| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqidd 2738 | . . 3
⊢ (𝜑 → (Scalar‘𝑊) = (Scalar‘𝑊)) | 
| 2 |  | eqidd 2738 | . . 3
⊢ (𝜑 →
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))) | 
| 3 |  | lbsext.v | . . . 4
⊢ 𝑉 = (Base‘𝑊) | 
| 4 | 3 | a1i 11 | . . 3
⊢ (𝜑 → 𝑉 = (Base‘𝑊)) | 
| 5 |  | eqidd 2738 | . . 3
⊢ (𝜑 → (+g‘𝑊) = (+g‘𝑊)) | 
| 6 |  | eqidd 2738 | . . 3
⊢ (𝜑 → (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊)) | 
| 7 |  | lbsext.p | . . . 4
⊢ 𝑃 = (LSubSp‘𝑊) | 
| 8 | 7 | a1i 11 | . . 3
⊢ (𝜑 → 𝑃 = (LSubSp‘𝑊)) | 
| 9 |  | lbsext.t | . . . 4
⊢ 𝑇 = ∪ 𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) | 
| 10 |  | lbsext.w | . . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ LVec) | 
| 11 |  | lveclmod 21105 | . . . . . . . 8
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | 
| 12 | 10, 11 | syl 17 | . . . . . . 7
⊢ (𝜑 → 𝑊 ∈ LMod) | 
| 13 |  | lbsext.a | . . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ 𝑆) | 
| 14 |  | lbsext.s | . . . . . . . . . . . 12
⊢ 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} | 
| 15 | 14 | ssrab3 4082 | . . . . . . . . . . 11
⊢ 𝑆 ⊆ 𝒫 𝑉 | 
| 16 | 13, 15 | sstrdi 3996 | . . . . . . . . . 10
⊢ (𝜑 → 𝐴 ⊆ 𝒫 𝑉) | 
| 17 | 16 | sselda 3983 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐴) → 𝑢 ∈ 𝒫 𝑉) | 
| 18 | 17 | elpwid 4609 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐴) → 𝑢 ⊆ 𝑉) | 
| 19 | 18 | ssdifssd 4147 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐴) → (𝑢 ∖ {𝑥}) ⊆ 𝑉) | 
| 20 |  | lbsext.n | . . . . . . . 8
⊢ 𝑁 = (LSpan‘𝑊) | 
| 21 | 3, 20 | lspssv 20981 | . . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ (𝑢 ∖ {𝑥}) ⊆ 𝑉) → (𝑁‘(𝑢 ∖ {𝑥})) ⊆ 𝑉) | 
| 22 | 12, 19, 21 | syl2an2r 685 | . . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐴) → (𝑁‘(𝑢 ∖ {𝑥})) ⊆ 𝑉) | 
| 23 | 22 | ralrimiva 3146 | . . . . 5
⊢ (𝜑 → ∀𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ⊆ 𝑉) | 
| 24 |  | iunss 5045 | . . . . 5
⊢ (∪ 𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ⊆ 𝑉 ↔ ∀𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ⊆ 𝑉) | 
| 25 | 23, 24 | sylibr 234 | . . . 4
⊢ (𝜑 → ∪ 𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ⊆ 𝑉) | 
| 26 | 9, 25 | eqsstrid 4022 | . . 3
⊢ (𝜑 → 𝑇 ⊆ 𝑉) | 
| 27 | 9 | a1i 11 | . . . 4
⊢ (𝜑 → 𝑇 = ∪ 𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥}))) | 
| 28 |  | lbsext.z | . . . . . 6
⊢ (𝜑 → 𝐴 ≠ ∅) | 
| 29 | 3, 7, 20 | lspcl 20974 | . . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ (𝑢 ∖ {𝑥}) ⊆ 𝑉) → (𝑁‘(𝑢 ∖ {𝑥})) ∈ 𝑃) | 
| 30 | 12, 19, 29 | syl2an2r 685 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐴) → (𝑁‘(𝑢 ∖ {𝑥})) ∈ 𝑃) | 
| 31 | 7 | lssn0 20938 | . . . . . . . 8
⊢ ((𝑁‘(𝑢 ∖ {𝑥})) ∈ 𝑃 → (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅) | 
| 32 | 30, 31 | syl 17 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐴) → (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅) | 
