Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0iunmptlemfi Structured version   Visualization version   GIF version

Theorem sge0iunmptlemfi 43841
Description: Sum of nonnegative extended reals over a disjoint indexed union (in this lemma, for a finite index set). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0iunmptlemfi.a (𝜑𝐴 ∈ Fin)
sge0iunmptlemfi.b ((𝜑𝑥𝐴) → 𝐵𝑉)
sge0iunmptlemfi.dj (𝜑Disj 𝑥𝐴 𝐵)
sge0iunmptlemfi.c ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
sge0iunmptlemfi.re ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ)
Assertion
Ref Expression
sge0iunmptlemfi (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘   𝑥,𝐶   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘)   𝑉(𝑥,𝑘)

Proof of Theorem sge0iunmptlemfi
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iuneq1 4937 . . . . 5 (𝑦 = ∅ → 𝑥𝑦 𝐵 = 𝑥 ∈ ∅ 𝐵)
21mpteq1d 5165 . . . 4 (𝑦 = ∅ → (𝑘 𝑥𝑦 𝐵𝐶) = (𝑘 𝑥 ∈ ∅ 𝐵𝐶))
32fveq2d 6760 . . 3 (𝑦 = ∅ → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) = (Σ^‘(𝑘 𝑥 ∈ ∅ 𝐵𝐶)))
4 mpteq1 5163 . . . 4 (𝑦 = ∅ → (𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑥 ∈ ∅ ↦ (Σ^‘(𝑘𝐵𝐶))))
54fveq2d 6760 . . 3 (𝑦 = ∅ → (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑥 ∈ ∅ ↦ (Σ^‘(𝑘𝐵𝐶)))))
63, 5eqeq12d 2754 . 2 (𝑦 = ∅ → ((Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) = (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))) ↔ (Σ^‘(𝑘 𝑥 ∈ ∅ 𝐵𝐶)) = (Σ^‘(𝑥 ∈ ∅ ↦ (Σ^‘(𝑘𝐵𝐶))))))
7 iuneq1 4937 . . . . 5 (𝑦 = 𝑧 𝑥𝑦 𝐵 = 𝑥𝑧 𝐵)
87mpteq1d 5165 . . . 4 (𝑦 = 𝑧 → (𝑘 𝑥𝑦 𝐵𝐶) = (𝑘 𝑥𝑧 𝐵𝐶))
98fveq2d 6760 . . 3 (𝑦 = 𝑧 → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) = (Σ^‘(𝑘 𝑥𝑧 𝐵𝐶)))
10 mpteq1 5163 . . . 4 (𝑦 = 𝑧 → (𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶))))
1110fveq2d 6760 . . 3 (𝑦 = 𝑧 → (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶)))))
129, 11eqeq12d 2754 . 2 (𝑦 = 𝑧 → ((Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) = (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))) ↔ (Σ^‘(𝑘 𝑥𝑧 𝐵𝐶)) = (Σ^‘(𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶))))))
13 iuneq1 4937 . . . . 5 (𝑦 = (𝑧 ∪ {𝑤}) → 𝑥𝑦 𝐵 = 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵)
1413mpteq1d 5165 . . . 4 (𝑦 = (𝑧 ∪ {𝑤}) → (𝑘 𝑥𝑦 𝐵𝐶) = (𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶))
1514fveq2d 6760 . . 3 (𝑦 = (𝑧 ∪ {𝑤}) → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) = (Σ^‘(𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶)))
16 mpteq1 5163 . . . 4 (𝑦 = (𝑧 ∪ {𝑤}) → (𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑥 ∈ (𝑧 ∪ {𝑤}) ↦ (Σ^‘(𝑘𝐵𝐶))))
1716fveq2d 6760 . . 3 (𝑦 = (𝑧 ∪ {𝑤}) → (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑥 ∈ (𝑧 ∪ {𝑤}) ↦ (Σ^‘(𝑘𝐵𝐶)))))
1815, 17eqeq12d 2754 . 2 (𝑦 = (𝑧 ∪ {𝑤}) → ((Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) = (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))) ↔ (Σ^‘(𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶)) = (Σ^‘(𝑥 ∈ (𝑧 ∪ {𝑤}) ↦ (Σ^‘(𝑘𝐵𝐶))))))
