MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinab Structured version   Visualization version   GIF version

Theorem iinab 4997
Description: Indexed intersection of a class abstraction. (Contributed by NM, 6-Dec-2011.)
Assertion
Ref Expression
iinab 𝑥𝐴 {𝑦𝜑} = {𝑦 ∣ ∀𝑥𝐴 𝜑}
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem iinab
StepHypRef Expression
1 nfcv 2907 . . . 4 𝑦𝐴
2 nfab1 2909 . . . 4 𝑦{𝑦𝜑}
31, 2nfiin 4955 . . 3 𝑦 𝑥𝐴 {𝑦𝜑}
4 nfab1 2909 . . 3 𝑦{𝑦 ∣ ∀𝑥𝐴 𝜑}
53, 4cleqf 2938 . 2 ( 𝑥𝐴 {𝑦𝜑} = {𝑦 ∣ ∀𝑥𝐴 𝜑} ↔ ∀𝑦(𝑦 𝑥𝐴 {𝑦𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∀𝑥𝐴 𝜑}))
6 abid 2719 . . . 4 (𝑦 ∈ {𝑦𝜑} ↔ 𝜑)
76ralbii 3092 . . 3 (∀𝑥𝐴 𝑦 ∈ {𝑦𝜑} ↔ ∀𝑥𝐴 𝜑)
8 eliin 4929 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 {𝑦𝜑} ↔ ∀𝑥𝐴 𝑦 ∈ {𝑦𝜑}))
98elv 3438 . . 3 (𝑦 𝑥𝐴 {𝑦𝜑} ↔ ∀𝑥𝐴 𝑦 ∈ {𝑦𝜑})
10 abid 2719 . . 3 (𝑦 ∈ {𝑦 ∣ ∀𝑥𝐴 𝜑} ↔ ∀𝑥𝐴 𝜑)
117, 9, 103bitr4i 303 . 2 (𝑦 𝑥𝐴 {𝑦𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∀𝑥𝐴 𝜑})
125, 11mpgbir 1802 1 𝑥𝐴 {𝑦𝜑} = {𝑦 ∣ ∀𝑥𝐴 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2106  {cab 2715  wral 3064  Vcvv 3432   ciin 4925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-v 3434  df-iin 4927
This theorem is referenced by:  iinrab  4998
  Copyright terms: Public domain W3C validator