| 33 | 32 | ralrimiva 3146 | . . . . . 6
⊢ (𝜑 → ∀𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅) | 
| 34 |  | r19.2z 4495 | . . . . . 6
⊢ ((𝐴 ≠ ∅ ∧
∀𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅) → ∃𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅) | 
| 35 | 28, 33, 34 | syl2anc 584 | . . . . 5
⊢ (𝜑 → ∃𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅) | 
| 36 |  | iunn0 5067 | . . . . 5
⊢
(∃𝑢 ∈
𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅ ↔ ∪ 𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅) | 
| 37 | 35, 36 | sylib 218 | . . . 4
⊢ (𝜑 → ∪ 𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅) | 
| 38 | 27, 37 | eqnetrd 3008 | . . 3
⊢ (𝜑 → 𝑇 ≠ ∅) | 
| 39 | 9 | eleq2i 2833 | . . . . . . . . 9
⊢ (𝑣 ∈ 𝑇 ↔ 𝑣 ∈ ∪
𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥}))) | 
| 40 |  | eliun 4995 | . . . . . . . . 9
⊢ (𝑣 ∈ ∪ 𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ↔ ∃𝑢 ∈ 𝐴 𝑣 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) | 
| 41 |  | difeq1 4119 | . . . . . . . . . . . 12
⊢ (𝑢 = 𝑚 → (𝑢 ∖ {𝑥}) = (𝑚 ∖ {𝑥})) | 
| 42 | 41 | fveq2d 6910 | . . . . . . . . . . 11
⊢ (𝑢 = 𝑚 → (𝑁‘(𝑢 ∖ {𝑥})) = (𝑁‘(𝑚 ∖ {𝑥}))) | 
| 43 | 42 | eleq2d 2827 | . . . . . . . . . 10
⊢ (𝑢 = 𝑚 → (𝑣 ∈ (𝑁‘(𝑢 ∖ {𝑥})) ↔ 𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})))) | 
| 44 | 43 | cbvrexvw 3238 | . . . . . . . . 9
⊢
(∃𝑢 ∈
𝐴 𝑣 ∈ (𝑁‘(𝑢 ∖ {𝑥})) ↔ ∃𝑚 ∈ 𝐴 𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥}))) | 
| 45 | 39, 40, 44 | 3bitri 297 | . . . . . . . 8
⊢ (𝑣 ∈ 𝑇 ↔ ∃𝑚 ∈ 𝐴 𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥}))) | 
| 46 | 9 | eleq2i 2833 | . . . . . . . . 9
⊢ (𝑤 ∈ 𝑇 ↔ 𝑤 ∈ ∪
𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥}))) | 
| 47 |  | eliun 4995 | . . . . . . . . 9
⊢ (𝑤 ∈ ∪ 𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ↔ ∃𝑢 ∈ 𝐴 𝑤 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) | 
| 48 |  | difeq1 4119 | . . . . . . . . . . . 12
⊢ (𝑢 = 𝑛 → (𝑢 ∖ {𝑥}) = (𝑛 ∖ {𝑥})) | 
| 49 | 48 | fveq2d 6910 | . . . . . . . . . . 11
⊢ (𝑢 = 𝑛 → (𝑁‘(𝑢 ∖ {𝑥})) = (𝑁‘(𝑛 ∖ {𝑥}))) | 
| 50 | 49 | eleq2d 2827 | . . . . . . . . . 10
⊢ (𝑢 = 𝑛 → (𝑤 ∈ (𝑁‘(𝑢 ∖ {𝑥})) ↔ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) | 
| 51 | 50 | cbvrexvw 3238 | . . . . . . . . 9
⊢
(∃𝑢 ∈
𝐴 𝑤 ∈ (𝑁‘(𝑢 ∖ {𝑥})) ↔ ∃𝑛 ∈ 𝐴 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥}))) | 
| 52 | 46, 47, 51 | 3bitri 297 | . . . . . . . 8
⊢ (𝑤 ∈ 𝑇 ↔ ∃𝑛 ∈ 𝐴 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥}))) | 
| 53 | 45, 52 | anbi12i 628 | . . . . . . 7
⊢ ((𝑣 ∈ 𝑇 ∧ 𝑤 ∈ 𝑇) ↔ (∃𝑚 ∈ 𝐴 𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ ∃𝑛 ∈ 𝐴 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) | 
| 54 |  | reeanv 3229 | . . . . . . 7
⊢
(∃𝑚 ∈
𝐴 ∃𝑛 ∈ 𝐴 (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥}))) ↔ (∃𝑚 ∈ 𝐴 𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ ∃𝑛 ∈ 𝐴 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) | 