19 iuneq1 4937 . . . . 5 (𝑦 = 𝐴 𝑥𝑦 𝐵 = 𝑥𝐴 𝐵)
2019mpteq1d 5165 . . . 4 (𝑦 = 𝐴 → (𝑘 𝑥𝑦 𝐵𝐶) = (𝑘 𝑥𝐴 𝐵𝐶))
2120fveq2d 6760 . . 3 (𝑦 = 𝐴 → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) = (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
22 mpteq1 5163 . . . 4 (𝑦 = 𝐴 → (𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))
2322fveq2d 6760 . . 3 (𝑦 = 𝐴 → (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
2421, 23eqeq12d 2754 . 2 (𝑦 = 𝐴 → ((Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) = (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))) ↔ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))))
25 0iun 4988 . . . . . . 7 𝑥 ∈ ∅ 𝐵 = ∅
26 mpteq1 5163 . . . . . . 7 ( 𝑥 ∈ ∅ 𝐵 = ∅ → (𝑘 𝑥 ∈ ∅ 𝐵𝐶) = (𝑘 ∈ ∅ ↦ 𝐶))
2725, 26ax-mp 5 . . . . . 6 (𝑘 𝑥 ∈ ∅ 𝐵𝐶) = (𝑘 ∈ ∅ ↦ 𝐶)
28 mpt0 6559 . . . . . 6 (𝑘 ∈ ∅ ↦ 𝐶) = ∅
2927, 28eqtri 2766 . . . . 5 (𝑘 𝑥 ∈ ∅ 𝐵𝐶) = ∅
3029fveq2i 6759 . . . 4 ^‘(𝑘 𝑥 ∈ ∅ 𝐵𝐶)) = (Σ^‘∅)
31 mpt0 6559 . . . . 5 (𝑥 ∈ ∅ ↦ (Σ^‘(𝑘𝐵𝐶))) = ∅
3231fveq2i 6759 . . . 4 ^‘(𝑥 ∈ ∅ ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘∅)
3330, 32eqtr4i 2769 . . 3 ^‘(𝑘 𝑥 ∈ ∅ 𝐵𝐶)) = (Σ^‘(𝑥 ∈ ∅ ↦ (Σ^‘(𝑘𝐵𝐶))))
3433a1i 11 . 2 (𝜑 → (Σ^‘(𝑘 𝑥 ∈ ∅ 𝐵𝐶)) = (Σ^‘(𝑥 ∈ ∅ ↦ (Σ^‘(𝑘𝐵𝐶)))))
35 nfv 1918 . . . . . . 7 𝑥(𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧)))
36 nfcv 2906 . . . . . . . 8 𝑥Σ^
37 nfiu1 4955 . . . . . . . . 9 𝑥 𝑥 ∈ {𝑤}𝐵
38 nfcv 2906 . . . . . . . . 9 𝑥𝐶
3937, 38nfmpt 5177 . . . . . . . 8 𝑥(𝑘 𝑥 ∈ {𝑤}𝐵𝐶)
4036, 39nffv 6766 . . . . . . 7 𝑥^‘(𝑘 𝑥 ∈ {𝑤}𝐵𝐶))
41 simprl 767 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) → 𝑧𝐴)
42 sge0iunmptlemfi.a . . . . . . . . . 10 (𝜑𝐴 ∈ Fin)
4342adantr 480 . . . . . . . . 9 ((𝜑𝑧𝐴) → 𝐴 ∈ Fin)
44 simpr 484 . . . . . . . . 9 ((𝜑𝑧𝐴) → 𝑧𝐴)
45 ssfi 8918 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝑧𝐴) → 𝑧 ∈ Fin)
4643, 44, 45syl2anc 583 . . . . . . . 8 ((𝜑𝑧𝐴) → 𝑧 ∈ Fin)
4741, 46syldan 590 . . . . . . 7 ((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) → 𝑧 ∈ Fin)
48 simprr 769 . . . . . . 7 ((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) → 𝑤 ∈ (𝐴𝑧))
49 eldifn 4058 . . . . . . . . . . 11 (𝑤 ∈ (𝐴𝑧) → ¬ 𝑤𝑧)
50 disjsn 4644 . . . . . . . . . . 11 ((𝑧 ∩ {𝑤}) = ∅ ↔ ¬ 𝑤𝑧)
5149, 50sylibr 233 . . . . . . . . . 10 (𝑤 ∈ (𝐴𝑧) → (𝑧 ∩ {𝑤}) = ∅)
5251adantl 481 . . . . . . . . 9 ((𝑧𝐴𝑤 ∈ (𝐴𝑧)) → (𝑧 ∩ {𝑤}) = ∅)
5352adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) → (𝑧 ∩ {𝑤}) = ∅)
5453, 50sylib 217 . . . . . . 7 ((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) → ¬ 𝑤𝑧)
55 simpll 763 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑥𝑧) → 𝜑)
56 ssel2 3912 . . . . . . . . . . 11 ((𝑧𝐴𝑥𝑧) → 𝑥𝐴)
5756adantll 710 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑥𝑧) → 𝑥𝐴)
58 sge0iunmptlemfi.re . . . . . . . . . 10 ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ)
5955, 57, 58syl2anc 583 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑥𝑧) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ)
