Step | Hyp | Ref
| Expression |
1 | | eqidd 2739 |
. . 3
⊢ (𝜑 → (Scalar‘𝑊) = (Scalar‘𝑊)) |
2 | | eqidd 2739 |
. . 3
⊢ (𝜑 →
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))) |
3 | | lbsext.v |
. . . 4
⊢ 𝑉 = (Base‘𝑊) |
4 | 3 | a1i 11 |
. . 3
⊢ (𝜑 → 𝑉 = (Base‘𝑊)) |
5 | | eqidd 2739 |
. . 3
⊢ (𝜑 → (+g‘𝑊) = (+g‘𝑊)) |
6 | | eqidd 2739 |
. . 3
⊢ (𝜑 → (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊)) |
7 | | lbsext.p |
. . . 4
⊢ 𝑃 = (LSubSp‘𝑊) |
8 | 7 | a1i 11 |
. . 3
⊢ (𝜑 → 𝑃 = (LSubSp‘𝑊)) |
9 | | lbsext.t |
. . . 4
⊢ 𝑇 = ∪ 𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) |
10 | | lbsext.w |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ LVec) |
11 | | lveclmod 20283 |
. . . . . . . 8
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
12 | 10, 11 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ LMod) |
13 | | lbsext.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
14 | | lbsext.s |
. . . . . . . . . . . 12
⊢ 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} |
15 | 14 | ssrab3 4011 |
. . . . . . . . . . 11
⊢ 𝑆 ⊆ 𝒫 𝑉 |
16 | 13, 15 | sstrdi 3929 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ⊆ 𝒫 𝑉) |
17 | 16 | sselda 3917 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐴) → 𝑢 ∈ 𝒫 𝑉) |
18 | 17 | elpwid 4541 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐴) → 𝑢 ⊆ 𝑉) |
19 | 18 | ssdifssd 4073 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐴) → (𝑢 ∖ {𝑥}) ⊆ 𝑉) |
20 | | lbsext.n |
. . . . . . . 8
⊢ 𝑁 = (LSpan‘𝑊) |
21 | 3, 20 | lspssv 20160 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ (𝑢 ∖ {𝑥}) ⊆ 𝑉) → (𝑁‘(𝑢 ∖ {𝑥})) ⊆ 𝑉) |
22 | 12, 19, 21 | syl2an2r 681 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐴) → (𝑁‘(𝑢 ∖ {𝑥})) ⊆ 𝑉) |
23 | 22 | ralrimiva 3107 |
. . . . 5
⊢ (𝜑 → ∀𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ⊆ 𝑉) |
24 | | iunss 4971 |
. . . . 5
⊢ (∪ 𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ⊆ 𝑉 ↔ ∀𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ⊆ 𝑉) |
25 | 23, 24 | sylibr 233 |
. . . 4
⊢ (𝜑 → ∪ 𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ⊆ 𝑉) |
26 | 9, 25 | eqsstrid 3965 |
. . 3
⊢ (𝜑 → 𝑇 ⊆ 𝑉) |
27 | 9 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝑇 = ∪ 𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥}))) |
28 | | lbsext.z |
. . . . . 6
⊢ (𝜑 → 𝐴 ≠ ∅) |
29 | 3, 7, 20 | lspcl 20153 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ (𝑢 ∖ {𝑥}) ⊆ 𝑉) → (𝑁‘(𝑢 ∖ {𝑥})) ∈ 𝑃) |
30 | 12, 19, 29 | syl2an2r 681 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐴) → (𝑁‘(𝑢 ∖ {𝑥})) ∈ 𝑃) |
31 | 7 | lssn0 20117 |
. . . . . . . 8
⊢ ((𝑁‘(𝑢 ∖ {𝑥})) ∈ 𝑃 → (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅) |
32 | 30, 31 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐴) → (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅) |
