| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunxsngf | Structured version Visualization version GIF version | ||
| Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by Mario Carneiro, 25-Jun-2016.) (Revised by Thierry Arnoux, 2-May-2020.) Avoid ax-13 2377. (Revised by GG, 19-May-2023.) |
| Ref | Expression |
|---|---|
| iunxsngf.1 | ⊢ Ⅎ𝑥𝐶 |
| iunxsngf.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iunxsngf | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliun 4995 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑥 ∈ {𝐴}𝑦 ∈ 𝐵) | |
| 2 | iunxsngf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
| 3 | 2 | nfcri 2897 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐶 |
| 4 | iunxsngf.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 5 | 4 | eleq2d 2827 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
| 6 | 3, 5 | rexsngf 4672 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
| 7 | 1, 6 | bitrid 283 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ∪ 𝑥 ∈ {𝐴}𝐵 ↔ 𝑦 ∈ 𝐶)) |
| 8 | 7 | eqrdv 2735 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Ⅎwnfc 2890 ∃wrex 3070 {csn 4626 ∪ ciun 4991 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-rex 3071 df-v 3482 df-sbc 3789 df-sn 4627 df-iun 4993 |
| This theorem is referenced by: esum2dlem 34093 fiunelros 34175 iunxsnf 45069 |
| Copyright terms: Public domain | W3C validator |