6059recnd 10934 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑥𝑧) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℂ)
6160adantlrr 717 . . . . . . 7 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ 𝑥𝑧) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℂ)
62 csbeq1a 3842 . . . . . . . . . 10 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
63 nfcsb1v 3853 . . . . . . . . . . 11 𝑥𝑤 / 𝑥𝐵
64 vex 3426 . . . . . . . . . . 11 𝑤 ∈ V
6563, 64, 62iunxsnf 42501 . . . . . . . . . 10 𝑥 ∈ {𝑤}𝐵 = 𝑤 / 𝑥𝐵
6662, 65eqtr4di 2797 . . . . . . . . 9 (𝑥 = 𝑤𝐵 = 𝑥 ∈ {𝑤}𝐵)
6766mpteq1d 5165 . . . . . . . 8 (𝑥 = 𝑤 → (𝑘𝐵𝐶) = (𝑘 𝑥 ∈ {𝑤}𝐵𝐶))
6867fveq2d 6760 . . . . . . 7 (𝑥 = 𝑤 → (Σ^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑘 𝑥 ∈ {𝑤}𝐵𝐶)))
6965mpteq1i 5166 . . . . . . . . . . . 12 (𝑘 𝑥 ∈ {𝑤}𝐵𝐶) = (𝑘𝑤 / 𝑥𝐵𝐶)
7069a1i 11 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐴𝑧)) → (𝑘 𝑥 ∈ {𝑤}𝐵𝐶) = (𝑘𝑤 / 𝑥𝐵𝐶))
7170fveq2d 6760 . . . . . . . . . 10 ((𝜑𝑤 ∈ (𝐴𝑧)) → (Σ^‘(𝑘 𝑥 ∈ {𝑤}𝐵𝐶)) = (Σ^‘(𝑘𝑤 / 𝑥𝐵𝐶)))
72 eldifi 4057 . . . . . . . . . . 11 (𝑤 ∈ (𝐴𝑧) → 𝑤𝐴)
73 nfv 1918 . . . . . . . . . . . . 13 𝑥(𝜑𝑤𝐴)
7463, 38nfmpt 5177 . . . . . . . . . . . . . . 15 𝑥(𝑘𝑤 / 𝑥𝐵𝐶)
7536, 74nffv 6766 . . . . . . . . . . . . . 14 𝑥^‘(𝑘𝑤 / 𝑥𝐵𝐶))
76 nfcv 2906 . . . . . . . . . . . . . 14 𝑥
7775, 76nfel 2920 . . . . . . . . . . . . 13 𝑥^‘(𝑘𝑤 / 𝑥𝐵𝐶)) ∈ ℝ
7873, 77nfim 1900 . . . . . . . . . . . 12 𝑥((𝜑𝑤𝐴) → (Σ^‘(𝑘𝑤 / 𝑥𝐵𝐶)) ∈ ℝ)
79 eleq1w 2821 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝑥𝐴𝑤𝐴))
8079anbi2d 628 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → ((𝜑𝑥𝐴) ↔ (𝜑𝑤𝐴)))
8167, 69eqtrdi 2795 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝑘𝐵𝐶) = (𝑘𝑤 / 𝑥𝐵𝐶))
8281fveq2d 6760 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (Σ^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑘𝑤 / 𝑥𝐵𝐶)))
8382eleq1d 2823 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → ((Σ^‘(𝑘𝐵𝐶)) ∈ ℝ ↔ (Σ^‘(𝑘𝑤 / 𝑥𝐵𝐶)) ∈ ℝ))
8480, 83imbi12d 344 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ) ↔ ((𝜑𝑤𝐴) → (Σ^‘(𝑘𝑤 / 𝑥𝐵𝐶)) ∈ ℝ)))
8578, 84, 58chvarfv 2236 . . . . . . . . . . 11 ((𝜑𝑤𝐴) → (Σ^‘(𝑘𝑤 / 𝑥𝐵𝐶)) ∈ ℝ)
8672, 85sylan2 592 . . . . . . . . . 10 ((𝜑𝑤 ∈ (𝐴𝑧)) → (Σ^‘(𝑘𝑤 / 𝑥𝐵𝐶)) ∈ ℝ)
8771, 86eqeltrd 2839 . . . . . . . . 9 ((𝜑𝑤 ∈ (𝐴𝑧)) → (Σ^‘(𝑘 𝑥 ∈ {𝑤}𝐵𝐶)) ∈ ℝ)
8887adantrl 712 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) → (Σ^‘(𝑘 𝑥 ∈ {𝑤}𝐵𝐶)) ∈ ℝ)
8988recnd 10934 . . . . . . 7 ((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) → (Σ^‘(𝑘 𝑥 ∈ {𝑤}𝐵𝐶)) ∈ ℂ)
9035, 40, 47, 48, 54, 61, 68, 89fsumsplitsn 15384 . . . . . 6 ((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) → Σ𝑥 ∈ (𝑧 ∪ {𝑤})(Σ^‘(𝑘𝐵𝐶)) = (Σ𝑥𝑧^‘(𝑘𝐵𝐶)) + (Σ^‘(𝑘 𝑥 ∈ {𝑤}𝐵𝐶))))
9190eqcomd 2744 . . . . 5 ((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) → (Σ𝑥𝑧^‘(𝑘𝐵𝐶)) + (Σ^‘(𝑘 𝑥 ∈ {𝑤}𝐵𝐶))) = Σ𝑥 ∈ (𝑧 ∪ {𝑤})(Σ^‘(𝑘𝐵𝐶)))
9291adantr 480 . . . 4 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (Σ^‘(𝑘 𝑥𝑧 𝐵𝐶)) = (Σ^‘(𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶))))) → (Σ𝑥𝑧^‘(𝑘𝐵𝐶)) + (Σ^‘(𝑘 𝑥 ∈ {𝑤}𝐵𝐶))) = Σ𝑥 ∈ (𝑧 ∪ {𝑤})(Σ^‘(𝑘𝐵𝐶)))