33 | 32 | ralrimiva 3107 |
. . . . . 6
⊢ (𝜑 → ∀𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅) |
34 | | r19.2z 4422 |
. . . . . 6
⊢ ((𝐴 ≠ ∅ ∧
∀𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅) → ∃𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅) |
35 | 28, 33, 34 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → ∃𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅) |
36 | | iunn0 4992 |
. . . . 5
⊢
(∃𝑢 ∈
𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅ ↔ ∪ 𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅) |
37 | 35, 36 | sylib 217 |
. . . 4
⊢ (𝜑 → ∪ 𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅) |
38 | 27, 37 | eqnetrd 3010 |
. . 3
⊢ (𝜑 → 𝑇 ≠ ∅) |
39 | 9 | eleq2i 2830 |
. . . . . . . . 9
⊢ (𝑣 ∈ 𝑇 ↔ 𝑣 ∈ ∪
𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥}))) |
40 | | eliun 4925 |
. . . . . . . . 9
⊢ (𝑣 ∈ ∪ 𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ↔ ∃𝑢 ∈ 𝐴 𝑣 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) |
41 | | difeq1 4046 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑚 → (𝑢 ∖ {𝑥}) = (𝑚 ∖ {𝑥})) |
42 | 41 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑚 → (𝑁‘(𝑢 ∖ {𝑥})) = (𝑁‘(𝑚 ∖ {𝑥}))) |
43 | 42 | eleq2d 2824 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑚 → (𝑣 ∈ (𝑁‘(𝑢 ∖ {𝑥})) ↔ 𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})))) |
44 | 43 | cbvrexvw 3373 |
. . . . . . . . 9
⊢
(∃𝑢 ∈
𝐴 𝑣 ∈ (𝑁‘(𝑢 ∖ {𝑥})) ↔ ∃𝑚 ∈ 𝐴 𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥}))) |
45 | 39, 40, 44 | 3bitri 296 |
. . . . . . . 8
⊢ (𝑣 ∈ 𝑇 ↔ ∃𝑚 ∈ 𝐴 𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥}))) |
46 | 9 | eleq2i 2830 |
. . . . . . . . 9
⊢ (𝑤 ∈ 𝑇 ↔ 𝑤 ∈ ∪
𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥}))) |
47 | | eliun 4925 |
. . . . . . . . 9
⊢ (𝑤 ∈ ∪ 𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ↔ ∃𝑢 ∈ 𝐴 𝑤 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) |
48 | | difeq1 4046 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑛 → (𝑢 ∖ {𝑥}) = (𝑛 ∖ {𝑥})) |
49 | 48 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑛 → (𝑁‘(𝑢 ∖ {𝑥})) = (𝑁‘(𝑛 ∖ {𝑥}))) |
50 | 49 | eleq2d 2824 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑛 → (𝑤 ∈ (𝑁‘(𝑢 ∖ {𝑥})) ↔ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) |
51 | 50 | cbvrexvw 3373 |
. . . . . . . . 9
⊢
(∃𝑢 ∈
𝐴 𝑤 ∈ (𝑁‘(𝑢 ∖ {𝑥})) ↔ ∃𝑛 ∈ 𝐴 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥}))) |
52 | 46, 47, 51 | 3bitri 296 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝑇 ↔ ∃𝑛 ∈ 𝐴 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥}))) |
53 | 45, 52 | anbi12i 626 |
. . . . . . 7
⊢ ((𝑣 ∈ 𝑇 ∧ 𝑤 ∈ 𝑇) ↔ (∃𝑚 ∈ 𝐴 𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ ∃𝑛 ∈ 𝐴 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) |
54 | | reeanv 3292 |
. . . . . . 7
⊢
(∃𝑚 ∈
