| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iinab | Structured version Visualization version GIF version | ||
| Description: Indexed intersection of a class abstraction. (Contributed by NM, 6-Dec-2011.) |
| Ref | Expression |
|---|---|
| iinab | ⊢ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
| 2 | nfab1 2896 | . . . 4 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜑} | |
| 3 | 1, 2 | nfiin 4974 | . . 3 ⊢ Ⅎ𝑦∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} |
| 4 | nfab1 2896 | . . 3 ⊢ Ⅎ𝑦{𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑} | |
| 5 | 3, 4 | cleqf 2923 | . 2 ⊢ (∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑} ↔ ∀𝑦(𝑦 ∈ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑})) |
| 6 | abid 2713 | . . . 4 ⊢ (𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑) | |
| 7 | 6 | ralbii 3078 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑦 ∈ {𝑦 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
| 8 | eliin 4946 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ {𝑦 ∣ 𝜑})) | |
| 9 | 8 | elv 3441 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ {𝑦 ∣ 𝜑}) |
| 10 | abid 2713 | . . 3 ⊢ (𝑦 ∈ {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) | |
| 11 | 7, 9, 10 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑}) |
| 12 | 5, 11 | mpgbir 1800 | 1 ⊢ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 Vcvv 3436 ∩ ciin 4942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-v 3438 df-iin 4944 |
| This theorem is referenced by: iinrab 5017 |
| Copyright terms: Public domain | W3C validator |