93 iunxun 5019 . . . . . . . . . 10 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 = ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵)
9493mpteq1i 5166 . . . . . . . . 9 (𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶) = (𝑘 ∈ ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵) ↦ 𝐶)
9594fveq2i 6759 . . . . . . . 8 ^‘(𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶)) = (Σ^‘(𝑘 ∈ ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵) ↦ 𝐶))
9695a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) → (Σ^‘(𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶)) = (Σ^‘(𝑘 ∈ ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵) ↦ 𝐶)))
97 nfv 1918 . . . . . . . 8 𝑘(𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧)))
98 sge0iunmptlemfi.b . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐵𝑉)
9998ralrimiva 3107 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
100 iunexg 7779 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝑉) → 𝑥𝐴 𝐵 ∈ V)
10142, 99, 100syl2anc 583 . . . . . . . . . . 11 (𝜑 𝑥𝐴 𝐵 ∈ V)
102101adantr 480 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝑥𝐴 𝐵 ∈ V)
103 iunss1 4935 . . . . . . . . . . 11 (𝑧𝐴 𝑥𝑧 𝐵 𝑥𝐴 𝐵)
104103adantl 481 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝑥𝑧 𝐵 𝑥𝐴 𝐵)
105102, 104ssexd 5243 . . . . . . . . 9 ((𝜑𝑧𝐴) → 𝑥𝑧 𝐵 ∈ V)
106105adantrr 713 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) → 𝑥𝑧 𝐵 ∈ V)
107101adantr 480 . . . . . . . . . 10 ((𝜑𝑤 ∈ (𝐴𝑧)) → 𝑥𝐴 𝐵 ∈ V)
108 snssi 4738 . . . . . . . . . . . . 13 (𝑤𝐴 → {𝑤} ⊆ 𝐴)
10972, 108syl 17 . . . . . . . . . . . 12 (𝑤 ∈ (𝐴𝑧) → {𝑤} ⊆ 𝐴)
110 iunss1 4935 . . . . . . . . . . . 12 ({𝑤} ⊆ 𝐴 𝑥 ∈ {𝑤}𝐵 𝑥𝐴 𝐵)
111109, 110syl 17 . . . . . . . . . . 11 (𝑤 ∈ (𝐴𝑧) → 𝑥 ∈ {𝑤}𝐵 𝑥𝐴 𝐵)
112111adantl 481 . . . . . . . . . 10 ((𝜑𝑤 ∈ (𝐴𝑧)) → 𝑥 ∈ {𝑤}𝐵 𝑥𝐴 𝐵)
113107, 112ssexd 5243 . . . . . . . . 9 ((𝜑𝑤 ∈ (𝐴𝑧)) → 𝑥 ∈ {𝑤}𝐵 ∈ V)
114113adantrl 712 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) → 𝑥 ∈ {𝑤}𝐵 ∈ V)
115 sge0iunmptlemfi.dj . . . . . . . . . 10 (𝜑Disj 𝑥𝐴 𝐵)
116115adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) → Disj 𝑥𝐴 𝐵)
117109ad2antll 725 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) → {𝑤} ⊆ 𝐴)
118 disjiun 5057 . . . . . . . . 9 ((Disj 𝑥𝐴 𝐵 ∧ (𝑧𝐴 ∧ {𝑤} ⊆ 𝐴 ∧ (𝑧 ∩ {𝑤}) = ∅)) → ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵) = ∅)
119116, 41, 117, 53, 118syl13anc 1370 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) → ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵) = ∅)
120 eliun 4925 . . . . . . . . . . . 12 (𝑘 𝑥𝑧 𝐵 ↔ ∃𝑥𝑧 𝑘𝐵)
121120biimpi 215 . . . . . . . . . . 11 (𝑘 𝑥𝑧 𝐵 → ∃𝑥𝑧 𝑘𝐵)
122121adantl 481 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑘 𝑥𝑧 𝐵) → ∃𝑥𝑧 𝑘𝐵)
123 simp1l 1195 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐴) ∧ 𝑥𝑧𝑘𝐵) → 𝜑)
124573adant3 1130 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐴) ∧ 𝑥𝑧𝑘𝐵) → 𝑥𝐴)