𝐴 ∃𝑛 ∈ 𝐴 (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥}))) ↔ (∃𝑚 ∈ 𝐴 𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ ∃𝑛 ∈ 𝐴 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) |
55 | 53, 54 | bitr4i 277 |
. . . . . 6
⊢ ((𝑣 ∈ 𝑇 ∧ 𝑤 ∈ 𝑇) ↔ ∃𝑚 ∈ 𝐴 ∃𝑛 ∈ 𝐴 (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) |
56 | | simp1l 1195 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → 𝜑) |
57 | | lbsext.r |
. . . . . . . . . . . 12
⊢ (𝜑 → [⊊] Or 𝐴) |
58 | 56, 57 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → [⊊] Or 𝐴) |
59 | | simp2 1135 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴)) |
60 | | sorpssun 7561 |
. . . . . . . . . . 11
⊢ ((
[⊊] Or 𝐴
∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴)) → (𝑚 ∪ 𝑛) ∈ 𝐴) |
61 | 58, 59, 60 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑚 ∪ 𝑛) ∈ 𝐴) |
62 | 56, 12 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → 𝑊 ∈ LMod) |
63 | | elssuni 4868 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∪ 𝑛) ∈ 𝐴 → (𝑚 ∪ 𝑛) ⊆ ∪ 𝐴) |
64 | 61, 63 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑚 ∪ 𝑛) ⊆ ∪ 𝐴) |
65 | | sspwuni 5025 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ⊆ 𝒫 𝑉 ↔ ∪ 𝐴
⊆ 𝑉) |
66 | 16, 65 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∪ 𝐴
⊆ 𝑉) |
67 | 56, 66 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → ∪
𝐴 ⊆ 𝑉) |
68 | 64, 67 | sstrd 3927 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑚 ∪ 𝑛) ⊆ 𝑉) |
69 | 68 | ssdifssd 4073 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → ((𝑚 ∪ 𝑛) ∖ {𝑥}) ⊆ 𝑉) |
70 | 3, 7, 20 | lspcl 20153 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ LMod ∧ ((𝑚 ∪ 𝑛) ∖ {𝑥}) ⊆ 𝑉) → (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥})) ∈ 𝑃) |
71 | 62, 69, 70 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥})) ∈ 𝑃) |
72 | | simp1r 1196 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → 𝑟 ∈ (Base‘(Scalar‘𝑊))) |
73 | | ssun1 4102 |
. . . . . . . . . . . . . 14
⊢ 𝑚 ⊆ (𝑚 ∪ 𝑛) |
74 | | ssdif 4070 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ⊆ (𝑚 ∪ 𝑛) → (𝑚 ∖ {𝑥}) ⊆ ((𝑚 ∪ 𝑛) ∖ {𝑥})) |
75 | 73, 74 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑚 ∖ {𝑥}) ⊆ ((𝑚 ∪ 𝑛) ∖ {𝑥})) |
76 | 3, 20 | lspss 20161 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LMod ∧ ((𝑚 ∪ 𝑛) ∖ {𝑥}) ⊆ 𝑉 ∧ (𝑚 ∖ {𝑥}) ⊆ ((𝑚 ∪ 𝑛) ∖ {𝑥})) → (𝑁‘(𝑚 ∖ {𝑥})) ⊆ (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥}))) |
77 | 62, 69, 75, 76 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑁‘(𝑚 ∖ {𝑥})) ⊆ (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥}))) |
78 | | simp3l 1199 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → 𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥}))) |
79 | 77, 78 | sseldd 3918 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → 𝑣 ∈ (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥}))) |
