍
4846, 47nfan 1896 . . . . . 6 𝑓((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍)
49 nfv 1911 . . . . . 6 𝑓 𝑚 = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < )
5048, 49nfan 1896 . . . . 5 𝑓(((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) ∧ 𝑚 = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ))
51 oveq2 7158 . . . . . . 7 (𝑚 = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ) → (0...𝑚) = (0...sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < )))
5251sseq2d 3999 . . . . . 6 (𝑚 = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ (𝑓 supp 𝑍) ⊆ (0...sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ))))
5352adantl 484 . . . . 5 ((((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) ∧ 𝑚 = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < )) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ (𝑓 supp 𝑍) ⊆ (0...sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ))))
5450, 53ralbid 3231 . . . 4 ((((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) ∧ 𝑚 = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < )) → (∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ))))
55 rexnal 3238 . . . . . . . . . 10 (∃𝑓𝑀 ¬ (𝑓 supp 𝑍) = ∅ ↔ ¬ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅)
56 df-ne 3017 . . . . . . . . . . . 12 ((𝑓 supp 𝑍) ≠ ∅ ↔ ¬ (𝑓 supp 𝑍) = ∅)
5756bicomi 226 . . . . . . . . . . 11 (¬ (𝑓 supp 𝑍) = ∅ ↔ (𝑓 supp 𝑍) ≠ ∅)
5857rexbii 3247 . . . . . . . . . 10 (∃𝑓𝑀 ¬ (𝑓 supp 𝑍) = ∅ ↔ ∃𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅)
5955, 58sylbb1 239 . . . . . . . . 9 (¬ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅ → ∃𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅)
6019, 59simplbiim 507 . . . . . . . 8 (¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → ∃𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅)
6160ad2antrr 724 . . . . . . 7 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → ∃𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅)
62 iunn0 4982 . . . . . . . 8 (∃𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅ ↔ 𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅)
6320cbviunv 4958 . . . . . . . . 9 𝑓𝑀 (𝑓 supp 𝑍) = 𝑔𝑀 (𝑔 supp 𝑍)
6463neeq1i 3080 . . . . . . . 8 ( 𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅ ↔ 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
6562, 64bitri 277 . . . . . . 7 (∃𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅ ↔ 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
6661, 65sylib 220 . . . . . 6 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
6718, 66jca 514 . . . . 5 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → (∀𝑓𝑀 𝑓 finSupp 𝑍 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅))
6837, 38fsuppmapnn0fiub 13353 . . . . 5 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ))))
6917, 67, 68sylc 65 . . . 4 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < )))
7040, 54, 69rspcedvd 3626 . . 3 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚))
7170exp31 422 . 2 (¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚))))
7216, 71pm2.61i 184 1 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  wss 3936  c0 4291   ciun 4912   class class class wbr 5059  (class class class)co 7150   supp csupp 7824  m cmap 8400  Fincfn 8503   finSupp cfsupp 8827  supcsup 8898  cr 10530  0cc0 10531   < clt 10669  0cn0 11891  ...cfz 12886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887
This theorem is referenced by:  fsuppmapnn0fiub0  13355
  Copyright terms: Public domain W3C validator