125 simp3 1136 . . . . . . . . . . . . . 14 (((𝜑𝑧𝐴) ∧ 𝑥𝑧𝑘𝐵) → 𝑘𝐵)
126 sge0iunmptlemfi.c . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
127123, 124, 125, 126syl3anc 1369 . . . . . . . . . . . . 13 (((𝜑𝑧𝐴) ∧ 𝑥𝑧𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
1281273exp 1117 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → (𝑥𝑧 → (𝑘𝐵𝐶 ∈ (0[,]+∞))))
129128rexlimdv 3211 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → (∃𝑥𝑧 𝑘𝐵𝐶 ∈ (0[,]+∞)))
130129adantr 480 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑘 𝑥𝑧 𝐵) → (∃𝑥𝑧 𝑘𝐵𝐶 ∈ (0[,]+∞)))
131122, 130mpd 15 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑘 𝑥𝑧 𝐵) → 𝐶 ∈ (0[,]+∞))
132131adantlrr 717 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ 𝑘 𝑥𝑧 𝐵) → 𝐶 ∈ (0[,]+∞))
133 eliun 4925 . . . . . . . . . . . 12 (𝑘 𝑥 ∈ {𝑤}𝐵 ↔ ∃𝑥 ∈ {𝑤}𝑘𝐵)
134133biimpi 215 . . . . . . . . . . 11 (𝑘 𝑥 ∈ {𝑤}𝐵 → ∃𝑥 ∈ {𝑤}𝑘𝐵)
135134adantl 481 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝐴𝑧)) ∧ 𝑘 𝑥 ∈ {𝑤}𝐵) → ∃𝑥 ∈ {𝑤}𝑘𝐵)
136 simp1l 1195 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴𝑧)) ∧ 𝑥 ∈ {𝑤} ∧ 𝑘𝐵) → 𝜑)
137109sselda 3917 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ (𝐴𝑧) ∧ 𝑥 ∈ {𝑤}) → 𝑥𝐴)
138137adantll 710 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ (𝐴𝑧)) ∧ 𝑥 ∈ {𝑤}) → 𝑥𝐴)
1391383adant3 1130 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴𝑧)) ∧ 𝑥 ∈ {𝑤} ∧ 𝑘𝐵) → 𝑥𝐴)
140 simp3 1136 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝐴𝑧)) ∧ 𝑥 ∈ {𝑤} ∧ 𝑘𝐵) → 𝑘𝐵)
141136, 139, 140, 126syl3anc 1369 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝐴𝑧)) ∧ 𝑥 ∈ {𝑤} ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
1421413exp 1117 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝐴𝑧)) → (𝑥 ∈ {𝑤} → (𝑘𝐵𝐶 ∈ (0[,]+∞))))
143142rexlimdv 3211 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝐴𝑧)) → (∃𝑥 ∈ {𝑤}𝑘𝐵𝐶 ∈ (0[,]+∞)))
144143adantr 480 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝐴𝑧)) ∧ 𝑘 𝑥 ∈ {𝑤}𝐵) → (∃𝑥 ∈ {𝑤}𝑘𝐵𝐶 ∈ (0[,]+∞)))
145135, 144mpd 15 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝐴𝑧)) ∧ 𝑘 𝑥 ∈ {𝑤}𝐵) → 𝐶 ∈ (0[,]+∞))
146145adantlrl 716 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ 𝑘 𝑥 ∈ {𝑤}𝐵) → 𝐶 ∈ (0[,]+∞))
14797, 106, 114, 119, 132, 146sge0splitmpt 43839 . . . . . . 7 ((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) → (Σ^‘(𝑘 ∈ ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵) ↦ 𝐶)) = ((Σ^‘(𝑘 𝑥𝑧 𝐵𝐶)) +𝑒^‘(𝑘 𝑥 ∈ {𝑤}𝐵𝐶))))
14896, 147eqtrd 2778 . . . . . 6 ((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) → (Σ^‘(𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶)) = ((Σ^‘(𝑘 𝑥𝑧 𝐵𝐶)) +𝑒^‘(𝑘 𝑥 ∈ {𝑤}𝐵𝐶))))
149148adantr 480 . . . . 5 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (Σ^‘(𝑘 𝑥𝑧 𝐵𝐶)) = (Σ^‘(𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶))))) → (Σ^‘(𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶)) = ((Σ^‘(𝑘 𝑥𝑧 𝐵𝐶)) +𝑒^‘(𝑘 𝑥 ∈ {𝑤}𝐵𝐶))))
