Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iunxsnf | Structured version Visualization version GIF version |
Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
iunxsnf.1 | ⊢ Ⅎ𝑥𝐶 |
iunxsnf.2 | ⊢ 𝐴 ∈ V |
iunxsnf.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iunxsnf | ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxsnf.2 | . 2 ⊢ 𝐴 ∈ V | |
2 | iunxsnf.1 | . . 3 ⊢ Ⅎ𝑥𝐶 | |
3 | iunxsnf.3 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
4 | 2, 3 | iunxsngf 5017 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Ⅎwnfc 2886 Vcvv 3422 {csn 4558 ∪ ciun 4921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-v 3424 df-sbc 3712 df-sn 4559 df-iun 4923 |
This theorem is referenced by: fiiuncl 42502 iunp1 42503 sge0iunmptlemfi 43841 |
Copyright terms: Public domain | W3C validator |