Step | Hyp | Ref
| Expression |
1 | | 0nn0 12178 |
. . . . 5
⊢ 0 ∈
ℕ0 |
2 | 1 | a1i 11 |
. . . 4
⊢ ((∅
= 𝑀 ∨ ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) → 0 ∈
ℕ0) |
3 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑚 = 0 → (0...𝑚) = (0...0)) |
4 | 3 | sseq2d 3949 |
. . . . . 6
⊢ (𝑚 = 0 → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ (𝑓 supp 𝑍) ⊆ (0...0))) |
5 | 4 | ralbidv 3120 |
. . . . 5
⊢ (𝑚 = 0 → (∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...0))) |
6 | 5 | adantl 481 |
. . . 4
⊢
(((∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ 𝑚 = 0) → (∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...0))) |
7 | | ral0 4440 |
. . . . . 6
⊢
∀𝑓 ∈
∅ (𝑓 supp 𝑍) ⊆
(0...0) |
8 | | raleq 3333 |
. . . . . 6
⊢ (∅
= 𝑀 → (∀𝑓 ∈ ∅ (𝑓 supp 𝑍) ⊆ (0...0) ↔ ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...0))) |
9 | 7, 8 | mpbii 232 |
. . . . 5
⊢ (∅
= 𝑀 → ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...0)) |
10 | | 0ss 4327 |
. . . . . . 7
⊢ ∅
⊆ (0...0) |
11 | | sseq1 3942 |
. . . . . . 7
⊢ ((𝑓 supp 𝑍) = ∅ → ((𝑓 supp 𝑍) ⊆ (0...0) ↔ ∅ ⊆
(0...0))) |
12 | 10, 11 | mpbiri 257 |
. . . . . 6
⊢ ((𝑓 supp 𝑍) = ∅ → (𝑓 supp 𝑍) ⊆ (0...0)) |
13 | 12 | ralimi 3086 |
. . . . 5
⊢
(∀𝑓 ∈
𝑀 (𝑓 supp 𝑍) = ∅ → ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...0)) |
14 | 9, 13 | jaoi 853 |
. . . 4
⊢ ((∅
= 𝑀 ∨ ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) → ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...0)) |
15 | 2, 6, 14 | rspcedvd 3555 |
. . 3
⊢ ((∅
= 𝑀 ∨ ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) → ∃𝑚 ∈ ℕ0
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚)) |
16 | 15 | 2a1d 26 |
. 2
⊢ ((∅
= 𝑀 ∨ ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) → ((𝑀 ⊆ (𝑅 ↑m ℕ0)
∧ 𝑀 ∈ Fin ∧
𝑍 ∈ 𝑉) → (∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚)))) |
17 | | simplr 765 |
. . . . 5
⊢ (((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑m ℕ0)
∧ 𝑀 ∈ Fin ∧
𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) → (𝑀 ⊆ (𝑅 ↑m ℕ0)
∧ 𝑀 ∈ Fin ∧
𝑍 ∈ 𝑉)) |
18 | | simpr 484 |
. . . . . 6
⊢ (((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑m ℕ0)
∧ 𝑀 ∈ Fin ∧
𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) → ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) |
19 | | ioran 980 |
. . . . . . . . . 10
⊢ (¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ↔ (¬ ∅ = 𝑀 ∧ ¬ ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅)) |
20 | | oveq1 7262 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑔 → (𝑓 supp 𝑍) = (𝑔 supp 𝑍)) |
21 | 20 | eqeq1d 2740 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → ((𝑓 supp 𝑍) = ∅ ↔ (𝑔 supp 𝑍) = ∅)) |
22 | 21 | cbvralvw 3372 |
. . . . . . . . . . . 12
⊢
(∀𝑓 ∈
𝑀 (𝑓 supp 𝑍) = ∅ ↔ ∀𝑔 ∈ 𝑀 (𝑔 supp 𝑍) = ∅) |
23 | 22 | notbii 319 |
. . . . . . . . . . 11
⊢ (¬
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅ ↔ ¬ ∀𝑔 ∈ 𝑀 (𝑔 supp 𝑍) = ∅) |
24 | 23 | anbi2i 622 |
. . . . . . . . . 10
⊢ ((¬
∅ = 𝑀 ∧ ¬
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ↔ (¬ ∅ = 𝑀 ∧ ¬ ∀𝑔 ∈ 𝑀 (𝑔 supp 𝑍) = ∅)) |
25 | 19, 24 | bitri 274 |
. . . . . . . . 9
⊢ (¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ↔ (¬ ∅ = 𝑀 ∧ ¬ ∀𝑔 ∈ 𝑀 (𝑔 supp 𝑍) = ∅)) |
26 | | rexnal 3165 |
. . . . . . . . . 10
⊢
(∃𝑔 ∈
𝑀 ¬ (𝑔 supp 𝑍) = ∅ ↔ ¬ ∀𝑔 ∈ 𝑀 (𝑔 supp 𝑍) = ∅) |
27 | | df-ne 2943 |
. . . . . . . . . . . 12
⊢ ((𝑔 supp 𝑍) ≠ ∅ ↔ ¬ (𝑔 supp 𝑍) = ∅) |
28 | 27 | bicomi 223 |
. . . . . . . . . . 11
⊢ (¬
(𝑔 supp 𝑍) = ∅ ↔ (𝑔 supp 𝑍) ≠ ∅) |
29 | 28 | rexbii 3177 |
. . . . . . . . . 10
⊢
(∃𝑔 ∈
𝑀 ¬ (𝑔 supp 𝑍) = ∅ ↔ ∃𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅) |
30 | 26, 29 | sylbb1 236 |
. . . . . . . . 9
⊢ (¬
∀𝑔 ∈ 𝑀 (𝑔 supp 𝑍) = ∅ → ∃𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅) |
31 | 25, 30 | simplbiim 504 |
. . . . . . . 8