150 id 22 . . . . . . . . 9 ((Σ^‘(𝑘 𝑥𝑧 𝐵𝐶)) = (Σ^‘(𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶)))) → (Σ^‘(𝑘 𝑥𝑧 𝐵𝐶)) = (Σ^‘(𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶)))))
151150adantl 481 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ (Σ^‘(𝑘 𝑥𝑧 𝐵𝐶)) = (Σ^‘(𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶))))) → (Σ^‘(𝑘 𝑥𝑧 𝐵𝐶)) = (Σ^‘(𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶)))))
1521263expa 1116 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
153 eqid 2738 . . . . . . . . . . . . . . . 16 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
154152, 153fmptd 6970 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞))
15598, 154sge0ge0 43812 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 0 ≤ (Σ^‘(𝑘𝐵𝐶)))
15658, 155jca 511 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ((Σ^‘(𝑘𝐵𝐶)) ∈ ℝ ∧ 0 ≤ (Σ^‘(𝑘𝐵𝐶))))
157 elrege0 13115 . . . . . . . . . . . . 13 ((Σ^‘(𝑘𝐵𝐶)) ∈ (0[,)+∞) ↔ ((Σ^‘(𝑘𝐵𝐶)) ∈ ℝ ∧ 0 ≤ (Σ^‘(𝑘𝐵𝐶))))
158156, 157sylibr 233 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ∈ (0[,)+∞))
15955, 57, 158syl2anc 583 . . . . . . . . . . 11 (((𝜑𝑧𝐴) ∧ 𝑥𝑧) → (Σ^‘(𝑘𝐵𝐶)) ∈ (0[,)+∞))
160 eqid 2738 . . . . . . . . . . 11 (𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶)))
161159, 160fmptd 6970 . . . . . . . . . 10 ((𝜑𝑧𝐴) → (𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶))):𝑧⟶(0[,)+∞))
16246, 161sge0fsum 43815 . . . . . . . . 9 ((𝜑𝑧𝐴) → (Σ^‘(𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶)))) = Σ𝑦𝑧 ((𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶)))‘𝑦))
163162adantr 480 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ (Σ^‘(𝑘 𝑥𝑧 𝐵𝐶)) = (Σ^‘(𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶))))) → (Σ^‘(𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶)))) = Σ𝑦𝑧 ((𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶)))‘𝑦))
164 fveq2 6756 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ((𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶)))‘𝑦) = ((𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶)))‘𝑥))
165 nfcv 2906 . . . . . . . . . . . 12 𝑥𝑧
166 nfcv 2906 . . . . . . . . . . . 12 𝑦𝑧
167 nfmpt1 5178 . . . . . . . . . . . . 13 𝑥(𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶)))
168 nfcv 2906 . . . . . . . . . . . . 13 𝑥𝑦
169167, 168nffv 6766 . . . . . . . . . . . 12 𝑥((𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶)))‘𝑦)
170 nfcv 2906 . . . . . . . . . . . 12 𝑦((𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶)))‘𝑥)
171164, 165, 166, 169, 170cbvsum 15335 . . . . . . . . . . 11 Σ𝑦𝑧 ((𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶)))‘𝑦) = Σ𝑥𝑧 ((𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶)))‘𝑥)
172171a1i 11 . . . . . . . . . 10 ((𝜑𝑧𝐴) → Σ𝑦𝑧 ((𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶)))‘𝑦) = Σ𝑥𝑧 ((𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶)))‘𝑥))
173 id 22 . . . . . . . . . . . . . 14 (𝑥𝑧𝑥𝑧)