| 55 | 53, 54 | bitr4i 278 | . . . . . 6
⊢ ((𝑣 ∈ 𝑇 ∧ 𝑤 ∈ 𝑇) ↔ ∃𝑚 ∈ 𝐴 ∃𝑛 ∈ 𝐴 (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) | 
| 56 |  | simp1l 1198 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → 𝜑) | 
| 57 |  | lbsext.r | . . . . . . . . . . . 12
⊢ (𝜑 → [⊊] Or 𝐴) | 
| 58 | 56, 57 | syl 17 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → [⊊] Or 𝐴) | 
| 59 |  | simp2 1138 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴)) | 
| 60 |  | sorpssun 7750 | . . . . . . . . . . 11
⊢ ((
[⊊] Or 𝐴
∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴)) → (𝑚 ∪ 𝑛) ∈ 𝐴) | 
| 61 | 58, 59, 60 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑚 ∪ 𝑛) ∈ 𝐴) | 
| 62 | 56, 12 | syl 17 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → 𝑊 ∈ LMod) | 
| 63 |  | elssuni 4937 | . . . . . . . . . . . . . . 15
⊢ ((𝑚 ∪ 𝑛) ∈ 𝐴 → (𝑚 ∪ 𝑛) ⊆ ∪ 𝐴) | 
| 64 | 61, 63 | syl 17 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑚 ∪ 𝑛) ⊆ ∪ 𝐴) | 
| 65 |  | sspwuni 5100 | . . . . . . . . . . . . . . . 16
⊢ (𝐴 ⊆ 𝒫 𝑉 ↔ ∪ 𝐴
⊆ 𝑉) | 
| 66 | 16, 65 | sylib 218 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ∪ 𝐴
⊆ 𝑉) | 
| 67 | 56, 66 | syl 17 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → ∪
𝐴 ⊆ 𝑉) | 
| 68 | 64, 67 | sstrd 3994 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑚 ∪ 𝑛) ⊆ 𝑉) | 
| 69 | 68 | ssdifssd 4147 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → ((𝑚 ∪ 𝑛) ∖ {𝑥}) ⊆ 𝑉) | 
| 70 | 3, 7, 20 | lspcl 20974 | . . . . . . . . . . . 12
⊢ ((𝑊 ∈ LMod ∧ ((𝑚 ∪ 𝑛) ∖ {𝑥}) ⊆ 𝑉) → (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥})) ∈ 𝑃) | 
| 71 | 62, 69, 70 | syl2anc 584 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥})) ∈ 𝑃) | 
| 72 |  | simp1r 1199 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → 𝑟 ∈ (Base‘(Scalar‘𝑊))) | 
| 73 |  | ssun1 4178 | . . . . . . . . . . . . . 14
⊢ 𝑚 ⊆ (𝑚 ∪ 𝑛) | 
| 74 |  | ssdif 4144 | . . . . . . . . . . . . . 14
⊢ (𝑚 ⊆ (𝑚 ∪ 𝑛) → (𝑚 ∖ {𝑥}) ⊆ ((𝑚 ∪ 𝑛) ∖ {𝑥})) | 
| 75 | 73, 74 | mp1i 13 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑚 ∖ {𝑥}) ⊆ ((𝑚 ∪ 𝑛) ∖ {𝑥})) | 
| 76 | 3, 20 | lspss 20982 | . . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LMod ∧ ((𝑚 ∪ 𝑛) ∖ {𝑥}) ⊆ 𝑉 ∧ (𝑚 ∖ {𝑥}) ⊆ ((𝑚 ∪ 𝑛) ∖ {𝑥})) → (𝑁‘(𝑚 ∖ {𝑥})) ⊆ (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥}))) | 
| 77 | 62, 69, 75, 76 | syl3anc 1373 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑁‘(𝑚 ∖ {𝑥})) ⊆ (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥}))) | 
| 78 |  | simp3l 1202 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → 𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥}))) | 
| 79 | 77, 78 | sseldd 3984 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → 𝑣 ∈ (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥}))) | 
| 80 |  | ssun2 4179 | . . . . . . . . . . . . . 14
⊢ 𝑛 ⊆ (𝑚 ∪ 𝑛) | 
| 81 |  | ssdif 4144 | . . . . . . . . . . . . . 14