⊢ (¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) → ∃𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅) |
32 | 31 | ad2antrr 722 |
. . . . . . 7
⊢ (((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑m ℕ0)
∧ 𝑀 ∈ Fin ∧
𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) → ∃𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅) |
33 | | iunn0 4992 |
. . . . . . 7
⊢
(∃𝑔 ∈
𝑀 (𝑔 supp 𝑍) ≠ ∅ ↔ ∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅) |
34 | 32, 33 | sylib 217 |
. . . . . 6
⊢ (((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑m ℕ0)
∧ 𝑀 ∈ Fin ∧
𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) → ∪
𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅) |
35 | 18, 34 | jca 511 |
. . . . 5
⊢ (((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑m ℕ0)
∧ 𝑀 ∈ Fin ∧
𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) → (∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ ∪
𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅)) |
36 | | oveq1 7262 |
. . . . . . 7
⊢ (𝑔 = 𝑓 → (𝑔 supp 𝑍) = (𝑓 supp 𝑍)) |
37 | 36 | cbviunv 4966 |
. . . . . 6
⊢ ∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍) = ∪
𝑓 ∈ 𝑀 (𝑓 supp 𝑍) |
38 | | eqid 2738 |
. . . . . 6
⊢
sup(∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < ) = sup(∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < ) |
39 | 37, 38 | fsuppmapnn0fiublem 13638 |
. . . . 5
⊢ ((𝑀 ⊆ (𝑅 ↑m ℕ0)
∧ 𝑀 ∈ Fin ∧
𝑍 ∈ 𝑉) → ((∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ ∪
𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅) → sup(∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < ) ∈
ℕ0)) |
40 | 17, 35, 39 | sylc 65 |
. . . 4
⊢ (((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑m ℕ0)
∧ 𝑀 ∈ Fin ∧
𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) → sup(∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < ) ∈
ℕ0) |
41 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑓∅ =
𝑀 |
42 | | nfra1 3142 |
. . . . . . . . . 10
⊢
Ⅎ𝑓∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅ |
43 | 41, 42 | nfor 1908 |
. . . . . . . . 9
⊢
Ⅎ𝑓(∅ =
𝑀 ∨ ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) |
44 | 43 | nfn 1861 |
. . . . . . . 8
⊢
Ⅎ𝑓 ¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) |
45 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑓(𝑀 ⊆ (𝑅 ↑m ℕ0)
∧ 𝑀 ∈ Fin ∧
𝑍 ∈ 𝑉) |
46 | 44, 45 | nfan 1903 |
. . . . . . 7
⊢
Ⅎ𝑓(¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑m ℕ0)
∧ 𝑀 ∈ Fin ∧
𝑍 ∈ 𝑉)) |
47 | | nfra1 3142 |
. . . . . . 7
⊢
Ⅎ𝑓∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 |
48 | 46, 47 | nfan 1903 |
. . . . . 6
⊢
Ⅎ𝑓((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑m ℕ0)
∧ 𝑀 ∈ Fin ∧
𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) |
49 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑓 𝑚 = sup(∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < ) |
50 | 48, 49 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑓(((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑m ℕ0)
∧ 𝑀 ∈ Fin ∧
𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) ∧ 𝑚 = sup(∪
𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < )) |
51 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑚 = sup(∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < ) → (0...𝑚) = (0...sup(∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < ))) |
52 | 51 | sseq2d 3949 |
. . . . . 6
⊢ (𝑚 = sup(∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < ) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ (𝑓 supp 𝑍) ⊆ (0...sup(∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < )))) |
53 | 52 | adantl 481 |
. . . . 5
⊢ ((((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑m ℕ0)
∧ 𝑀 ∈ Fin ∧
𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) ∧ 𝑚 = sup(∪
𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < )) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ (𝑓 supp 𝑍) ⊆ (0...sup(∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < )))) |
54 | 50, 53 | ralbid 3158 |
. . . 4
⊢ ((((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑m ℕ0)
∧ 𝑀 ∈ Fin ∧
𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) ∧ 𝑚 = sup(∪
𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < )) → (∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...sup(∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < )))) |
55 | | rexnal 3165 |
. . . . . . . . . 10
⊢
(∃𝑓 ∈
𝑀 ¬ (𝑓 supp 𝑍) = ∅ ↔ ¬ ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) |
56 | | df-ne 2943 |
. . . . . . . . . . . 12
⊢ ((𝑓 supp 𝑍) ≠ ∅ ↔ ¬ (𝑓 supp 𝑍) = ∅) |
57 | 56 | bicomi 223 |
. . . . . . . . . . 11
⊢ (¬
(𝑓 supp 𝑍) = ∅ ↔ (𝑓 supp 𝑍) ≠ ∅) |
58 | 57 | rexbii 3177 |
. . . . . . . . . 10
⊢
(∃𝑓 ∈
𝑀 ¬ (𝑓 supp 𝑍) = ∅ ↔ ∃𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ≠ ∅) |
59 | 55, 58 | sylbb1 236 |
. . . . . . . . 9
⊢ (¬
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅ → ∃𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ≠ ∅) |
60 | 19, 59 | simplbiim 504 |
. . . . . . . 8
⊢ (¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) → ∃𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ≠ ∅) |
61 | 60 | ad2antrr 722 |
. . . . . . 7
⊢ (((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑m ℕ0)
∧ 𝑀 ∈ Fin ∧
𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) → ∃𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ≠ ∅) |
62 | | iunn0 4992 |
. . . . . . . 8
⊢
(∃𝑓 ∈
𝑀 (𝑓 supp 𝑍) ≠ ∅ ↔ ∪ 𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ≠ ∅) |
63 | 20 | cbviunv 4966 |
. . . . . . . . 9
⊢ ∪ 𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∪
𝑔 ∈ 𝑀 (𝑔 supp 𝑍) |
64 | 63 | neeq1i 3007 |
. . . . . . . 8
⊢ (∪ 𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ≠ ∅ ↔ ∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅) |
65 | 62, 64 | bitri 274 |
. . . . . . 7
⊢
(∃𝑓 ∈
𝑀 (𝑓 supp 𝑍) ≠ ∅ ↔ ∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅) |
66 | 61, 65 | sylib 217 |
. . . . . 6
⊢ (((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑m ℕ0)
∧ 𝑀 ∈ Fin ∧
𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) → ∪
𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅) |
67 | 18, 66 | jca 511 |
. . . . 5
⊢ (((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑m ℕ0)
∧ 𝑀 ∈ Fin ∧
𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) → (∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ ∪
𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅)) |
68 | 37, 38 | fsuppmapnn0fiub 13639 |
. . . . 5
⊢ ((𝑀 ⊆ (𝑅 ↑m ℕ0)
∧ 𝑀 ∈ Fin ∧
𝑍 ∈ 𝑉) → ((∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ ∪
𝑔 ∈ 𝑀 (𝑔 supp 𝑍) ≠ ∅) → ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...sup(∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < )))) |
69 | 17, 67, 68 | sylc 65 |
. . . 4
⊢ (((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑m ℕ0)
∧ 𝑀 ∈ Fin ∧
𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) → ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...sup(∪ 𝑔 ∈ 𝑀 (𝑔 supp 𝑍), ℝ, < ))) |
70 | 40, 54, 69 | rspcedvd 3555 |
. . 3
⊢ (((¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅 ↑m ℕ0)
∧ 𝑀 ∈ Fin ∧
𝑍 ∈ 𝑉)) ∧ ∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍) → ∃𝑚 ∈ ℕ0 ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚)) |
71 | 70 | exp31 419 |
. 2
⊢ (¬
(∅ = 𝑀 ∨
∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) = ∅) → ((𝑀 ⊆ (𝑅 ↑m ℕ0)
∧ 𝑀 ∈ Fin ∧
𝑍 ∈ 𝑉) → (∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚)))) |
72 | 16, 71 | pm2.61i 182 |
1
⊢ ((𝑀 ⊆ (𝑅 ↑m ℕ0)
∧ 𝑀 ∈ Fin ∧
𝑍 ∈ 𝑉) → (∀𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 ∀𝑓 ∈ 𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚))) |