Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunxsnf Structured version   Visualization version   GIF version

Theorem iunxsnf 42636
Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
iunxsnf.1 𝑥𝐶
iunxsnf.2 𝐴 ∈ V
iunxsnf.3 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
iunxsnf 𝑥 ∈ {𝐴}𝐵 = 𝐶
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem iunxsnf
StepHypRef Expression
1 iunxsnf.2 . 2 𝐴 ∈ V
2 iunxsnf.1 . . 3 𝑥𝐶
3 iunxsnf.3 . . 3 (𝑥 = 𝐴𝐵 = 𝐶)
42, 3iunxsngf 5024 . 2 (𝐴 ∈ V → 𝑥 ∈ {𝐴}𝐵 = 𝐶)
51, 4ax-mp 5 1 𝑥 ∈ {𝐴}𝐵 = 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2101  wnfc 2882  Vcvv 3434  {csn 4564   ciun 4927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-12 2166  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2063  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-rex 3069  df-v 3436  df-sbc 3719  df-sn 4565  df-iun 4929
This theorem is referenced by:  fiiuncl  42637  iunp1  42638  sge0iunmptlemfi  43987
  Copyright terms: Public domain W3C validator