⊢ (𝑛 ⊆ (𝑚 ∪ 𝑛) → (𝑛 ∖ {𝑥}) ⊆ ((𝑚 ∪ 𝑛) ∖ {𝑥})) | 
| 82 | 80, 81 | mp1i 13 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑛 ∖ {𝑥}) ⊆ ((𝑚 ∪ 𝑛) ∖ {𝑥})) | 
| 83 | 3, 20 | lspss 20982 | . . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LMod ∧ ((𝑚 ∪ 𝑛) ∖ {𝑥}) ⊆ 𝑉 ∧ (𝑛 ∖ {𝑥}) ⊆ ((𝑚 ∪ 𝑛) ∖ {𝑥})) → (𝑁‘(𝑛 ∖ {𝑥})) ⊆ (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥}))) | 
| 84 | 62, 69, 82, 83 | syl3anc 1373 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑁‘(𝑛 ∖ {𝑥})) ⊆ (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥}))) | 
| 85 |  | simp3r 1203 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥}))) | 
| 86 | 84, 85 | sseldd 3984 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → 𝑤 ∈ (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥}))) | 
| 87 |  | eqid 2737 | . . . . . . . . . . . 12
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) | 
| 88 |  | eqid 2737 | . . . . . . . . . . . 12
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | 
| 89 |  | eqid 2737 | . . . . . . . . . . . 12
⊢
(+g‘𝑊) = (+g‘𝑊) | 
| 90 |  | eqid 2737 | . . . . . . . . . . . 12
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) | 
| 91 | 87, 88, 89, 90, 7 | lsscl 20940 | . . . . . . . . . . 11
⊢ (((𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥})) ∈ 𝑃 ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 ∈ (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥})))) → ((𝑟( ·𝑠
‘𝑊)𝑣)(+g‘𝑊)𝑤) ∈ (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥}))) | 
| 92 | 71, 72, 79, 86, 91 | syl13anc 1374 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → ((𝑟( ·𝑠
‘𝑊)𝑣)(+g‘𝑊)𝑤) ∈ (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥}))) | 
| 93 |  | difeq1 4119 | . . . . . . . . . . . 12
⊢ (𝑢 = (𝑚 ∪ 𝑛) → (𝑢 ∖ {𝑥}) = ((𝑚 ∪ 𝑛) ∖ {𝑥})) | 
| 94 | 93 | fveq2d 6910 | . . . . . . . . . . 11
⊢ (𝑢 = (𝑚 ∪ 𝑛) → (𝑁‘(𝑢 ∖ {𝑥})) = (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥}))) | 
| 95 | 94 | eliuni 4997 | . . . . . . . . . 10
⊢ (((𝑚 ∪ 𝑛) ∈ 𝐴 ∧ ((𝑟( ·𝑠
‘𝑊)𝑣)(+g‘𝑊)𝑤) ∈ (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥}))) → ((𝑟( ·𝑠
‘𝑊)𝑣)(+g‘𝑊)𝑤) ∈ ∪
𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥}))) | 
| 96 | 61, 92, 95 | syl2anc 584 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → ((𝑟( ·𝑠
‘𝑊)𝑣)(+g‘𝑊)𝑤) ∈ ∪
𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥}))) | 
| 97 | 96, 9 | eleqtrrdi 2852 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → ((𝑟( ·𝑠
‘𝑊)𝑣)(+g‘𝑊)𝑤) ∈ 𝑇) | 
| 98 | 97 | 3expia 1122 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴)) → ((𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥}))) → ((𝑟( ·𝑠
‘𝑊)𝑣)(+g‘𝑊)𝑤) ∈ 𝑇)) | 
| 99 | 98 | rexlimdvva 3213 | . . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) → (∃𝑚 ∈ 𝐴 ∃𝑛 ∈ 𝐴 (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥}))) → ((𝑟( ·𝑠
‘𝑊)𝑣)(+g‘𝑊)𝑤) ∈ 𝑇)) | 
