MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinab Structured version   Visualization version   GIF version

Theorem iinab 5018
Description: Indexed intersection of a class abstraction. (Contributed by NM, 6-Dec-2011.)
Assertion
Ref Expression
iinab 𝑥𝐴 {𝑦𝜑} = {𝑦 ∣ ∀𝑥𝐴 𝜑}
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem iinab
StepHypRef Expression
1 nfcv 2895 . . . 4 𝑦𝐴
2 nfab1 2897 . . . 4 𝑦{𝑦𝜑}
31, 2nfiin 4974 . . 3 𝑦 𝑥𝐴 {𝑦𝜑}
4 nfab1 2897 . . 3 𝑦{𝑦 ∣ ∀𝑥𝐴 𝜑}
53, 4cleqf 2924 . 2 ( 𝑥𝐴 {𝑦𝜑} = {𝑦 ∣ ∀𝑥𝐴 𝜑} ↔ ∀𝑦(𝑦 𝑥𝐴 {𝑦𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∀𝑥𝐴 𝜑}))
6 abid 2715 . . . 4 (𝑦 ∈ {𝑦𝜑} ↔ 𝜑)
76ralbii 3079 . . 3 (∀𝑥𝐴 𝑦 ∈ {𝑦𝜑} ↔ ∀𝑥𝐴 𝜑)
8 eliin 4946 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 {𝑦𝜑} ↔ ∀𝑥𝐴 𝑦 ∈ {𝑦𝜑}))
98elv 3442 . . 3 (𝑦 𝑥𝐴 {𝑦𝜑} ↔ ∀𝑥𝐴 𝑦 ∈ {𝑦𝜑})
10 abid 2715 . . 3 (𝑦 ∈ {𝑦 ∣ ∀𝑥𝐴 𝜑} ↔ ∀𝑥𝐴 𝜑)
117, 9, 103bitr4i 303 . 2 (𝑦 𝑥𝐴 {𝑦𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∀𝑥𝐴 𝜑})
125, 11mpgbir 1800 1 𝑥𝐴 {𝑦𝜑} = {𝑦 ∣ ∀𝑥𝐴 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2113  {cab 2711  wral 3048  Vcvv 3437   ciin 4942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-v 3439  df-iin 4944
This theorem is referenced by:  iinrab  5019
  Copyright terms: Public domain W3C validator