![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinab | Structured version Visualization version GIF version |
Description: Indexed intersection of a class abstraction. (Contributed by NM, 6-Dec-2011.) |
Ref | Expression |
---|---|
iinab | ⊢ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2901 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
2 | nfab1 2903 | . . . 4 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜑} | |
3 | 1, 2 | nfiin 5027 | . . 3 ⊢ Ⅎ𝑦∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} |
4 | nfab1 2903 | . . 3 ⊢ Ⅎ𝑦{𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑} | |
5 | 3, 4 | cleqf 2932 | . 2 ⊢ (∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑} ↔ ∀𝑦(𝑦 ∈ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑})) |
6 | abid 2711 | . . . 4 ⊢ (𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑) | |
7 | 6 | ralbii 3091 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑦 ∈ {𝑦 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
8 | eliin 5001 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ {𝑦 ∣ 𝜑})) | |
9 | 8 | elv 3478 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ {𝑦 ∣ 𝜑}) |
10 | abid 2711 | . . 3 ⊢ (𝑦 ∈ {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) | |
11 | 7, 9, 10 | 3bitr4i 302 | . 2 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑}) |
12 | 5, 11 | mpgbir 1799 | 1 ⊢ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2104 {cab 2707 ∀wral 3059 Vcvv 3472 ∩ ciin 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-v 3474 df-iin 4999 |
This theorem is referenced by: iinrab 5071 |
Copyright terms: Public domain | W3C validator |