| 100 | 55, 99 | biimtrid 242 | . . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) → ((𝑣 ∈ 𝑇 ∧ 𝑤 ∈ 𝑇) → ((𝑟( ·𝑠
‘𝑊)𝑣)(+g‘𝑊)𝑤) ∈ 𝑇)) | 
| 101 | 100 | exp4b 430 | . . . 4
⊢ (𝜑 → (𝑟 ∈ (Base‘(Scalar‘𝑊)) → (𝑣 ∈ 𝑇 → (𝑤 ∈ 𝑇 → ((𝑟( ·𝑠
‘𝑊)𝑣)(+g‘𝑊)𝑤) ∈ 𝑇)))) | 
| 102 | 101 | 3imp2 1350 | . . 3
⊢ ((𝜑 ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 ∈ 𝑇 ∧ 𝑤 ∈ 𝑇)) → ((𝑟( ·𝑠
‘𝑊)𝑣)(+g‘𝑊)𝑤) ∈ 𝑇) | 
| 103 | 1, 2, 4, 5, 6, 8, 26, 38, 102 | islssd 20933 | . 2
⊢ (𝜑 → 𝑇 ∈ 𝑃) | 
| 104 |  | eldifi 4131 | . . . . . . 7
⊢ (𝑦 ∈ (∪ 𝐴
∖ {𝑥}) → 𝑦 ∈ ∪ 𝐴) | 
| 105 | 104 | adantl 481 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (∪ 𝐴 ∖ {𝑥})) → 𝑦 ∈ ∪ 𝐴) | 
| 106 |  | eldifn 4132 | . . . . . . . . . 10
⊢ (𝑦 ∈ (∪ 𝐴
∖ {𝑥}) → ¬
𝑦 ∈ {𝑥}) | 
| 107 | 106 | ad2antlr 727 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (∪ 𝐴 ∖ {𝑥})) ∧ 𝑢 ∈ 𝐴) → ¬ 𝑦 ∈ {𝑥}) | 
| 108 |  | eldif 3961 | . . . . . . . . . 10
⊢ (𝑦 ∈ (𝑢 ∖ {𝑥}) ↔ (𝑦 ∈ 𝑢 ∧ ¬ 𝑦 ∈ {𝑥})) | 
| 109 | 3, 20 | lspssid 20983 | . . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LMod ∧ (𝑢 ∖ {𝑥}) ⊆ 𝑉) → (𝑢 ∖ {𝑥}) ⊆ (𝑁‘(𝑢 ∖ {𝑥}))) | 
| 110 | 12, 19, 109 | syl2an2r 685 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐴) → (𝑢 ∖ {𝑥}) ⊆ (𝑁‘(𝑢 ∖ {𝑥}))) | 
| 111 | 110 | adantlr 715 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (∪ 𝐴 ∖ {𝑥})) ∧ 𝑢 ∈ 𝐴) → (𝑢 ∖ {𝑥}) ⊆ (𝑁‘(𝑢 ∖ {𝑥}))) | 
| 112 | 111 | sseld 3982 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (∪ 𝐴 ∖ {𝑥})) ∧ 𝑢 ∈ 𝐴) → (𝑦 ∈ (𝑢 ∖ {𝑥}) → 𝑦 ∈ (𝑁‘(𝑢 ∖ {𝑥})))) | 
| 113 | 108, 112 | biimtrrid 243 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (∪ 𝐴 ∖ {𝑥})) ∧ 𝑢 ∈ 𝐴) → ((𝑦 ∈ 𝑢 ∧ ¬ 𝑦 ∈ {𝑥}) → 𝑦 ∈ (𝑁‘(𝑢 ∖ {𝑥})))) | 
| 114 | 107, 113 | mpan2d 694 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (∪ 𝐴 ∖ {𝑥})) ∧ 𝑢 ∈ 𝐴) → (𝑦 ∈ 𝑢 → 𝑦 ∈ (𝑁‘(𝑢 ∖ {𝑥})))) | 
| 115 | 114 | reximdva 3168 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (∪ 𝐴 ∖ {𝑥})) → (∃𝑢 ∈ 𝐴 𝑦 ∈ 𝑢 → ∃𝑢 ∈ 𝐴 𝑦 ∈ (𝑁‘(𝑢 ∖ {𝑥})))) | 
| 116 |  | eluni2 4911 | . . . . . . 7
⊢ (𝑦 ∈ ∪ 𝐴
↔ ∃𝑢 ∈
𝐴 𝑦 ∈ 𝑢) | 
| 117 |  | eliun 4995 | . . . . . . 7
⊢ (𝑦 ∈ ∪ 𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ↔ ∃𝑢 ∈ 𝐴 𝑦 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) | 
| 118 | 115, 116,
117 | 3imtr4g 296 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (∪ 𝐴 ∖ {𝑥})) → (𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ ∪
𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})))) | 
| 119 | 105, 118 | mpd 15 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (∪ 𝐴 ∖ {𝑥})) → 𝑦 ∈ ∪
𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥}))) | 
| 120 | 119 | ex 412 | . . . 4
⊢ (𝜑 → (𝑦 ∈ (∪ 𝐴 ∖ {𝑥}) → 𝑦 ∈ ∪
𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})))) | 
| 121 | 120 | ssrdv 3989 | . . 3
⊢ (𝜑 → (∪ 𝐴
∖ {𝑥}) ⊆
∪ 𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥}))) | 
| 122 | 121, 9 | sseqtrrdi 4025 | . 2
⊢ (𝜑 → (∪ 𝐴
∖ {𝑥}) ⊆ 𝑇) | 
| 123 | 103, 122 | jca 511 | 1
⊢ (𝜑 → (𝑇 ∈ 𝑃 ∧ (∪ 𝐴 ∖ {𝑥}) ⊆ 𝑇)) |