Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iunxsnf | Structured version Visualization version GIF version |
Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
iunxsnf.1 | ⊢ Ⅎ𝑥𝐶 |
iunxsnf.2 | ⊢ 𝐴 ∈ V |
iunxsnf.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iunxsnf | ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxsnf.2 | . 2 ⊢ 𝐴 ∈ V | |
2 | iunxsnf.1 | . . 3 ⊢ Ⅎ𝑥𝐶 | |
3 | iunxsnf.3 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
4 | 2, 3 | iunxsngf 5024 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2101 Ⅎwnfc 2882 Vcvv 3434 {csn 4564 ∪ ciun 4927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-12 2166 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-rex 3069 df-v 3436 df-sbc 3719 df-sn 4565 df-iun 4929 |
This theorem is referenced by: fiiuncl 42637 iunp1 42638 sge0iunmptlemfi 43987 |
Copyright terms: Public domain | W3C validator |