80 | | ssun2 4103 |
. . . . . . . . . . . . . 14
⊢ 𝑛 ⊆ (𝑚 ∪ 𝑛) |
81 | | ssdif 4070 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ⊆ (𝑚 ∪ 𝑛) → (𝑛 ∖ {𝑥}) ⊆ ((𝑚 ∪ 𝑛) ∖ {𝑥})) |
82 | 80, 81 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑛 ∖ {𝑥}) ⊆ ((𝑚 ∪ 𝑛) ∖ {𝑥})) |
83 | 3, 20 | lspss 20161 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LMod ∧ ((𝑚 ∪ 𝑛) ∖ {𝑥}) ⊆ 𝑉 ∧ (𝑛 ∖ {𝑥}) ⊆ ((𝑚 ∪ 𝑛) ∖ {𝑥})) → (𝑁‘(𝑛 ∖ {𝑥})) ⊆ (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥}))) |
84 | 62, 69, 82, 83 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑁‘(𝑛 ∖ {𝑥})) ⊆ (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥}))) |
85 | | simp3r 1200 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥}))) |
86 | 84, 85 | sseldd 3918 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → 𝑤 ∈ (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥}))) |
87 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
88 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
89 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(+g‘𝑊) = (+g‘𝑊) |
90 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
91 | 87, 88, 89, 90, 7 | lsscl 20119 |
. . . . . . . . . . 11
⊢ (((𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥})) ∈ 𝑃 ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 ∈ (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥})))) → ((𝑟( ·𝑠
‘𝑊)𝑣)(+g‘𝑊)𝑤) ∈ (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥}))) |
92 | 71, 72, 79, 86, 91 | syl13anc 1370 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → ((𝑟( ·𝑠
‘𝑊)𝑣)(+g‘𝑊)𝑤) ∈ (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥}))) |
93 | | difeq1 4046 |
. . . . . . . . . . . 12
⊢ (𝑢 = (𝑚 ∪ 𝑛) → (𝑢 ∖ {𝑥}) = ((𝑚 ∪ 𝑛) ∖ {𝑥})) |
94 | 93 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (𝑢 = (𝑚 ∪ 𝑛) → (𝑁‘(𝑢 ∖ {𝑥})) = (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥}))) |
95 | 94 | eliuni 4927 |
. . . . . . . . . 10
⊢ (((𝑚 ∪ 𝑛) ∈ 𝐴 ∧ ((𝑟( ·𝑠
‘𝑊)𝑣)(+g‘𝑊)𝑤) ∈ (𝑁‘((𝑚 ∪ 𝑛) ∖ {𝑥}))) → ((𝑟( ·𝑠
‘𝑊)𝑣)(+g‘𝑊)𝑤) ∈ ∪
𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥}))) |
96 | 61, 92, 95 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → ((𝑟( ·𝑠
‘𝑊)𝑣)(+g‘𝑊)𝑤) ∈ ∪
𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥}))) |
97 | 96, 9 | eleqtrrdi 2850 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → ((𝑟( ·𝑠
‘𝑊)𝑣)(+g‘𝑊)𝑤) ∈ 𝑇) |
98 | 97 | 3expia 1119 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴)) → ((𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥}))) → ((𝑟( ·𝑠
‘𝑊)𝑣)(+g‘𝑊)𝑤) ∈ 𝑇)) |
99 | 98 | rexlimdvva 3222 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) → (∃𝑚 ∈ 𝐴 ∃𝑛 ∈ 𝐴 (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥}))) → ((𝑟( ·𝑠
‘𝑊)𝑣)(+g‘𝑊)𝑤) ∈ 𝑇)) |
100 | 55, 99 | syl5bi 241 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊))) → ((𝑣 ∈ 𝑇 ∧ 𝑤 ∈ 𝑇) → ((𝑟( ·𝑠
