| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iunxsnf | Structured version Visualization version GIF version | ||
| Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| iunxsnf.1 | ⊢ Ⅎ𝑥𝐶 |
| iunxsnf.2 | ⊢ 𝐴 ∈ V |
| iunxsnf.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iunxsnf | ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxsnf.2 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | iunxsnf.1 | . . 3 ⊢ Ⅎ𝑥𝐶 | |
| 3 | iunxsnf.3 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 4 | 2, 3 | iunxsngf 5068 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Ⅎwnfc 2883 Vcvv 3459 {csn 4601 ∪ ciun 4967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-rex 3061 df-v 3461 df-sbc 3766 df-sn 4602 df-iun 4969 |
| This theorem is referenced by: fiiuncl 45089 iunp1 45090 sge0iunmptlemfi 46442 |
| Copyright terms: Public domain | W3C validator |