174 fvexd 6771 . . . . . . . . . . . . . 14 (𝑥𝑧 → (Σ^‘(𝑘𝐵𝐶)) ∈ V)
175160fvmpt2 6868 . . . . . . . . . . . . . 14 ((𝑥𝑧 ∧ (Σ^‘(𝑘𝐵𝐶)) ∈ V) → ((𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶)))‘𝑥) = (Σ^‘(𝑘𝐵𝐶)))
176173, 174, 175syl2anc 583 . . . . . . . . . . . . 13 (𝑥𝑧 → ((𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶)))‘𝑥) = (Σ^‘(𝑘𝐵𝐶)))
177176adantl 481 . . . . . . . . . . . 12 (((𝜑𝑧𝐴) ∧ 𝑥𝑧) → ((𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶)))‘𝑥) = (Σ^‘(𝑘𝐵𝐶)))
178177ralrimiva 3107 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → ∀𝑥𝑧 ((𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶)))‘𝑥) = (Σ^‘(𝑘𝐵𝐶)))
179178sumeq2d 15342 . . . . . . . . . 10 ((𝜑𝑧𝐴) → Σ𝑥𝑧 ((𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶)))‘𝑥) = Σ𝑥𝑧^‘(𝑘𝐵𝐶)))
180172, 179eqtrd 2778 . . . . . . . . 9 ((𝜑𝑧𝐴) → Σ𝑦𝑧 ((𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶)))‘𝑦) = Σ𝑥𝑧^‘(𝑘𝐵𝐶)))
181180adantr 480 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ (Σ^‘(𝑘 𝑥𝑧 𝐵𝐶)) = (Σ^‘(𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶))))) → Σ𝑦𝑧 ((𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶)))‘𝑦) = Σ𝑥𝑧^‘(𝑘𝐵𝐶)))
182151, 163, 1813eqtrd 2782 . . . . . . 7 (((𝜑𝑧𝐴) ∧ (Σ^‘(𝑘 𝑥𝑧 𝐵𝐶)) = (Σ^‘(𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶))))) → (Σ^‘(𝑘 𝑥𝑧 𝐵𝐶)) = Σ𝑥𝑧^‘(𝑘𝐵𝐶)))
183182adantlrr 717 . . . . . 6 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (Σ^‘(𝑘 𝑥𝑧 𝐵𝐶)) = (Σ^‘(𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶))))) → (Σ^‘(𝑘 𝑥𝑧 𝐵𝐶)) = Σ𝑥𝑧^‘(𝑘𝐵𝐶)))
184183oveq1d 7270 . . . . 5 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (Σ^‘(𝑘 𝑥𝑧 𝐵𝐶)) = (Σ^‘(𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶))))) → ((Σ^‘(𝑘 𝑥𝑧 𝐵𝐶)) +𝑒^‘(𝑘 𝑥 ∈ {𝑤}𝐵𝐶))) = (Σ𝑥𝑧^‘(𝑘𝐵𝐶)) +𝑒^‘(𝑘 𝑥 ∈ {𝑤}𝐵𝐶))))
18546, 59fsumrecl 15374 . . . . . . . 8 ((𝜑𝑧𝐴) → Σ𝑥𝑧^‘(𝑘𝐵𝐶)) ∈ ℝ)
186185adantrr 713 . . . . . . 7 ((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) → Σ𝑥𝑧^‘(𝑘𝐵𝐶)) ∈ ℝ)
187 rexadd 12895 . . . . . . 7 ((Σ𝑥𝑧^‘(𝑘𝐵𝐶)) ∈ ℝ ∧ (Σ^‘(𝑘 𝑥 ∈ {𝑤}𝐵𝐶)) ∈ ℝ) → (Σ𝑥𝑧^‘(𝑘𝐵𝐶)) +𝑒^‘(𝑘 𝑥 ∈ {𝑤}𝐵𝐶))) = (Σ𝑥𝑧^‘(𝑘𝐵𝐶)) + (Σ^‘(𝑘 𝑥 ∈ {𝑤}𝐵𝐶))))
188186, 88, 187syl2anc 583 . . . . . 6 ((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) → (Σ𝑥𝑧^‘(𝑘𝐵𝐶)) +𝑒^‘(𝑘 𝑥 ∈ {𝑤}𝐵𝐶))) = (Σ𝑥𝑧^‘(𝑘𝐵𝐶)) + (Σ^‘(𝑘 𝑥 ∈ {𝑤}𝐵𝐶))))
189188adantr 480 . . . . 5 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (Σ^‘(𝑘 𝑥𝑧 𝐵𝐶)) = (Σ^‘(𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶))))) → (Σ𝑥𝑧^‘(𝑘𝐵𝐶)) +𝑒^‘(𝑘 𝑥 ∈ {𝑤}𝐵𝐶))) = (Σ𝑥𝑧^‘(𝑘𝐵𝐶)) + (Σ^‘(𝑘 𝑥 ∈ {𝑤}𝐵𝐶))))
190149, 184, 1893eqtrd 2782 . . . 4 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (Σ^‘(𝑘 𝑥𝑧 𝐵𝐶)) = (Σ^‘(𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶))))) → (Σ^‘(𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶)) = (Σ𝑥𝑧^‘(𝑘𝐵𝐶)) + (Σ^‘(𝑘 𝑥 ∈ {𝑤}𝐵𝐶))))
191 snfi 8788 . . . . . . . 8 {𝑤} ∈ Fin
192191a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) → {𝑤} ∈ Fin)
193 unfi 8917 . . . . . . 7 ((𝑧 ∈ Fin ∧ {𝑤} ∈ Fin) → (𝑧 ∪ {𝑤}) ∈ Fin)
