Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinab Structured version   Visualization version   GIF version

Theorem iinab 4800
 Description: Indexed intersection of a class builder. (Contributed by NM, 6-Dec-2011.)
Assertion
Ref Expression
iinab 𝑥𝐴 {𝑦𝜑} = {𝑦 ∣ ∀𝑥𝐴 𝜑}
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem iinab
StepHypRef Expression
1 nfcv 2968 . . . 4 𝑦𝐴
2 nfab1 2970 . . . 4 𝑦{𝑦𝜑}
31, 2nfiin 4768 . . 3 𝑦 𝑥𝐴 {𝑦𝜑}
4 nfab1 2970 . . 3 𝑦{𝑦 ∣ ∀𝑥𝐴 𝜑}
53, 4cleqf 2994 . 2 ( 𝑥𝐴 {𝑦𝜑} = {𝑦 ∣ ∀𝑥𝐴 𝜑} ↔ ∀𝑦(𝑦 𝑥𝐴 {𝑦𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∀𝑥𝐴 𝜑}))
6 abid 2812 . . . 4 (𝑦 ∈ {𝑦𝜑} ↔ 𝜑)
76ralbii 3188 . . 3 (∀𝑥𝐴 𝑦 ∈ {𝑦𝜑} ↔ ∀𝑥𝐴 𝜑)
8 vex 3416 . . . 4 𝑦 ∈ V
9 eliin 4744 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 {𝑦𝜑} ↔ ∀𝑥𝐴 𝑦 ∈ {𝑦𝜑}))
108, 9ax-mp 5 . . 3 (𝑦 𝑥𝐴 {𝑦𝜑} ↔ ∀𝑥𝐴 𝑦 ∈ {𝑦𝜑})
11 abid 2812 . . 3 (𝑦 ∈ {𝑦 ∣ ∀𝑥𝐴 𝜑} ↔ ∀𝑥𝐴 𝜑)
127, 10, 113bitr4i 295 . 2 (𝑦 𝑥𝐴 {𝑦𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∀𝑥𝐴 𝜑})
135, 12mpgbir 1900 1 𝑥𝐴 {𝑦𝜑} = {𝑦 ∣ ∀𝑥𝐴 𝜑}
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 198   = wceq 1658   ∈ wcel 2166  {cab 2810  ∀wral 3116  Vcvv 3413  ∩ ciin 4740 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ral 3121  df-v 3415  df-iin 4742 This theorem is referenced by:  iinrab  4801
 Copyright terms: Public domain W3C validator