Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iunxsngf | Structured version Visualization version GIF version |
Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by Mario Carneiro, 25-Jun-2016.) (Revised by Thierry Arnoux, 2-May-2020.) Avoid ax-13 2372. (Revised by Gino Giotto, 19-May-2023.) |
Ref | Expression |
---|---|
iunxsngf.1 | ⊢ Ⅎ𝑥𝐶 |
iunxsngf.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iunxsngf | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliun 4925 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑥 ∈ {𝐴}𝑦 ∈ 𝐵) | |
2 | iunxsngf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
3 | 2 | nfcri 2893 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐶 |
4 | iunxsngf.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
5 | 4 | eleq2d 2824 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
6 | 3, 5 | rexsngf 4603 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
7 | 1, 6 | syl5bb 282 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ∪ 𝑥 ∈ {𝐴}𝐵 ↔ 𝑦 ∈ 𝐶)) |
8 | 7 | eqrdv 2736 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Ⅎwnfc 2886 ∃wrex 3064 {csn 4558 ∪ ciun 4921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-v 3424 df-sbc 3712 df-sn 4559 df-iun 4923 |
This theorem is referenced by: esum2dlem 31960 fiunelros 32042 iunxsnf 42501 |
Copyright terms: Public domain | W3C validator |