Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iinab | Structured version Visualization version GIF version |
Description: Indexed intersection of a class abstraction. (Contributed by NM, 6-Dec-2011.) |
Ref | Expression |
---|---|
iinab | ⊢ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
2 | nfab1 2908 | . . . 4 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜑} | |
3 | 1, 2 | nfiin 4952 | . . 3 ⊢ Ⅎ𝑦∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} |
4 | nfab1 2908 | . . 3 ⊢ Ⅎ𝑦{𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑} | |
5 | 3, 4 | cleqf 2937 | . 2 ⊢ (∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑} ↔ ∀𝑦(𝑦 ∈ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑})) |
6 | abid 2719 | . . . 4 ⊢ (𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑) | |
7 | 6 | ralbii 3090 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑦 ∈ {𝑦 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
8 | eliin 4926 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ {𝑦 ∣ 𝜑})) | |
9 | 8 | elv 3428 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ {𝑦 ∣ 𝜑}) |
10 | abid 2719 | . . 3 ⊢ (𝑦 ∈ {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) | |
11 | 7, 9, 10 | 3bitr4i 302 | . 2 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑}) |
12 | 5, 11 | mpgbir 1803 | 1 ⊢ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 {cab 2715 ∀wral 3063 Vcvv 3422 ∩ ciin 4922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-v 3424 df-iin 4924 |
This theorem is referenced by: iinrab 4994 |
Copyright terms: Public domain | W3C validator |