MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunxsngf Structured version   Visualization version   GIF version

Theorem iunxsngf 5115
Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by Mario Carneiro, 25-Jun-2016.) (Revised by Thierry Arnoux, 2-May-2020.) Avoid ax-13 2380. (Revised by GG, 19-May-2023.)
Hypotheses
Ref Expression
iunxsngf.1 𝑥𝐶
iunxsngf.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
iunxsngf (𝐴𝑉 𝑥 ∈ {𝐴}𝐵 = 𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem iunxsngf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliun 5019 . . 3 (𝑦 𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑥 ∈ {𝐴}𝑦𝐵)
2 iunxsngf.1 . . . . 5 𝑥𝐶
32nfcri 2900 . . . 4 𝑥 𝑦𝐶
4 iunxsngf.2 . . . . 5 (𝑥 = 𝐴𝐵 = 𝐶)
54eleq2d 2830 . . . 4 (𝑥 = 𝐴 → (𝑦𝐵𝑦𝐶))
63, 5rexsngf 4694 . . 3 (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝑦𝐵𝑦𝐶))
71, 6bitrid 283 . 2 (𝐴𝑉 → (𝑦 𝑥 ∈ {𝐴}𝐵𝑦𝐶))
87eqrdv 2738 1 (𝐴𝑉 𝑥 ∈ {𝐴}𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wnfc 2893  wrex 3076  {csn 4648   ciun 5015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rex 3077  df-v 3490  df-sbc 3805  df-sn 4649  df-iun 5017
This theorem is referenced by:  esum2dlem  34056  fiunelros  34138  iunxsnf  44966
  Copyright terms: Public domain W3C validator