‘𝑊)𝑣)(+g‘𝑊)𝑤) ∈ 𝑇)) |
101 | 100 | exp4b 430 |
. . . 4
⊢ (𝜑 → (𝑟 ∈ (Base‘(Scalar‘𝑊)) → (𝑣 ∈ 𝑇 → (𝑤 ∈ 𝑇 → ((𝑟( ·𝑠
‘𝑊)𝑣)(+g‘𝑊)𝑤) ∈ 𝑇)))) |
102 | 101 | 3imp2 1347 |
. . 3
⊢ ((𝜑 ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 ∈ 𝑇 ∧ 𝑤 ∈ 𝑇)) → ((𝑟( ·𝑠
‘𝑊)𝑣)(+g‘𝑊)𝑤) ∈ 𝑇) |
103 | 1, 2, 4, 5, 6, 8, 26, 38, 102 | islssd 20112 |
. 2
⊢ (𝜑 → 𝑇 ∈ 𝑃) |
104 | | eldifi 4057 |
. . . . . . 7
⊢ (𝑦 ∈ (∪ 𝐴
∖ {𝑥}) → 𝑦 ∈ ∪ 𝐴) |
105 | 104 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (∪ 𝐴 ∖ {𝑥})) → 𝑦 ∈ ∪ 𝐴) |
106 | | eldifn 4058 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (∪ 𝐴
∖ {𝑥}) → ¬
𝑦 ∈ {𝑥}) |
107 | 106 | ad2antlr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (∪ 𝐴 ∖ {𝑥})) ∧ 𝑢 ∈ 𝐴) → ¬ 𝑦 ∈ {𝑥}) |
108 | | eldif 3893 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝑢 ∖ {𝑥}) ↔ (𝑦 ∈ 𝑢 ∧ ¬ 𝑦 ∈ {𝑥})) |
109 | 3, 20 | lspssid 20162 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LMod ∧ (𝑢 ∖ {𝑥}) ⊆ 𝑉) → (𝑢 ∖ {𝑥}) ⊆ (𝑁‘(𝑢 ∖ {𝑥}))) |
110 | 12, 19, 109 | syl2an2r 681 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐴) → (𝑢 ∖ {𝑥}) ⊆ (𝑁‘(𝑢 ∖ {𝑥}))) |
111 | 110 | adantlr 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (∪ 𝐴 ∖ {𝑥})) ∧ 𝑢 ∈ 𝐴) → (𝑢 ∖ {𝑥}) ⊆ (𝑁‘(𝑢 ∖ {𝑥}))) |
112 | 111 | sseld 3916 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (∪ 𝐴 ∖ {𝑥})) ∧ 𝑢 ∈ 𝐴) → (𝑦 ∈ (𝑢 ∖ {𝑥}) → 𝑦 ∈ (𝑁‘(𝑢 ∖ {𝑥})))) |
113 | 108, 112 | syl5bir 242 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (∪ 𝐴 ∖ {𝑥})) ∧ 𝑢 ∈ 𝐴) → ((𝑦 ∈ 𝑢 ∧ ¬ 𝑦 ∈ {𝑥}) → 𝑦 ∈ (𝑁‘(𝑢 ∖ {𝑥})))) |
114 | 107, 113 | mpan2d 690 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (∪ 𝐴 ∖ {𝑥})) ∧ 𝑢 ∈ 𝐴) → (𝑦 ∈ 𝑢 → 𝑦 ∈ (𝑁‘(𝑢 ∖ {𝑥})))) |
115 | 114 | reximdva 3202 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (∪ 𝐴 ∖ {𝑥})) → (∃𝑢 ∈ 𝐴 𝑦 ∈ 𝑢 → ∃𝑢 ∈ 𝐴 𝑦 ∈ (𝑁‘(𝑢 ∖ {𝑥})))) |
116 | | eluni2 4840 |
. . . . . . 7
⊢ (𝑦 ∈ ∪ 𝐴
↔ ∃𝑢 ∈
𝐴 𝑦 ∈ 𝑢) |
117 | | eliun 4925 |
. . . . . . 7
⊢ (𝑦 ∈ ∪ 𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ↔ ∃𝑢 ∈ 𝐴 𝑦 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) |
118 | 115, 116,
117 | 3imtr4g 295 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (∪ 𝐴 ∖ {𝑥})) → (𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ ∪
𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})))) |
119 | 105, 118 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (∪ 𝐴 ∖ {𝑥})) → 𝑦 ∈ ∪
𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥}))) |
120 | 119 | ex 412 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ (∪ 𝐴 ∖ {𝑥}) → 𝑦 ∈ ∪
𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})))) |
121 | 120 | ssrdv 3923 |
. . 3
⊢ (𝜑 → (∪ 𝐴
∖ {𝑥}) ⊆
∪ 𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥}))) |
122 | 121, 9 | sseqtrrdi 3968 |
. 2
⊢ (𝜑 → (∪ 𝐴
∖ {𝑥}) ⊆ 𝑇) |
123 | 103, 122 | jca 511 |
1
⊢ (𝜑 → (𝑇 ∈ 𝑃 ∧ (∪ 𝐴 ∖ {𝑥}) ⊆ 𝑇)) |