19447, 192, 193syl2anc 583 . . . . . 6 ((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) → (𝑧 ∪ {𝑤}) ∈ Fin)
195 simpll 763 . . . . . . 7 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ 𝑥 ∈ (𝑧 ∪ {𝑤})) → 𝜑)
19656ad4ant14 748 . . . . . . . . 9 ((((𝑧𝐴𝑤 ∈ (𝐴𝑧)) ∧ 𝑥 ∈ (𝑧 ∪ {𝑤})) ∧ 𝑥𝑧) → 𝑥𝐴)
197 simpll 763 . . . . . . . . . . 11 (((𝑤 ∈ (𝐴𝑧) ∧ 𝑥 ∈ (𝑧 ∪ {𝑤})) ∧ ¬ 𝑥𝑧) → 𝑤 ∈ (𝐴𝑧))
198 elunnel1 4080 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝑧 ∪ {𝑤}) ∧ ¬ 𝑥𝑧) → 𝑥 ∈ {𝑤})
199 elsni 4575 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑤} → 𝑥 = 𝑤)
200198, 199syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑧 ∪ {𝑤}) ∧ ¬ 𝑥𝑧) → 𝑥 = 𝑤)
201200adantll 710 . . . . . . . . . . 11 (((𝑤 ∈ (𝐴𝑧) ∧ 𝑥 ∈ (𝑧 ∪ {𝑤})) ∧ ¬ 𝑥𝑧) → 𝑥 = 𝑤)
202 simpr 484 . . . . . . . . . . . 12 ((𝑤 ∈ (𝐴𝑧) ∧ 𝑥 = 𝑤) → 𝑥 = 𝑤)
20372adantr 480 . . . . . . . . . . . 12 ((𝑤 ∈ (𝐴𝑧) ∧ 𝑥 = 𝑤) → 𝑤𝐴)
204202, 203eqeltrd 2839 . . . . . . . . . . 11 ((𝑤 ∈ (𝐴𝑧) ∧ 𝑥 = 𝑤) → 𝑥𝐴)
205197, 201, 204syl2anc 583 . . . . . . . . . 10 (((𝑤 ∈ (𝐴𝑧) ∧ 𝑥 ∈ (𝑧 ∪ {𝑤})) ∧ ¬ 𝑥𝑧) → 𝑥𝐴)
206205adantlll 714 . . . . . . . . 9 ((((𝑧𝐴𝑤 ∈ (𝐴𝑧)) ∧ 𝑥 ∈ (𝑧 ∪ {𝑤})) ∧ ¬ 𝑥𝑧) → 𝑥𝐴)
207196, 206pm2.61dan 809 . . . . . . . 8 (((𝑧𝐴𝑤 ∈ (𝐴𝑧)) ∧ 𝑥 ∈ (𝑧 ∪ {𝑤})) → 𝑥𝐴)
208207adantll 710 . . . . . . 7 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ 𝑥 ∈ (𝑧 ∪ {𝑤})) → 𝑥𝐴)
209195, 208, 158syl2anc 583 . . . . . 6 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ 𝑥 ∈ (𝑧 ∪ {𝑤})) → (Σ^‘(𝑘𝐵𝐶)) ∈ (0[,)+∞))
210194, 209sge0fsummpt 43818 . . . . 5 ((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) → (Σ^‘(𝑥 ∈ (𝑧 ∪ {𝑤}) ↦ (Σ^‘(𝑘𝐵𝐶)))) = Σ𝑥 ∈ (𝑧 ∪ {𝑤})(Σ^‘(𝑘𝐵𝐶)))
211210adantr 480 . . . 4 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (Σ^‘(𝑘 𝑥𝑧 𝐵𝐶)) = (Σ^‘(𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶))))) → (Σ^‘(𝑥 ∈ (𝑧 ∪ {𝑤}) ↦ (Σ^‘(𝑘𝐵𝐶)))) = Σ𝑥 ∈ (𝑧 ∪ {𝑤})(Σ^‘(𝑘𝐵𝐶)))
21292, 190, 2113eqtr4d 2788 . . 3 (((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) ∧ (Σ^‘(𝑘 𝑥𝑧 𝐵𝐶)) = (Σ^‘(𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶))))) → (Σ^‘(𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶)) = (Σ^‘(𝑥 ∈ (𝑧 ∪ {𝑤}) ↦ (Σ^‘(𝑘𝐵𝐶)))))
213212ex 412 . 2 ((𝜑 ∧ (𝑧𝐴𝑤 ∈ (𝐴𝑧))) → ((Σ^‘(𝑘 𝑥𝑧 𝐵𝐶)) = (Σ^‘(𝑥𝑧 ↦ (Σ^‘(𝑘𝐵𝐶)))) → (Σ^‘(𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶)) = (Σ^‘(𝑥 ∈ (𝑧 ∪ {𝑤}) ↦ (Σ^‘(𝑘𝐵𝐶))))))
2146, 12, 18, 24, 34, 213, 42findcard2d 8911 1 (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  csb 3828  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  {csn 4558   ciun 4921  Disj wdisj 5035   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800  cr 10801  0cc0 10802   + caddc 10805  +∞cpnf 10937  cle 10941   +𝑒 cxad 12775  [,)cico 13010  [,]cicc 13011  Σcsu 15325  Σ^csumge0 43790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-xadd 12778  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-sumge0 43791
This theorem is referenced by:  sge0iunmptlemre  43843
  Copyright terms: Public domain W3C validator